Next Article in Journal
Efficacy of Intravitreal Brolucizumab for Chronic Central Serous Chorioretinopathy: A Pilot Study
Previous Article in Journal
Artificial Intelligence in the Diagnosis of Pediatric Rare Diseases: From Real-World Data Toward a Personalized Medicine Approach
Previous Article in Special Issue
Children and Adolescents with Mucopolysaccharidosis and Osteogenesis Imperfecta: The Dentistry on the Multiprofessional Team
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Orthodontic Extrusion in Daily Clinical Practice: Management of Fractured or Damaged Anterior Teeth

by
Giuseppina Malcangi
1,†,
Grazia Marinelli
1,†,
Maral Di Giulio Cesare
1,
Sharon Di Serio
1,
Marialuisa Longo
1,
Andrea Carbonara
1,
Francesco Inchingolo
1,
Alessio Danilo Inchingolo
1,*,
Ioana Roxana Bordea
2,*,
Andrea Palermo
3,
Angelo Michele Inchingolo
1,‡ and
Gianna Dipalma
1,‡
1
Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
2
Department of Oral Rehabilitation, Faculty of Dentistry, University of Medicine and Pharmacy Iuliu Hatieganu, 400012 Cluj-Napoca, Romania
3
Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work as co-first.
These authors contributed equally to this work as co-last.
J. Pers. Med. 2025, 15(9), 408; https://doi.org/10.3390/jpm15090408
Submission received: 21 June 2025 / Revised: 6 August 2025 / Accepted: 26 August 2025 / Published: 1 September 2025
(This article belongs to the Special Issue Advances in Oral Health: Innovative and Personalized Approaches)

Abstract

Background. Orthodontic extrusion (OE), or forced eruption, is a conservative technique used to recover teeth affected by coronal fractures, traumatic intrusions, or severe caries. It involves applying light, continuous forces to induce vertical tooth movement, promoting tissue remodeling through periodontal ligament stimulation. Materials and Methods. This narrative review included studies investigating OE as a therapeutic approach for the management of deep or subgingival carious lesions, traumatic dental injuries (such as intrusion or fracture), or for alveolar ridge augmentation in implant site development. OE is typically performed using fixed appliances such as the straight-wire system or, in selected cases, clear aligners. Forces between 30 and 100 g per tooth are applied, depending on the clinical situation. In some protocols, OE is combined with fiberotomy to minimize gingival and bone migration. Results. Studies show that OE leads to significant vertical movement and increases in buccal bone height and interproximal septa. It enhances bone volume in targeted sites, making it valuable in implant site development. Compared to surgical crown lengthening, OE better preserves periodontal tissues and improves esthetics. Conclusions. In this narrative review is analized how OE is effective for managing traumatic intrusions and compromised periodontal sites, particularly when paired with early endodontic treatment. It reduces the risks of ankylosis and root resorption while avoiding invasive procedures like grafting. Although clear aligners may limit axial tooth movement, OE remains a minimally invasive, cost-effective alternative in both restorative and implant dentistry.

1. Introduction

Preserving compromised teeth, particularly in the anterior region, is one of the most complex and important challenges in modern restorative and multidisciplinary dentistry. In the era of “minimally invasive and personalized dentistry”, clinical decisions must be guided by conservative principles, aiming to maintain the natural dentition whenever possible.
This reflects the principles of personalized medicine, where treatment plans are tailored to the individual biological and clinical characteristics of the patient to optimize outcomes. In this clinical context, orthodontic extrusion, also known as “forced orthodontic eruption”, is configured as a predictable and effective technique for the recovery of severely compromised teeth, allowing the restoration of a sufficient quantity of coronal and periodontal tissue useful for functional and esthetic rehabilitation.
Orthodontic extrusion consists of the application of light and continuous forces aimed at causing the coronal migration of the tooth inside the alveolus, through a tissue remodeling process that involves both the periodontal ligament and the alveolar bone. Controlled extrusion, originally developed for orthodontic management of dental inclusions and impactions, has become a key technique in endodontics and prosthetics, offering a viable alternative to periodontal surgery or tooth extraction.
Anterior teeth, due to their esthetic and functional importance, are often the subject of particular attention in conservative treatment strategies. However, dental trauma, extensive subgingival caries, coronal root fractures, or iatrogenic complications can seriously compromise the residual tooth structure, making it difficult to obtain a correct marginal seal and a sufficient prosthetic ferrule. In the absence of an adequate residual coronal height, the creation of indirect restorations such as full crowns is clinically questionable, both for biomechanical reasons and for the risk of carious recurrences or prosthetic fractures.
In these cases, orthodontic extrusion is proposed as an auxiliary technique that allows bringing to the surface a portion of the healthy and intact dental root, which would otherwise remain inaccessible for the preparation of the prosthetic margin [1,2,3,4]. This technique respects the biological concept of “biologic width” or “biological space”, avoiding tissue violations that could lead to chronic inflammation, gingival retraction, and loss of periodontal attachment, thereby aligning with personalized biological considerations for each patient [5,6,7,8,9,10,11,12,13,14]. At the same time, extrusion stimulates the formation of new bone and connective tissue, contributing to the regeneration of supporting tissues and to the improvement of the peri-prosthetic tissue profile [15,16,17,18,19]. This highlights a regenerative strategy based on the patient’s intrinsic biological capacity, illustrating principles of personalized regenerative medicine.
From a biomechanical point of view, orthodontic extrusion must be performed with extreme attention to the control of the applied forces, which must be slow and constant, generally between 15 and 60 g, in order to avoid root resorption or compromise of the support apparatus [20,21,22,23]. Moreover, in certain cases, adjunctive fibrotomy procedures or supplementary gingival and osseous surgeries are required to inhibit coronal migration of soft and hard tissues, thereby preserving the vertical height gained [24,25,26,27]. Orthodontic devices that can be used for extrusion include:
  • Traditional brackets with light alloy arches and vertical levers.
  • Segmented arches with NiTi springs or TMA wires.
  • Auxiliary anchors such as mini-orthodontic screws (TADs), which allow precise control and reduce dependence on adjacent anchorage elements.
  • Transparent aligners, which, with appropriate “attachments” and digital planning, can generate programmed extrusive movements.
  • Mixed systems, with prosthetic aids (e.g., glued caps or buttons) to facilitate direct traction of the element to be extruded [28,29,30,31].
The choice of technique is guided by a personalized assessment of the clinical situation, patient compliance, and overall treatment goals, embodying the tailored treatment concept of personalized medicine [32,33,34,35]. Regardless of the technique used, the subsequent “stabilization” or containment phase is crucial for maintaining the results obtained and requires a period of immobilization of the extruded element that can vary from 4 to 8 weeks [36,37,38,39,40,41].
Orthodontic extrusion finds its main indication in the following clinical conditions:
  • Subgingival coronal fractures, especially in the anterior sectors, in which it is desired to preserve the tooth rather than resort to implants [42,43,44,45].
  • Destructive caries below the gingival level, which prevents the creation of a correct coronal restoration [46,47,48].
  • Endodontic lesions with coronal resorption of the root but preservation of the root apex.
  • Orthodontic preparation for deferred extraction, in which extrusion allows regeneration of bone tissue and facilitates subsequent implant positioning in more favorable conditions [49,50,51].
In the anterior region, esthetics play a crucial role. Preserving the interdental papilla, maintaining a harmonious gingival profile, and seamlessly blending the final restoration with the adjacent teeth are essential factors for therapeutic success [52,53,54,55,56,57,58,59,60,61,62]. Orthodontic extrusion, which helps avoid extensive surgical flaps and preserves the integrity of periodontal structures, is among the most commonly used orthodontic movements and often represents the most conservative and esthetically predictable approach [63,64,65,66,67,68,69,70]. This conservative biological approach aligns with translational medicine by applying fundamental biological principles to clinical practice. Additionally, extrusion enables natural regeneration of coronal alveolar bone without the need for guided regeneration or grafting techniques [71,72,73,74,75,76,77]. In fact, during the extrusive orthodontic movement, the applied traction stimulates osteoblastic activity in the coronal direction, with progressive apposition of bone along the periodontal ligament [78,79,80,81,82,83,84]. This well-documented phenomenon is especially beneficial in young patients, where tissue quality and regenerative capacity are optimal. However, the successful application of the technique demands close interdisciplinary collaboration among orthodontists, prosthodontists, endodontists, and occasionally periodontists to ensure precise planning and seamless execution [85,86,87,88]. This interdisciplinary strategy exemplifies the translational medicine model by integrating various specialties to tailor patient care. Clear communication with the patient regarding the longer treatment duration compared to extraction and implant placement is crucial, as the extrusion approach often yields superior long-term clinical outcomes. Nonetheless, orthodontic extrusion presents certain limitations and contraindications [89,90,91,92,93,94,95]. These include: the inability to achieve stable anchorage in patients with a reduced dental arch, the presence of very short or vertically fractured roots, poor patient compliance, and the presence of systemic factors that limit bone healing or orthodontic response [96,97,98,99,100,101,102]. The frequent use of orthodontic extrusion in daily dental practice underscores the need for a narrative review. The goal of this narrative review is to summarize the existing literature on OE and provide a clinical synthesis of its therapeutic applications. This technique enables highly personalized treatment planning, which relies on comprehensive assessments—including medical history, clinical examination, and 3D imaging (CBCT)—to evaluate case suitability and predict outcomes, with particular emphasis on residual bone thickness and root morphology, in alignment with personalized medicine principles [103,104,105,106,107,108,109].

2. Materials and Methods

2.1. Search Processing

In order to explore the clinical relevance and therapeutic applications of orthodontic extrusion, we conducted a broad literature search across major scientific databases.
Review Registry procedures (full ID: 1059711).
Our approach favored a narrative synthesis, aiming to provide a comprehensive overview rather than a quantitative analysis.
The search included publications from the last 15 years (January 2010 to February 2025), focusing on peer-reviewed articles in English. The databases consulted were PubMed, Web of Science, and Scopus, selected for their wide coverage of biomedical literature.
The following Boolean keywords were applied: “A”: extrusion”, “B”: orthodont”.
Article-screening strategy
KEYWORDS: “A”: extrusion”, “B”: orthodont”
Boolean Indicators: “A” AND “B”
Timespan: 1 January 2010 to 1 February 2025
Electronic databases: PubMed; Scopus; Web of Science.
The search terms were designed to capture studies discussing orthodontic extrusion in clinical contexts, especially where it was used for the management of deep or subgingival dental lesions.

2.2. Inclusion and Exclusion Criteria

For the purposes of this narrative review, studies were included based on their relevance to clinical practice and their contribution to the understanding of orthodontic extrusion as a therapeutic strategy.
Particularly, we considered studies where orthodontic extrusion was used to manage conditions such as subgingival fractures, deep carious lesions, traumatic intrusion, or to aid in implant site development. The review focused on articles that reported clinical outcomes, especially those supported by radiographic or CBCT evaluations.
Rather than strictly applying inclusion and exclusion filters, the selection was guided by clinical relevance and the potential of each article to contribute to a nuanced understanding of the topic.
Although not structured through a formal PICO model, the review was shaped by a central clinical question: how effective is orthodontic extrusion, compared to other approaches, in preserving hard and soft tissues and facilitating long-term rehabilitation in compromised dental situations?

2.3. Data Processing

The selected literature was analyzed narratively, focusing on key clinical insights, reported outcomes, and recurring themes across different therapeutic approaches.
Rather than using formal quality assessment tools, the studies were selected and discussed among the authors based on thematic relevance and clinical applicability. Key findings were grouped and interpreted to highlight trends, clinical challenges, and areas in need of further exploration.

3. Results

A total of 2337 papers were obtained from the databases Web of Science (554), PubMed (277), and Scopus (1506). This resulted in 1777 articles after eliminating duplicates (560). 120 articles have been eliminated as a systematic review, 30 as in vitro studies and 1616 because off topic or not strictly relevant. This study presents the qualitative analysis of 11 selected articles. “In accordance with PRISMA guidelines and the systematic review standards, the included studies are described in terms of their design, objectives, materials and methods, and principal findings. This structured approach ensures methodological transparency and supports the interpretation of the heterogeneity across study designs.”

Methodological Considerations and Study Quality

While this review does not adopt a formal risk of bias assessment, we considered the methodological soundness of each study by examining aspects such as study design, sample size, clarity of outcome measures, and presence or absence of control groups.
Randomized trials were generally more robust in methodology, especially when randomization and blinding were clearly described. Observational studies, while offering valuable clinical insight, often showed limitations related to sample size or reporting transparency.
Notably, certain studies—such as those by G. Rossini et al. (2021) [110,111], I. Arsić et al. (2022) [112], and J. Zhang et al. (2025) [113]—exhibited strong methodological design with consistent and well-reported outcomes. Conversely, some case series, like those by Bruhnke et al. and Shalish et al., presented concerns mainly related to attrition and performance bias, which may affect data interpretation.
These observations underscore the importance of interpreting results in light of methodological limitations. While most included studies contribute meaningfully to the understanding of orthodontic extrusion, issues such as incomplete data, limited participant numbers, and the absence of control groups remain common barriers to evidence strength.
Overall, these findings suggest that while the majority of the studies are methodologically sound, certain limitations, such as small sample sizes, incomplete data handling, and absence of control groups, should be carefully considered when interpreting the conclusions regarding the effectiveness and safety of orthodontic extrusion techniques.
Orthodontic extrusion, also referred to as forced eruption, has increasingly gained recognition as a conservative, biologically driven, and interdisciplinary tool in modern dental practice [114]. It is indicated in a wide range of clinical scenarios, including the treatment of traumatic dental intrusion, the management of subgingival and subcrestal fractures, the rehabilitation of severely decayed teeth, and even the preparation of future implant sites [115,116,117,118,119]. Its importance is especially evident in the anterior region, where both esthetic and functional requirements are paramount, and where traditional surgical crown lengthening often proves inadequate or overly invasive [120]. By contrast, orthodontic extrusion provides a minimally invasive alternative that leverages the body’s natural biological response to controlled mechanical forces [113]. Through activation of the periodontal ligament and alveolar bone, it promotes coronal migration of both hard and soft tissues, allowing for the re-establishment of the biologic width and sufficient tooth structure for prosthetic rehabilitation while preserving gingival architecture [121,122,123,124,125,126]. This principle of tissue engineering through orthodontic movement exemplifies translational medicine, where fundamental biological mechanisms are applied in clinical settings to improve outcomes [127,128,129,130,131,132].
Numerous studies have investigated the clinical and biological effects of orthodontic extrusion [133]. Arsić et al. conducted a prospective clinical study using CBCT to evaluate changes in the alveolar bone following orthodontic extrusion [134,135,136,137,138]. Their findings showed a mean vertical tooth movement of 1.52 mm, accompanied by significant increases in buccal bone plate and mesial interproximal septum height, with minimal palatal bone change [139]. Importantly, although some degree of apical root resorption was observed, it was considered clinically insignificant [140,141,142,143,144]. These results support the hypothesis that orthodontic extrusion can stimulate localized bone apposition in the direction of tooth movement, particularly when the periodontal ligament remains intact and functional [111,145,146,147]. Furthermore, the pattern and magnitude of tissue remodeling appear closely correlated with the direction and extent of extrusion, reinforcing the importance of personalized treatment protocols tailored to individual anatomical responses [148]. Bruhnke and colleagues emphasized the relevance of orthodontic extrusion in restoring severely compromised teeth, particularly those with subgingival lesions, noting that the presence of sufficient residual tooth structure and a proper ferrule are critical for long-term success [110]. While surgical crown lengthening may still be a viable option in posterior teeth, in the anterior esthetic zone, orthodontic extrusion is often the more favorable approach due to its tissue-preserving nature and more predictable esthetic results [149].
Economically, the technique also shows promise. A health economic evaluation conducted at Charité–Universitätsmedizin Berlin analyzed the cost-effectiveness of orthodontic extrusion followed by prosthetic rehabilitation in cases involving deep subgingival defects [150]. The study, which included 35 teeth, reported a 91% survival rate and an 83% clinical success rate over an average follow-up of 49 .months. While the median cost per case was approximately €2284, complications such as tooth loss significantly increased the total expenditure [151,152,153,154,155]. These findings suggest that orthodontic extrusion, when properly indicated and executed, may offer not only clinical reliability but also long-term economic sustainability, particularly as a tooth-preserving alternative to extraction and implant placement [156,157,158,159,160].
Clinical protocols vary depending on the intended outcome and the tissue response. Uravić Crljenica et al. proposed a rapid forced orthodontic extrusion (FOE) technique combined with regular fiberotomy to prevent undesirable migration of gingival and osseous tissues [161,162,163,164,165]. In their study involving 10 premolars with subgingival lesions, extrusion averaged 2 mm, with about 49% of the movement reflected in soft tissue migration and 18% in bone displacement [166,167,168,169,170]. While effective, this approach also highlighted the partial and somewhat unpredictable behavior of surrounding tissues during rapid extrusion, further supporting the value of customizing extrusion speed and timing. Similarly, Ao Sun et al. presented a digital extrusion protocol using CAD-CAM fabricated pontics and elastic traction, which enabled precise planning and improved esthetics during treatment [171,172,173,174,175]. This method proved successful in managing single-tooth fractures with minimal impact on adjacent structures [145,176,177,178,179,180]. Another case series by Bosly showcased the use of customized appliances and extrusion protocols in young female patients with severely damaged anterior teeth, demonstrating favorable radiographic bone preservation and high patient satisfaction, all while avoiding invasive surgery [181,182,183,184,185,186].
In the context of dental trauma, especially traumatic intrusion, orthodontic extrusion has proven particularly valuable. Shalish et al. compared traumatized intruded teeth with non-traumatized controls and found that all intruded teeth lost vitality, and 90% developed pulp necrosis, frequently accompanied by complications such as root resorption and canal obliteration. When spontaneous re-eruption does not occur, orthodontic extrusion becomes the treatment of choice, albeit with careful planning to reduce iatrogenic damage, particularly in teeth with mature apices. Early endodontic treatment is often necessary [187,188,189,190,191,192,193]. A case by Hayriye Sönmez et al. reported on the successful orthodontic extrusion of an intruded central incisor in an 8-year-old girl following failed spontaneous eruption, with pulp canal obliteration observed after five years but continued functionality. Zhang et al., in a prospective clinical study, evaluated 28 intruded teeth treated with extrusion and 29 controls managed with spontaneous re-eruption. The success rate for extrusion reached 96.4%, slightly higher than the 90% observed in the spontaneous eruption group [194,195,196,197]. Despite a high incidence of pulp necrosis, especially in mature teeth, root growth continued in immature teeth. The risk of replacement resorption (ankylosis) was low and may even be reduced by early application of orthodontic force. These results confirm that controlled extrusion, when carefully timed and biologically guided, offers a safe and effective alternative to passive observation or surgical repositioning in cases of dental intrusion.
From a biomechanical perspective, extrusion using clear aligners has been the focus of several investigations, particularly for open bite correction. Rossini and Modica performed finite element analyses (FEA) to assess the behavior of aligners during planned upper incisor extrusion. Their findings showed that bodily incisor extrusion is difficult to achieve with aligners alone, due to associated retroclination, lateral flaring, and tipping of adjacent teeth [198,199,200,201,202]. Attachments on both anterior and posterior teeth improved force control and anchorage, enhancing predictability. Groody et al. [120] corroborated these results, noting that most vertical correction with aligners occurs through mandibular counterclockwise rotation and molar intrusion rather than true incisor extrusion. These biomechanical insights highlight the need for improved treatment planning and appliance design when vertical movement is required, particularly in aligner-based therapy.
Lastly, Borrelli De Barros presented a compelling clinical case of a 56-year-old woman with severe periodontal bone loss in the anterior maxilla. Following comprehensive periodontal therapy, slow orthodontic extrusion was performed over 14 months to increase vertical bone height [203,204,205,206,207]. This biologically driven extrusion allowed implant placement without grafting, followed by immediate provisional crowns for soft tissue contouring. At six-year follow-up, the patient exhibited stable function and excellent esthetics, demonstrating how forced eruption can be successfully integrated into a regenerative, multidisciplinary treatment pathway [112]. Overall, orthodontic extrusion offers a biologically sound, minimally invasive, and cost-effective treatment option across a range of clinical indications. Its success relies heavily on personalized protocols, interdisciplinary collaboration, and an in-depth understanding of the biological principles that govern tissue remodeling, positioning it as a key tool in the modern, patient-centered dental approach (Figure 1).

4. Conclusions

In conclusion, orthodontic extrusion (OE), as reviewed in the current literature, stands as a conservative and clinically effective tool for managing compromised anterior teeth and constitutes a versatile and minimally invasive technique with profound clinical significance. Whether applied for the rehabilitation of traumatically intruded teeth, the restoration of teeth exhibiting subgingival defects or fractures, or for the preparation of implant sites, OE confers numerous advantages. Its ability to enhance bone volume, especially in the buccal and mesial regions, makes it an indispensable tool in both restorative dentistry and periodontics. Furthermore, OE maintains periodontal health, preserves natural tooth structure, and avoids the complications often associated with more invasive surgical procedures. While the technique shows promising long-term clinical outcomes, it requires careful planning, proper execution, and collaboration between orthodontists, periodontists, and prosthodontists. Cost-effectiveness studies and biomechanical analyses indicate that, when applied appropriately, orthodontic extrusion (OE) represents both an efficient and economical treatment modality, rendering it a compelling alternative to implant therapy in selected cases. Nonetheless, it remains imperative to further advance our understanding of OE’s effects on root stability, soft tissue management, and bone remodeling to ensure its optimal clinical application. Consequently, orthodontic extrusion constitutes a vital instrument in contemporary dental practice, facilitating predictable, functional, and esthetically favorable outcomes. This review consolidates findings from existing clinical studies to guide clinicians in adopting OE where appropriate, ensuring personalized, evidence-based care.

Author Contributions

Conceptualization, M.L., M.D.G.C., S.D.S., A.M.I., A.D.I., G.D. and G.M. (Grazia Marinelli); methodology, M.L., G.M. (Giuseppina Malcangi), A.M.I., A.D.I., A.P. and F.I.; software, A.D.I., M.L. and G.M. (Grazia Marinelli); validation, A.M.I., A.C. and M.D.G.C.; formal analysis, F.I.; resources, M.L. and M.D.G.C.; data curation, G.D.; writing—original draft preparation, G.M. (Giuseppina Malcangi), A.M.I., G.D. and S.D.S.; software, I.R.B.; writing—review and editing, A.M.I., G.D., F.I., G.M. (Grazia Marinelli), I.R.B. and A.D.I.; visualization, A.P.; supervision, I.R.B. and F.I.; project administration, I.R.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AbbreviationsDefinition
OEOrthodontic Extrusion
FOEForced Orthodontic Extrusion
CBCTCone Beam Computed Tomography
PRISMAPreferred Reporting Items for Systematic Reviews and Meta-Analyses
PDLPeriodontal Ligament
TADsTemporary Anchorage Devices
CAD-CAMComputer-Aided Design/Computer-Aided Manufacturing

References

  1. Inchingolo, A.M.; Fatone, M.C.; Malcangi, G.; Avantario, P.; Piras, F.; Patano, A.; Di Pede, C.; Netti, A.; Ciocia, A.M.; De Ruvo, E.; et al. Modifiable Risk Factors of Non-Syndromic Orofacial Clefts: A Systematic Review. Children 2022, 9, 1846. [Google Scholar] [CrossRef]
  2. Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology 2020, 9, 131. [Google Scholar] [CrossRef]
  3. Inchingolo, A.M.; Inchingolo, A.D.; Trilli, I.; Ferrante, L.; Di Noia, A.; de Ruvo, E.; Palermo, A.; Inchingolo, F.; Dipalma, G. Orthopedic Devices for Skeletal Class III Malocclusion Treatment in Growing Patients: A Comparative Effectiveness Systematic Review. J. Clin. Med. 2024, 13, 7141. [Google Scholar] [CrossRef]
  4. Laforgia, A.; Inchingolo, A.M.; Inchingolo, F.; Sardano, R.; Trilli, I.; Di Noia, A.; Ferrante, L.; Palermo, A.; Inchingolo, A.D.; Dipalma, G. Paediatric Dental Trauma: Insights from Epidemiological Studies and Management Recommendations. BMC Oral Health 2025, 25, 6. [Google Scholar] [CrossRef]
  5. Mancini, A.; Inchingolo, A.M.; Chirico, F.; Colella, G.; Piras, F.; Colonna, V.; Marotti, P.; Carone, C.; Inchingolo, A.D.; Inchingolo, F.; et al. Piezosurgery in Third Molar Extractions: A Systematic Review. J. Pers. Med. 2024, 14, 1158. [Google Scholar] [CrossRef]
  6. Malcangi, G.; Patano, A.; Guglielmo, M.; Sardano, R.; Palmieri, G.; Di Pede, C.; de Ruvo, E.; Inchingolo, A.D.; Mancini, A.; Inchingolo, F.; et al. Precision Medicine in Oral Health and Diseases: A Systematic Review. J. Pers. Med. 2023, 13, 725. [Google Scholar] [CrossRef]
  7. Inchingolo, F.; Santacroce, L.; Cantore, S.; Ballini, A.; Del Prete, R.; Topi, S.; Saini, R.; Dipalma, G.; Arrigoni, R. Probiotics and EPICOR® in Human Health. J. Biol. Regul. Homeost. Agents 2019, 33, 1973–1979. [Google Scholar] [CrossRef]
  8. Inchingolo, A.D.; Ferrara, I.; Viapiano, F.; Netti, A.; Campanelli, M.; Buongiorno, S.; Latini, G.; Carpentiere, V.; Ciocia, A.M.; Ceci, S.; et al. Rapid Maxillary Expansion on the Adolescent Patient: Systematic Review and Case Report. Children 2022, 9, 1046. [Google Scholar] [CrossRef]
  9. Inchingolo, A.D.; Laforgia, A.; Inchingolo, A.M.; Latini, G.; Pezzolla, C.; Nardelli, P.; Palermo, A.; Inchingolo, F.; Malcangi, G.; Dipalma, G. Rapid Palate Expansion’s Impact on Nasal Breathing: A Systematic Review. Int. J. Pediatr. Otorhinolaryngol. 2025, 190, 112248. [Google Scholar] [CrossRef]
  10. Campobasso, A.; Lo Muzio, E.; Battista, G.; Ciavarella, D.; Crincoli, V.; Lo Muzio, L. Taxonomic Analysis of Oral Microbiome during Orthodontic Treatment. Int. J. Dent. 2021, 2021, 8275181. [Google Scholar] [CrossRef]
  11. Crincoli, V.; Piancino, M.G.; Iannone, F.; Errede, M.; Di Comite, M. Temporomandibular Disorders and Oral Features in Systemic Lupus Erythematosus Patients: An Observational Study of Symptoms and Signs. Int. J. Med. Sci. 2020, 17, 153–160. [Google Scholar] [CrossRef]
  12. Crincoli, V.; Favia, G.; LImongelli, L.; Tempesta, A.; Brienza, N. The Effectiveness of Ropivacaine and Mepivacaine in the Postoperative Pain after Third Lower Molar Surgery. Int. J. Med. Sci. 2015, 12, 862–866. [Google Scholar] [CrossRef]
  13. Dioguardi, M.; Spirito, F.; Sovereto, D.; Alovisi, M.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Laino, L.; Cazzolla, A.P.; Caloro, G.A.; et al. The Prognostic Role of miR-31 in Head and Neck Squamous Cell Carcinoma: Systematic Review and Meta-Analysis with Trial Sequential Analysis. Int. J. Environ. Res. Public. Health 2022, 19, 5334. [Google Scholar] [CrossRef]
  14. Crincoli, V.; Scivetti, M.; Di Bisceglie, M.B.; Pilolli, G.P.; Favia, G. Unusual Case of Adverse Reaction in the Use of Sodium Hypochlorite during Endodontic Treatment: A Case Report. Quintessence Int. 2008, 39, e70–e73. [Google Scholar]
  15. Saccomanno, S.; Martini, C.; D’Alatri, L.; Farina, S.; Grippaudo, C. A Specific Protocol of Myo-Functional Therapy in Children with Down Syndrome. A Pilot Study. Eur. J. Paediatr. Dent. 2018, 19, 243–246. [Google Scholar] [CrossRef]
  16. Grippaudo, C.; Cancellieri, D.; Grecolini, M.E.; Deli, R. Comparison between Different Interdental Stripping Methods and Evaluation of Abrasive Strips: SEM Analysis. Prog. Orthod. 2010, 11, 127–137. [Google Scholar] [CrossRef]
  17. Saccomanno, S.; Passarelli, P.C.; Oliva, B.; Grippaudo, C. Comparison between Two Radiological Methods for Assessment of Tooth Root Resorption: An In Vitro Study. Biomed. Res. Int. 2018, 2018, 5152172. [Google Scholar] [CrossRef]
  18. Muraglie, S.; Leonardi, R.; Aboulazm, K.; Stumpo, C.; Loreto, C.; Grippaudo, C. Evaluation of Structural Skeletal Asymmetry of the Glenoid Fossa in Adult Patients with Unilateral Posterior Crossbite Using Surface-to-Surface Matching on CBCT Images. Angle Orthod. 2020, 90, 376–382. [Google Scholar] [CrossRef]
  19. Cafiero, C.; Re, A.; Stigliano, E.; Bassotti, E.; Moroni, R.; Grippaudo, C. Optimization of DNA Extraction from Dental Remains. Electrophoresis 2019, 40, 1820–1823. [Google Scholar] [CrossRef]
  20. Del Amo, F.S.L.; Yu, S.-H.; Sammartino, G.; Sculean, A.; Zucchelli, G.; Rasperini, G.; Felice, P.; Pagni, G.; Iorio-Siciliano, V.; Grusovin, M.G.; et al. Peri-Implant Soft Tissue Management: Cairo Opinion Consensus Conference. Int. J. Environ. Res. Public. Health 2020, 17, 2281. [Google Scholar] [CrossRef]
  21. D’Esposito, V.; Lecce, M.; Marenzi, G.; Cabaro, S.; Ambrosio, M.R.; Sammartino, G.; Misso, S.; Migliaccio, T.; Liguoro, P.; Oriente, F.; et al. Platelet-Rich Plasma Counteracts Detrimental Effect of High-Glucose Concentrations on Mesenchymal Stem Cells from Bichat Fat Pad. J. Tissue Eng. Regen. Med. 2020, 14, 701–713. [Google Scholar] [CrossRef]
  22. Caggiano, M.; Gasparro, R.; D’Ambrosio, F.; Pisano, M.; Di Palo, M.P.; Contaldo, M. Smoking Cessation on Periodontal and Peri-Implant Health Status: A Systematic Review. Dent. J. 2022, 10, 162. [Google Scholar] [CrossRef]
  23. Rullo, R.; Festa, V.M.; Rullo, F.; Trosino, O.; Cerone, V.; Gasparro, R.; Laino, L.; Sammartino, G. The Use of Piezosurgery in Genioplasty. J. Craniofac. Surg. 2016, 27, 414–415. [Google Scholar] [CrossRef]
  24. Malcangi, G.; Inchingolo, A.D.; Trilli, I.; Ferrante, L.; Casamassima, L.; Nardelli, P.; Inchingolo, F.; Palermo, A.; Severino, M.; Inchingolo, A.M.; et al. Recent Use of Hyaluronic Acid in Dental Medicine. Materials 2025, 18, 1863. [Google Scholar] [CrossRef]
  25. Minetti, E.; Palermo, A.; Savadori, P.; Patano, A.; Inchingolo, A.D.; Rapone, B.; Malcangi, G.; Inchingolo, F.; Dipalma, G.; Tartaglia, F.C.; et al. Socket Preservation Using Dentin Mixed with Xenograft Materials: A Pilot Study. Materials 2023, 16, 4945. [Google Scholar] [CrossRef]
  26. Inchingolo, A.M.; Inchingolo, A.D.; Nardelli, P.; Latini, G.; Trilli, I.; Ferrante, L.; Malcangi, G.; Palermo, A.; Inchingolo, F.; Dipalma, G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J. Funct. Biomater. 2024, 15, 308. [Google Scholar] [CrossRef] [PubMed]
  27. Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Inchingolo, A.D.; Mancini, A.; Annicchiarico, C.; Inchingolo, F.; Dipalma, G.; et al. Surface Coatings of Dental Implants: A Review. J. Funct. Biomater. 2023, 14, 287. [Google Scholar] [CrossRef] [PubMed]
  28. Cazzolla, A.P.; Zhurakivska, K.; Ciavarella, D.; Lacaita, M.G.; Favia, G.; Testa, N.F.; Marzo, G.; La Carbonara, V.; Troiano, G.; Lo Muzio, L. Primary Hyperoxaluria: Orthodontic Management in a Pediatric Patient: A Case Report. Spec. Care Dent. 2018, 38, 259–265. [Google Scholar] [CrossRef] [PubMed]
  29. Ciavarella, D.; Mastrovincenzo, M.; D’Onofrio, V.; Chimenti, C.; Parziale, V.; Barbato, E.; Lo Muzio, L. Saliva Analysis by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) in Orthodontic Treatment: First Pilot Study. Prog. Orthod. 2011, 12, 126–131. [Google Scholar] [CrossRef]
  30. Laino, L.; Troiano, G.; Giannatempo, G.; Graziani, U.; Ciavarella, D.; Dioguardi, M.; Lo Muzio, L.; Lauritano, F.; Cicciù, M. Sinus Lift Augmentation by Using Calcium Sulphate. A Retrospective 12 Months Radiographic Evaluation Over 25 Treated Italian Patients. Open Dent. J. 2015, 9, 414–419. [Google Scholar] [CrossRef]
  31. Ciavarella, D.; Monsurrò, A.; Padricelli, G.; Battista, G.; Laino, L.; Perillo, L. Unilateral Posterior Crossbite in Adolescents: Surface Electromyographic Evaluation. Eur. J. Paediatr. Dent. 2012, 13, 25–28. [Google Scholar]
  32. Dipalma, G.; Inchingolo, A.M.; Palumbo, I.; Guglielmo, M.; Riccaldo, L.; Morolla, R.; Inchingolo, F.; Palermo, A.; Charitos, I.A.; Inchingolo, A.D. Surgical Management of Pediatric Obstructive Sleep Apnea: Efficacy, Outcomes, and Alternatives—A Systematic Review. Life 2024, 14, 1652. [Google Scholar] [CrossRef] [PubMed]
  33. Dipalma, G.; Inchingolo, A.D.; Pezzolla, C.; Sardano, R.; Trilli, I.; Di Venere, D.; Inchingolo, F.; Palermo, A.; Inchingolo, A.M. The Association Between Temporomandibular Disorders and Tinnitus: Evidence and Therapeutic Perspectives from a Systematic Review. J. Clin. Med. 2025, 14, 881. [Google Scholar] [CrossRef] [PubMed]
  34. Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; De Leonardis, N.; Sardano, R.; Pezzolla, C.; de Ruvo, E.; Di Venere, D.; Palermo, A.; Inchingolo, A.D.; et al. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals 2023, 16, 1313. [Google Scholar] [CrossRef]
  35. Dipalma, G.; Inchingolo, A.D.; Memè, L.; Casamassima, L.; Carone, C.; Malcangi, G.; Inchingolo, F.; Palermo, A.; Inchingolo, A.M. The Diagnosis and Management of Infraoccluded Deciduous Molars: A Systematic Review. Children 2024, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
  36. Scribante, A.; Gallo, S.; Celmare, R.L.; D’Antò, V.; Grippaudo, C.; Gandini, P.; Sfondrini, M.F. Orthodontic Debonding and Tooth Sensitivity of Anterior and Posterior Teeth. Angle Orthod. 2020, 90, 766–773. [Google Scholar] [CrossRef]
  37. Grippaudo, C.; Paolantonio, E.G.; Deli, R.; La Torre, G. Orthodontic Treatment Need in the Italian Child Population. Eur. J. Paediatr. Dent. 2008, 9, 71–75. [Google Scholar]
  38. De Angelis, P.; Manicone, P.F.; De Angelis, S.; Grippaudo, C.; Gasparini, G.; Liguori, M.G.; Camodeca, F.; Piccirillo, G.B.; Desantis, V.; D’Amato, G.; et al. Patient and Operator Centered Outcomes in Implant Dentistry: Comparison between Fully Digital and Conventional Workflow for Single Crown and Three-Unit Fixed-Bridge. Materials 2020, 13, 2781. [Google Scholar] [CrossRef]
  39. Early Orthodontic Treatment: A New Index to Assess the Risk of Malocclusion in Primary Dentition. Available online: https://www.researchgate.net/publication/269772434_Early_orthodontic_treatment_A_new_index_to_assess_the_risk_of_malocclusion_in_primary_dentition (accessed on 6 April 2025).
  40. Grippaudo, C.; Pantanali, F.; Paolantonio, E.G.; Saulle, R.; La Torre, G.; Deli, R. Orthodontic Treatment Timing in Growing Patients. Eur. J. Pediatr. Dent. 2024, 14, 231–236. [Google Scholar]
  41. Grippaudo, C.; Pantanali, F.; Paolantonio, E.G.; Grecolini, M.E.; Saulle, R.; La Torre, G.; Deli, R. Prevalence of Malocclusion in Italian Schoolchildren and Orthodontic Treatment Need. Eur. J. Paediatr. Dent. 2013, 14, 314–318. [Google Scholar]
  42. Saccomanno, S.; Di Tullio, A.; D’Alatri, L.; Grippaudo, C. Proposal for a Myofunctional Therapy Protocol in Case of Altered Lingual Frenulum. A Pilot Study. Eur. J. Paediatr. Dent. 2019, 20, 67–72. [Google Scholar] [CrossRef]
  43. Saccomanno, S.; Deli, R.; DI Cintio, G.; DE Corso, E.; Paludetti, G.; Grippaudo, C. Retrospective Epidemiological Study of Mandibular Rotational Types in Patients with Orthodontical Malocclusion. Acta Otorhinolaryngol. Ital. 2018, 38, 160–165. [Google Scholar] [CrossRef] [PubMed]
  44. Vozza, I.; Manzon, L.; Passarelli, P.C.; Pranno, N.; Poli, O.; Grippaudo, C. The Effects of Wearing a Removable-Partial-Denture on the Bite Forces: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 11401. [Google Scholar] [CrossRef]
  45. Pelo, S.; Correra, P.; Gasparini, G.; Marianetti, T.M.; Cervelli, D.; Grippaudo, C.; Boniello, R.; Azzuni, C.; Deli, R.; Moro, A. Three-Dimensional Analysis and Treatment Planning of Hemimandibular Hyperplasia. J. Craniofac. Surg. 2011, 22, 2227–2234. [Google Scholar] [CrossRef]
  46. Compilato, D.; Cirillo, N.; Termine, N.; Kerr, A.R.; Paderni, C.; Ciavarella, D.; Campisi, G. Long-Standing Oral Ulcers: Proposal for a New “S-C-D Classification System”. J. Oral Pathol. Med. 2009, 38, 241–253. [Google Scholar] [CrossRef] [PubMed]
  47. Cianci, C.; Pappalettera, G.; Renna, G.; Casavola, C.; Laurenziello, M.; Battista, G.; Pappalettere, C.; Ciavarella, D. Mechanical Behavior of PET-G Tooth Aligners Under Cyclic Loading. Front. Mater. 2020, 7, 104. [Google Scholar] [CrossRef]
  48. Cassano, M.; Russo, G.; Granieri, C.; Ciavarella, D. Modification of Growth, Immunologic and Feeding Parameters in Children with OSAS after Adenotonsillectomy. Acta Otorhinolaryngol. Ital. 2018, 38, 124–130. [Google Scholar] [CrossRef]
  49. Lo Muzio, L.; Santarelli, A.; Panzarella, V.; Campisi, G.; Carella, M.; Ciavarella, D.; Di Cosola, M.; Giannone, N.; Bascones, A. Oral Squamous Cell Carcinoma and Biological Markers: An Update on the Molecules Mainly Involved in Oral Carcinogenesis. Minerva Stomatol. 2007, 56, 341–347. [Google Scholar]
  50. Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Ciavarella, D.; Laneve, E.; Troiano, G.; Lo Muzio, L. Passive Ultrasonic Irrigation Efficacy in the Vapor Lock Removal: Systematic Review and Meta-Analysis. Sci. World J. 2019, 2019, 6765349. [Google Scholar] [CrossRef]
  51. Ciavarella, D.; Tepedino, M.; Gallo, C.; Montaruli, G.; Zhurakivska, K.; Coppola, L.; Troiano, G.; Chimenti, C.; Laurenziello, M.; Lo Russo, L. Post-Orthodontic Position of Lower Incisors and Gingival Recession: A Retrospective Study. J. Clin. Exp. Dent. 2017, 9, e1425–e1430. [Google Scholar] [CrossRef]
  52. Dipalma, G.; Inchingolo, A.M.; Latini, G.; Ferrante, L.; Nardelli, P.; Malcangi, G.; Trilli, I.; Inchingolo, F.; Palermo, A.; Inchingolo, A.D. The Effectiveness of Curcumin in Treating Oral Mucositis Related to Radiation and Chemotherapy: A Systematic Review. Antioxidants 2024, 13, 1160. [Google Scholar] [CrossRef]
  53. Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Xhajanka, E.; Romeo, D.M.; Romeo, M.; Zappone, C.M.F.; Malcangi, G.; Scarano, A.; Lorusso, F.; et al. The Effectiveness of Osseodensification Drilling Protocol for Implant Site Osteotomy: A Systematic Review of the Literature and Meta-Analysis. Materials 2021, 14, 1147. [Google Scholar] [CrossRef]
  54. Inchingolo, F.; Inchingolo, A.M.; Avantario, P.; Settanni, V.; Fatone, M.C.; Piras, F.; Di Venere, D.; Inchingolo, A.D.; Palermo, A.; Dipalma, G. The Effects of Periodontal Treatment on Rheumatoid Arthritis and of Anti-Rheumatic Drugs on Periodontitis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 17228. [Google Scholar] [CrossRef]
  55. Inchingolo, A.D.; Patano, A.; Coloccia, G.; Ceci, S.; Inchingolo, A.M.; Marinelli, G.; Malcangi, G.; Montenegro, V.; Laudadio, C.; Pede, C.D.; et al. The Efficacy of a New AMCOP® Elastodontic Protocol for Orthodontic Interceptive Treatment: A Case Series and Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 988. [Google Scholar] [CrossRef] [PubMed]
  56. Oliva, B.; Sferra, S.; Greco, A.L.; Valente, F.; Grippaudo, C. Three-Dimensional Analysis of Dental Arch Forms in Italian Population. Prog. Orthod. 2018, 19, 34. [Google Scholar] [CrossRef] [PubMed]
  57. Grippaudo, C.; D’Apolito, I.; Cafiero, C.; Re, A.; Chiurazzi, P.; Frazier-Bowers, S.A. Validating Clinical Characteristic of Primary Failure of Eruption (PFE) Associated with PTH1R Variants. Prog. Orthod. 2021, 22, 43. [Google Scholar] [CrossRef] [PubMed]
  58. Grippaudo, C.; Paolantonio, E.G.; Deli, R.; La Torre, G. Validation of the Risk Of Malocclusion Assessment (ROMA) Index. Eur. J. Paediatr. Dent. 2007, 8, 136–142. [Google Scholar]
  59. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Servili, A.; Inchingolo, A.M.; Dipalma, G. A Hypothetical Correlation between Hyaluronic Acid Gel and Development of Cutaneous Metaplastic Synovial Cyst. Head Face Med. 2010, 6, 13. [Google Scholar] [CrossRef]
  60. Tatullo, M.; Marrelli, M.; Amantea, M.; Paduano, F.; Santacroce, L.; Gentile, S.; Scacco, S. Bioimpedance Detection of Oral Lichen Planus Used as Preneoplastic Model. J. Cancer 2015, 6, 976–983. [Google Scholar] [CrossRef]
  61. Inchingolo, F.; Pacifici, A.; Gargari, M.; Acitores Garcia, J.I.; Amantea, M.; Marrelli, M.; Dipalma, G.; Inchingolo, A.M.; Rinaldi, R.; Inchingolo, A.D.; et al. CHARGE Syndrome: An Overview on Dental and Maxillofacial Features. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2089–2093. [Google Scholar]
  62. Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.D.; Corelli, R.; Inchingolo, A.M.; Dipalma, G.; Abenavoli, F.M. Clinical Case-Study Describing the Use of Skin-Perichondrium-Cartilage Graft from the Auricular Concha to Cover Large Defects of the Nose. Head Face Med. 2012, 8, 10. [Google Scholar] [CrossRef] [PubMed]
  63. Charitos, I.A.; Inchingolo, A.M.; Ferrante, L.; Inchingolo, F.; Inchingolo, A.D.; Castellaneta, F.; Cotoia, A.; Palermo, A.; Scacco, S.; Dipalma, G. The Gut Microbiota’s Role in Neurological, Psychiatric, and Neurodevelopmental Disorders. Nutrients 2024, 16, 4404. [Google Scholar] [CrossRef]
  64. Santacroce, L.; Sardaro, N.; Topi, S.; Pettini, F.; Bottalico, L.; Cantore, S.; Cascella, G.; Del Prete, R.; Dipalma, G.; Inchingolo, F. The Pivotal Role of Oral Microbiota in Health and Disease. J. Biol. Regul. Homeost. Agents 2020, 34, 733–737. [Google Scholar] [CrossRef]
  65. Malcangi, G.; Inchingolo, A.M.; Inchingolo, A.D.; Ferrante, L.; Latini, G.; Trilli, I.; Nardelli, P.; Longo, M.; Palermo, A.; Inchingolo, F.; et al. The Role of Platelet Concentrates and Growth Factors in Facial Rejuvenation: A Systematic Review with Case Series. Medicina 2025, 61, 84. [Google Scholar] [CrossRef]
  66. Cerkezi, S.; Nakova, M.; Gorgoski, I.; Ferati, K.; Bexheti-Ferati, A.; Palermo, A.; Inchingolo, A.D.; Ferrante, L.; Inchingolo, A.M.; Inchingolo, F.; et al. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024, 12, 882. [Google Scholar] [CrossRef]
  67. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G. Fish-Hook Injuries: A Risk for Fishermen. Head Face Med. 2010, 6, 28. [Google Scholar] [CrossRef]
  68. Marrelli, M.; Tatullo, M. Influence of PRF in the Healing of Bone and Gingival Tissues. Clinical and Histological Evaluations. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1958–1962. [Google Scholar]
  69. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Scacco, S.; Papa, F.; Inchingolo, A.M.; Dipalma, G. Odontostomatologic Management of Patients Receiving Oral Anticoagulant Therapy: A Retrospective Multicentric Study. Ann. Surg. Innov. Res. 2011, 5, 5. [Google Scholar] [CrossRef] [PubMed]
  70. Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.D.; Pinto, G.; Inchingolo, A.M.; Dipalma, G. Short Report of an Unusual Ballistic Trauma. Int. J. Surg. Case Rep. 2011, 2, 272–274. [Google Scholar] [CrossRef] [PubMed]
  71. Termine, N.; Panzarella, V.; Ciavarella, D.; Lo Muzio, L.; D’Angelo, M.; Sardella, A.; Compilato, D.; Campisi, G. Antibiotic Prophylaxis in Dentistry and Oral Surgery: Use and Misuse. Int. Dent. J. 2009, 59, 263–270. [Google Scholar]
  72. Sabatucci, A.; Raffaeli, F.; Mastrovincenzo, M.; Luchetta, A.; Giannone, A.; Ciavarella, D. Breathing Pattern and Head Posture: Changes in Craniocervical Angles. Minerva Stomatol. 2015, 64, 59–74. [Google Scholar]
  73. Cazzolla, A.P.; Campisi, G.; Lacaita, G.M.; Cuccia, M.A.; Ripa, A.; Testa, N.F.; Ciavarella, D.; Lo Muzio, L. Changes in Pharyngeal Aerobic Microflora in Oral Breathers After Palatal Rapid Expansion. BMC Oral Health 2006, 6, 2. [Google Scholar] [CrossRef] [PubMed]
  74. Ciavarella, D.; Parziale, V.; Mastrovincenzo, M.; Palazzo, A.; Sabatucci, A.; Suriano, M.M.; Bossù, M.; Cazzolla, A.P.; Lo Muzio, L.; Chimenti, C. Condylar Position Indicator and T-Scan System II in Clinical Evaluation of Temporomandibular Intracapsular Disease. J. Craniomaxillofac. Surg. 2012, 40, 449–455. [Google Scholar] [CrossRef]
  75. Troiano, G.; Dioguardi, M.; Cocco, A.; Laino, L.; Cervino, G.; Cicciu, M.; Ciavarella, D.; Lo Muzio, L. Conservative vs Radical Approach for the Treatment of Solid/Multicystic Ameloblastoma: A Systematic Review and Meta-Analysis of the Last Decade. Oral Health Prev. Dent. 2017, 15, 421–426. [Google Scholar] [CrossRef]
  76. Tepedino, M.; Iancu-Potrubacz, M.; Ciavarella, D.; Masedu, F.; Marchione, L.; Chimenti, C. Expansion of Permanent First Molars with Rapid Maxillary Expansion Appliance Anchored on Primary Second Molars. J. Clin. Exp. Dent. 2018, 10, e241–e247. [Google Scholar] [CrossRef]
  77. Troiano, G.; Dioguardi, M.; Cocco, A.; Zhurakivska, K.; Ciavarella, D.; Muzio, L.L. Increase in [Corrected] the Glyde Path Diameter Improves the Centering Ability of F6 Skytaper. Eur. J. Dent. 2018, 12, 89–93. [Google Scholar] [CrossRef]
  78. Malcangi, G.; Patano, A.; Trilli, I.; Piras, F.; Ciocia, A.M.; Inchingolo, A.D.; Mancini, A.; Hazballa, D.; Di Venere, D.; Inchingolo, F.; et al. Therapeutic and Adverse Effects of Lasers in Dentistry: A Systematic Review. Photonics 2023, 10, 650. [Google Scholar] [CrossRef]
  79. Inchingolo, A.M.; Inchingolo, A.D.; Viapiano, F.; Ciocia, A.M.; Ferrara, I.; Netti, A.; Dipalma, G.; Palermo, A.; Inchingolo, F. Treatment Approaches to Molar Incisor Hypomineralization: A Systematic Review. J. Clin. Med. 2023, 12, 7194. [Google Scholar] [CrossRef]
  80. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Corelli, R.; Inchingolo, A.M.; Dipalma, G. Upper Eyelid Reconstruction: A Short Report of an Eyelid Defect Following a Thermal Burn. Head Face Med. 2009, 5, 26. [Google Scholar] [CrossRef]
  81. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Corelli, R.; Mingrone, R.; Inchingolo, A.M.; Dipalma, G. Simple Technique for Augmentation of the Facial Soft Tissue. Sci. World J. 2012, 2012, 262989. [Google Scholar] [CrossRef] [PubMed]
  82. Inchingolo, F.; Tarullo, A.; Cagiano, R.; Resta, G.; Dipalma, G.; Inchingolo, A.M.; Tarullo, A.; Scacco, S.; Marrelli, M.; Corti, L.; et al. Successful Use of a Topical Mixture with Ozolipoile in the Treatment of Actinic Ulcers. Clin. Cosmet. Investig. Dermatol. 2015, 8, 147–150. [Google Scholar] [CrossRef] [PubMed]
  83. Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Corelli, R.; Servili, A.; Inchingolo, A.M.; Dipalma, G. Surgical Removal of Lipoma from an Area with Tattooed Skin. Int. J. Med. Sci. 2010, 7, 395–397. [Google Scholar] [CrossRef]
  84. Marrelli, M.; Maletta, C.; Inchingolo, F.; Alfano, M.; Tatullo, M. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations. Int. J. Dent. 2013, 2013, 831976. [Google Scholar] [CrossRef]
  85. Inchingolo, F.; Tatullo, M.; Pacifici, A.; Gargari, M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G.; Marrelli, M.; Abenavoli, F.M.; Pacifici, L. Use of Dermal-Fat Grafts in the Post-Oncological Reconstructive Surgery of Atrophies in the Zygomatic Region: Clinical Evaluations in the Patients Undergone to Previous Radiation Therapy. Head Face Med. 2012, 8, 33. [Google Scholar] [CrossRef]
  86. Inchingolo, F.; Inchingolo, A.D.; Riccaldo, L.; Costa, S.; Palermo, A.; Inchingolo, A.M.; Dipalma, G. Weight and Dental Eruption: The Correlation between BMI and Eruption. Eur. J. Paediatr. Dent. 2025, 1–8. [Google Scholar] [CrossRef]
  87. Marinelli, G.; Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Limongelli, L.; Montenegro, V.; Coloccia, G.; Laudadio, C.; Patano, A.; Inchingolo, F.; et al. White Spot Lesions in Orthodontics: Prevention and Treatment. A Descriptive Review. J. Biol. Regul. Homeost. Agents 2021, 35, 227–240. [Google Scholar] [CrossRef] [PubMed]
  88. Tatullo, M.; Rengo, S.; Sammartino, G.; Marenzi, G. Unlocking the Potential of Dental-Derived Mesenchymal Stem Cells in Regenerative Medicine. J. Clin. Med. 2023, 12, 3804. [Google Scholar] [CrossRef] [PubMed]
  89. Hatia, A.; Doldo, T.; Parrini, S.; Chisci, E.; Cipriani, L.; Montagna, L.; Lagana, G.; Guenza, G.; Agosta, E.; Vinjolli, F.; et al. Accuracy and Completeness of ChatGPT-Generated Information on Interceptive Orthodontics: A Multicenter Collaborative Study. J. Clin. Med. 2024, 13, 735. [Google Scholar] [CrossRef]
  90. Vinjolli, F.; Zeqaj, M.; Dragusha, E.; Malara, A.; Danesi, C.; Laganà, G. Dental Anomalies in an Albanian Orthodontic Sample: A Retrospective Study. BMC Oral Health 2023, 23, 47. [Google Scholar] [CrossRef]
  91. Alshadidi, A.A.F.; Alshahrani, A.A.; Aldosari, L.I.N.; Chaturvedi, S.; Saini, R.S.; Hassan, S.A.B.; Cicciù, M.; Minervini, G. Investigation on the Application of Artificial Intelligence in Prosthodontics. Appl. Sci. 2023, 13, 5004. [Google Scholar] [CrossRef]
  92. Almeida, L.E.; Cicciù, M.; Doetzer, A.; Beck, M.L.; Cervino, G.; Minervini, G. Mandibular Condylar Hyperplasia and Its Correlation with Vascular Endothelial Growth Factor. J. Oral Rehabil. 2023, 50, 845–851. [Google Scholar] [CrossRef]
  93. Langaliya, A.; Alam, M.K.; Hegde, U.; Panakaje, M.S.; Cervino, G.; Minervini, G. Occurrence of Temporomandibular Disorders among Patients Undergoing Treatment for Obstructive Sleep Apnoea Syndrome (OSAS) Using Mandibular Advancement Device (MAD): A Systematic Review Conducted According to PRISMA Guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. J. Oral Rehabil. 2023, 50, 1554–1563. [Google Scholar] [CrossRef]
  94. Minervini, G.; Marrapodi, M.M.; Cicciù, M. Online Bruxism-Related Information: Can People Understand What They Read? A Cross-Sectional Study. J. Oral Rehabil. 2023, 50, 1211–1216. [Google Scholar] [CrossRef]
  95. Uzunçıbuk, H.; Marrapodi, M.M.; Meto, A.; Ronsivalle, V.; Cicciù, M.; Minervini, G. Prevalence of Temporomandibular Disorders in Clear Aligner Patients Using Orthodontic Intermaxillary Elastics Assessed with Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Axis II Evaluation: A Cross-Sectional Study. J. Oral Rehabil. 2024, 51, 500–509. [Google Scholar] [CrossRef]
  96. Laganà, G.; Fabi, F.; Abazi, Y.; Beshiri Nastasi, E.; Vinjolli, F.; Cozza, P. Oral Habits in a Population of Albanian Growing Subjects. Eur. J. Paediatr. Dent. 2013, 14, 309–313. [Google Scholar] [PubMed]
  97. Laganà, G.; Abazi, Y.; Beshiri Nastasi, E.; Vinjolli, F.; Fabi, F.; Divizia, M.; Cozza, P. Oral Health Conditions in an Albanian Adolescent Population: An Epidemiological Study. BMC Oral Health 2015, 15, 67. [Google Scholar] [CrossRef] [PubMed]
  98. Frydas, S.; Varvara, G.; Murmura, G.; Saggini, A.; Caraffa, A.; Antinolfi, P.; Tete’, S.; Tripodi, D.; Conti, F.; Cianchetti, E.; et al. Impact of Capsaicin on Mast Cell Inflammation. Int. J. Immunopathol. Pharmacol. 2013, 26, 597–600. [Google Scholar] [CrossRef]
  99. Nicoletti, M.; Neri, G.; Maccauro, G.; Tripodi, D.; Varvara, G.; Saggini, A.; Potalivo, G.; Castellani, M.L.; Fulcheri, M.; Rosati, M.; et al. Impact of Neuropeptide Substance P an Inflammatory Compound on Arachidonic Acid Compound Generation. Int. J. Immunopathol. Pharmacol. 2012, 25, 849–857. [Google Scholar] [CrossRef]
  100. Kritas, S.K.; Saggini, A.; Varvara, G.; Murmura, G.; Caraffa, A.; Antinolfi, P.; Toniato, E.; Pantalone, A.; Neri, G.; Frydas, S.; et al. Mast Cell Involvement in Rheumatoid Arthritis. J. Biol. Regul. Homeost. Agents 2013, 27, 655–660. [Google Scholar]
  101. Perinetti, G.; Caputi, S.; Varvara, G. Risk/Prevention Indicators for the Prevalence of Dental Caries in Schoolchildren: Results from the Italian OHSAR Survey. Caries Res. 2005, 39, 9–19. [Google Scholar] [CrossRef] [PubMed]
  102. Varvara, G.; Sinjari, B.; Caputi, S.; Scarano, A.; Piattelli, M. The Relationship Between Time of Retightening and Preload Loss of Abutment Screws for Two Different Implant Designs: An In Vitro Study. J. Oral Implantol. 2020, 46, 13–17. [Google Scholar] [CrossRef]
  103. Pizzicannella, J.; Pierdomenico, S.D.; Piattelli, A.; Varvara, G.; Fonticoli, L.; Trubiani, O.; Diomede, F. 3D Human Periodontal Stem Cells and Endothelial Cells Promote Bone Development in Bovine Pericardium-Based Tissue Biomaterial. Materials 2019, 12, 2157. [Google Scholar] [CrossRef]
  104. Bianchi, S.; Mancini, L.; Torge, D.; Cristiano, L.; Mattei, A.; Varvara, G.; Macchiarelli, G.; Marchetti, E.; Bernardi, S. Bio-Morphological Reaction of Human Periodontal Ligament Fibroblasts to Different Types of Dentinal Derivates: In Vitro Study. Int. J. Mol. Sci. 2021, 22, 8681. [Google Scholar] [CrossRef]
  105. Conti, P.; Varvara, G.; Murmura, G.; Tete, S.; Sabatino, G.; Saggini, A.; Rosati, M.; Toniato, E.; Caraffa, A.; Antinolfi, P.; et al. Comparison of Beneficial Actions of Non-Steroidal Anti-Inflammatory Drugs to Flavonoids. J. Biol. Regul. Homeost. Agents 2013, 27, 1–7. [Google Scholar]
  106. Traini, T.; Pettinicchio, M.; Murmura, G.; Varvara, G.; Di Lullo, N.; Sinjari, B.; Caputi, S. Esthetic Outcome of an Immediately Placed Maxillary Anterior Single-Tooth Implant Restored with a Custom-Made Zirconia-Ceramic Abutment and Crown: A Staged Treatment. Quintessence Int. 2011, 42, 103–108. [Google Scholar] [PubMed]
  107. Shaik, Y.; Sabatino, G.; Maccauro, G.; Varvara, G.; Murmura, G.; Saggini, A.; Rosati, M.; Conti, F.; Cianchetti, E.; Caraffa, A.; et al. IL-36 Receptor Antagonist with Special Emphasis on IL-38. Int. J. Immunopathol. Pharmacol. 2013, 26, 27–36. [Google Scholar] [CrossRef]
  108. Gasparro, R.; Sammartino, G.; Mariniello, M.; di Lauro, A.E.; Spagnuolo, G.; Marenzi, G. Treatment of Periodontal Pockets at the Distal Aspect of Mandibular Second Molar After Surgical Removal of Impacted Third Molar and Application of L-PRF: A Split-Mouth Randomized Clinical Trial. Quintessence Int. 2020, 51, 204–211. [Google Scholar] [CrossRef] [PubMed]
  109. Gasparro, R.; Adamo, D.; Masucci, M.; Sammartino, G.; Mignogna, M.D. Use of Injectable Platelet-Rich Fibrin in the Treatment of Plasma Cell Mucositis of the Oral Cavity Refractory to Corticosteroid Therapy: A Case Report. Dermatol. Ther. 2019, 32, e13062. [Google Scholar] [CrossRef] [PubMed]
  110. Rossini, G.; Modica, S.; Parrini, S.; Deregibus, A.; Castroflorio, T. Incisors Extrusion with Clear Aligners Technique: A Finite Element Analysis Study. Appl. Sci. 2021, 11, 1167. [Google Scholar] [CrossRef]
  111. Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of Clear Aligners in Controlling Orthodontic Tooth Movement: A Systematic Review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef]
  112. Marinkovic, N. The Effect of Orthodontic Extrusion on Alveolar Bone—A Prospective Clinical Study. Srpski Arhiv za Celokupno Lekarstvo 2022, 150, 143–148. [Google Scholar] [CrossRef]
  113. Zhang, J.; Wang, N.; Gao, X.; Qin, M. Orthodontic Extrusion with Fixed Appliances for Treatment of Intrusive Luxation Injuries: A Prospective Study of 28 Permanent Maxillary Incisors. Int. J. Paediatr. Dent. 2025, 35, 422–433. [Google Scholar] [CrossRef]
  114. Bosly, R.A.A.; Sabyei, M.Y.; Zailai, A.M.; Fageehi, N.Y.; Madkhali, S.M.; Ageel, A.A.; Al Moaleem, M.M. Orthodontic Extrusion as an Aid for Restoring Extensively Destroyed Teeth and Preserving Implant Site Creation: A Case Series. Int. Med. Case Rep. J. 2023, 16, 807–814. [Google Scholar] [CrossRef]
  115. Takahashi, T.; Takagi, T.; Moriyama, K. Orthodontic Treatment of a Traumatically Intruded Tooth with Ankylosis by Traction after Surgical Luxation. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 233–241. [Google Scholar] [CrossRef] [PubMed]
  116. Torabinejad, M.; Anderson, P.; Bader, J.; Brown, L.J.; Chen, L.H.; Goodacre, C.J.; Kattadiyil, M.T.; Kutsenko, D.; Lozada, J.; Patel, R.; et al. Outcomes of Root Canal Treatment and Restoration, Implant-Supported Single Crowns, Fixed Partial Dentures, and Extraction without Replacement: A Systematic Review. J. Prosthet. Dent. 2007, 98, 285–311. [Google Scholar] [CrossRef]
  117. Malpartida-Carrillo, V.; Tinedo-Lopez, P.L.; Guerrero, M.E.; Amaya-Pajares, S.P.; Özcan, M.; Rösing, C.K. Periodontal Phenotype: A Review of Historical and Current Classifications Evaluating Different Methods and Characteristics. J. Esthet. Restor. Dent. 2021, 33, 432–445. [Google Scholar] [CrossRef] [PubMed]
  118. Andreasen, F.M.; Pedersen, B.V. Prognosis of Luxated Permanent Teeth—The Development of Pulp Necrosis. Dent. Traumatol. 1985, 1, 207–220. [Google Scholar] [CrossRef]
  119. Pontoriero, R.; Celenza, F.; Ricci, G.; Carnevale, G. Rapid Extrusion with Fiber Resection: A Combined Orthodontic-Periodontic Treatment Modality. Int. J. Periodontics Restor. Dent. 1987, 7, 30–43. [Google Scholar]
  120. Groody, J.T.; Lindauer, S.J.; Kravitz, N.D.; Carrico, C.K.; Madurantakam, P.; Shroff, B.; Darkazanli, M.; Gardner, W.G. Effect of Clear Aligner Attachment Design on Extrusion of Maxillary Lateral Incisors: A Multicenter, Single-Blind Randomized Clinical Trial. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 618–627. [Google Scholar] [CrossRef]
  121. Grünheid, T.; Loh, C.; Larson, B.E. How Accurate Is Invisalign in Nonextraction Cases? Are Predicted Tooth Positions Achieved? Angle Orthod. 2017, 87, 809–815. [Google Scholar] [CrossRef]
  122. Mostafa, Y.A.; Iskander, K.G.; El-Mangoury, N.H. Iatrogenic Pulpal Reactions to Orthodontic Extrusion. Am. J. Orthod. Dentofac. Orthop. 1991, 99, 30–34. [Google Scholar] [CrossRef]
  123. Güngör, H.C.; Cengiz, S.B.; Altay, N. Immediate Surgical Repositioning Following Intrusive Luxation: A Case Report and Review of the Literature. Dent. Traumatol. 2006, 22, 340–344. [Google Scholar] [CrossRef]
  124. Amato, F.; Mirabella, A.D.; Macca, U.; Tarnow, D.P. Implant Site Development by Orthodontic Forced Extraction: A Preliminary Study. Int. J. Oral Maxillofac. Implant. 2012, 27, 411–420. [Google Scholar]
  125. Bauss, O.; Schäfer, W.; Sadat-Khonsari, R.; Knösel, M. Influence of Orthodontic Extrusion on Pulpal Vitality of Traumatized Maxillary Incisors. J. Endod. 2010, 36, 203–207. [Google Scholar] [CrossRef]
  126. Sun, A.; Yang, Y.; Gao, H.; Lin, W.-S.; Chen, L.; Tan, J. Integrating Facial and Intraoral Scans for Digital Esthetic and Occlusal Design: A Technical Report. J. Prosthodont. 2021, 30, 729–733. [Google Scholar] [CrossRef] [PubMed]
  127. Mantovani, E.; Parrini, S.; Coda, E.; Cugliari, G.; Scotti, N.; Pasqualini, D.; Deregibus, A.; Castroflorio, T. Micro Computed Tomography Evaluation of Invisalign Aligner Thickness Homogeneity. Angle Orthod. 2021, 91, 343–348. [Google Scholar] [CrossRef] [PubMed]
  128. Andreasen, F.M.; Zhijie, Y.; Thomsen, B.L.; Andersen, P.K. Occurrence of Pulp Canal Obliteration after Luxation Injuries in the Permanent Dentition. Endod. Dent. Traumatol. 1987, 3, 103–115. [Google Scholar] [CrossRef]
  129. Ryan, M.J.; Schneider, B.J.; BeGole, E.A.; Muhl, Z.F. Opening Rotations of the Mandible during and after Treatment. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 142–149. [Google Scholar] [CrossRef]
  130. Arat, M.; Iseri, H. Orthodontic and Orthopaedic Approach in the Treatment of Skeletal Open Bite. Eur. J. Orthod. 1992, 14, 207–215. [Google Scholar] [CrossRef]
  131. Smidt, A.; Lachish-Tandlich, M.; Venezia, E. Orthodontic Extrusion of an Extensively Broken down Anterior Tooth: A Clinical Report. Quintessence Int. 2005, 36, 89–95. [Google Scholar]
  132. Carvalho, C.V.; Bauer, F.P.F.; Romito, G.A.; Pannuti, C.M.; De Micheli, G. Orthodontic Extrusion with or without Circumferential Supracrestal Fiberotomy and Root Planing. Int. J. Periodontics Restor. Dent. 2006, 26, 87–93. [Google Scholar]
  133. Crljenica, M.U.; Perasso, R.; Imelio, M.; Viganoni, C.; Pozzan, L. A Systematic and Comprehensive Protocol for Rapid Orthodontic Extrusion. J. Esthet. Restor. Dent. 2024, 36, 838–844. [Google Scholar] [CrossRef]
  134. González-Martín, O.; Solano-Hernandez, B.; Torres Muñoz, A.; González-Martín, S.; Avila-Ortiz, G. Orthodontic Extrusion: Guidelines for Contemporary Clinical Practice. Int. J. Periodontics Restor. Dent. 2020, 40, 667–676. [Google Scholar] [CrossRef] [PubMed]
  135. Ivey, D.W.; Calhoun, R.L.; Kemp, W.B.; Dorfman, H.S.; Wheless, J.E. Orthodontic Extrusion: Its Use in Restorative Dentistry. J. Prosthet. Dent. 1980, 43, 401–407. [Google Scholar] [CrossRef] [PubMed]
  136. Bach, N.; Baylard, J.-F.; Voyer, R. Orthodontic Extrusion: Periodontal Considerations and Applications. J. Can. Dent. Assoc. 2004, 70, 775–780. [Google Scholar]
  137. Reichardt, E.; Krug, R.; Bornstein, M.M.; Tomasch, J.; Verna, C.; Krastl, G. Orthodontic Forced Eruption of Permanent Anterior Teeth with Subgingival Fractures: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12580. [Google Scholar] [CrossRef]
  138. Mota Júnior, S.L.; Azevedo, D.G.D.R.; Campos, M.J.D.S.; Tanaka, O.M.; Vitral, R.W.F. Orthodontic Treatment after Intrusive Dislocation and Fracture of the Maxillary Central Incisors. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 757–763. [Google Scholar] [CrossRef]
  139. Sun, A.; Feng, X.; Chen, L.; Gu, X. Digital Orthodontic Extrusion System for Complex Crown-Root Fracture of Anterior Teeth: A Technique Report. J. Prosthet. Dent. 2024, 132, 1123.e1–1123.e8. [Google Scholar] [CrossRef]
  140. Wang, C.; Qin, M.; Guan, Y. Analysis of Pulp Prognosis in 603 Permanent Teeth with Uncomplicated Crown Fracture with or without Luxation. Dent. Traumatol. 2014, 30, 333–337. [Google Scholar] [CrossRef] [PubMed]
  141. Heithersay, G.S.; Moule, A.J. Anterior Subgingival Fractures: A Review of Treatment Alternatives. Aust. Dent. J. 1982, 27, 368–376. [Google Scholar] [CrossRef]
  142. Kelly, R.D.; Addison, O.; Tomson, P.L.; Krastl, G.; Dietrich, T. Atraumatic Surgical Extrusion to Improve Tooth Restorability: A Clinical Report. J. Prosthet. Dent. 2016, 115, 649–653. [Google Scholar] [CrossRef]
  143. Schmidt, J.C.; Sahrmann, P.; Weiger, R.; Schmidlin, P.R.; Walter, C. Biologic Width Dimensions—A Systematic Review. J. Clin. Periodontol. 2013, 40, 493–504. [Google Scholar] [CrossRef]
  144. McDonald, F.; Pitt Ford, T.R. Blood Flow Changes in Permanent Maxillary Canines during Retraction. Eur. J. Orthod. 1994, 16, 1–9. [Google Scholar] [CrossRef]
  145. Robertson, L.; Kaur, H.; Fagundes, N.C.F.; Romanyk, D.; Major, P.; Flores Mir, C. Effectiveness of Clear Aligner Therapy for Orthodontic Treatment: A Systematic Review. Orthod. Craniofac. Res. 2020, 23, 133–142. [Google Scholar] [CrossRef]
  146. Chaushu, S.; Shapira, J.; Heling, I.; Becker, A. Emergency Orthodontic Treatment after the Traumatic Intrusive Luxation of Maxillary Incisors. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 162–172. [Google Scholar] [CrossRef]
  147. Bastone, E.B.; Freer, T.J.; McNamara, J.R. Epidemiology of Dental Trauma: A Review of the Literature. Aust. Dent. J. 2000, 45, 2–9. [Google Scholar] [CrossRef] [PubMed]
  148. Sönmez, H.; Tunç, E.S.; Dalci, O.N.; Saroglu, I. Orthodontic Extrusion of a Traumatically Intruded Permanent Incisor: A Case Report with a 5-Year Follow up. Dent. Traumatol. 2008, 24, 691–694. [Google Scholar] [CrossRef] [PubMed]
  149. De Barros, L.A.B.; de Almeida Cardoso, M.; de Avila, E.D.; de Molon, R.S.; Siqueira, D.F.; de Assis Mollo-Junior, F.; Capelloza Filho, L. Six-Year Follow-up of Maxillary Anterior Rehabilitation with Forced Orthodontic Extrusion: Achieving Esthetic Excellence with a Multidisciplinary Approach. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 607–615. [Google Scholar] [CrossRef]
  150. Bruhnke, M.; Naumann, M.; Böse, M.W.H.; Beuer, F.; Schwendicke, F. Health Economic Evaluation of Forced Orthodontic Extrusion of Extensively Damaged Teeth: Up to 6-Year Results from a Clinical Study. Clin. Oral Investig. 2023, 27, 5587–5594. [Google Scholar] [CrossRef] [PubMed]
  151. Bourguignon, C.; Cohenca, N.; Lauridsen, E.; Flores, M.T.; O’Connell, A.C.; Day, P.F.; Tsilingaridis, G.; Abbott, P.V.; Fouad, A.F.; Hicks, L.; et al. International Association of Dental Traumatology Guidelines for the Management of Traumatic Dental Injuries: 1. Fractures and Luxations. Dent. Traumatol. 2020, 36, 314–330. [Google Scholar] [CrossRef]
  152. Levin, L.; Day, P.F.; Hicks, L.; O’Connell, A.; Fouad, A.F.; Bourguignon, C.; Abbott, P.V. International Association of Dental Traumatology Guidelines for the Management of Traumatic Dental Injuries: General Introduction. Dent. Traumatol. 2020, 36, 309–313. [Google Scholar] [CrossRef]
  153. Tsilingaridis, G.; Malmgren, B.; Andreasen, J.O.; Malmgren, O. Intrusive Luxation of 60 Permanent Incisors: A Retrospective Study of Treatment and Outcome. Dent. Traumatol. 2012, 28, 416–422. [Google Scholar] [CrossRef]
  154. AlKhalifa, J.D.; AlAzemi, A.A. Intrusive Luxation of Permanent Teeth: A Systematic Review of Factors Important for Treatment Decision-Making. Dent. Traumatol. 2014, 30, 169–175. [Google Scholar] [CrossRef]
  155. Oulis, C.; Vadiakas, G.; Siskos, G. Management of Intrusive Luxation Injuries. Dent. Traumatol. 1996, 12, 113–119. [Google Scholar] [CrossRef]
  156. Scholtes, E.; Suttorp, C.M.; Loomans, B.A.; Van Elsas, P.; Schols, J.G. Combined Orthodontic, Surgical, and Restorative Approach to Treat a Complicated Crown-Root Fracture in a Maxillary Central Incisor. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 570–582. [Google Scholar] [CrossRef] [PubMed]
  157. Deguchi, T.; Kurosaka, H.; Oikawa, H.; Kuroda, S.; Takahashi, I.; Yamashiro, T.; Takano-Yamamoto, T. Comparison of Orthodontic Treatment Outcomes in Adults with Skeletal Open Bite between Conventional Edgewise Treatment and Implant-Anchored Orthodontics. Am. J. Orthod. Dentofac. Orthop. 2011, 139, S60–S68. [Google Scholar] [CrossRef] [PubMed]
  158. Barone, S.; Paoli, A.; Razionale, A.V.; Savignano, R. Computational Design and Engineering of Polymeric Orthodontic Aligners. Int. J. Numer. Method. Biomed. Eng. 2017, 33, e2839. [Google Scholar] [CrossRef]
  159. De Castro, M.A.M.; Poi, W.R.; de Castro, J.C.M.; Panzarini, S.R.; Sonoda, C.K.; Trevisan, C.L.; Luvizuto, E.R. Crown and Crown-Root Fractures: An Evaluation of the Treatment Plans for Management Proposed by 154 Specialists in Restorative Dentistry. Dent. Traumatol. 2010, 26, 236–242. [Google Scholar] [CrossRef]
  160. Krastl, G.; Filippi, A.; Zitzmann, N.U.; Walter, C.; Weiger, R. Current Aspects of Restoring Traumatically Fractured Teeth. Eur. J. Esthet. Dent. 2011, 6, 124–141. [Google Scholar]
  161. Levine, R.A. Forced Eruption in the Esthetic Zone. Compend. Contin. Educ. Dent. 1997, 18, 795–803. [Google Scholar]
  162. Ingber, J.S. Forced Eruption: Part II. A Method of Treating Nonrestorable Teeth—Periodontal and Restorative Considerations. J. Periodontol. 1976, 47, 203–216. [Google Scholar] [CrossRef]
  163. Bielak, S.; Bimstein, E.; Eidelman, E. Forced Eruption: The Treatment of Choice of Subgingivally Fractured Permanent Incisors. ASDC J. Dent. Child. 1982, 49, 186–190. [Google Scholar] [PubMed]
  164. Bruhnke, M.; Beuer, F.; Böse, M.W.H.; Naumann, M. Forced Orthodontic Extrusion to Restore Extensively Damaged Anterior and Premolar Teeth as Abutments for Single-Crown Restorations: Up to 5-Year Results from a Pilot Clinical Study. J. Prosthet. Dent. 2023, 129, 61–68. [Google Scholar] [CrossRef]
  165. Torriani, D.D.; Percinoto, C.; Cunha, R.F.; Guimarães, I. Histological Evaluation of Dog Permanent Teeth after Traumatic Intrusion of Their Primary Predecessors. Dent. Traumatol. 2006, 22, 198–204. [Google Scholar] [CrossRef]
  166. Qali, M.; Alsaegh, H.; Alsaraf, S. Clinical Considerations for Crown Lengthening: A Comprehensive Review. Cureus 2024, 16, e72934. [Google Scholar] [CrossRef]
  167. Huang, G.; Yang, M.; Qali, M.; Wang, T.-J.; Li, C.; Chang, Y.-C. Clinical Considerations in Orthodontically Forced Eruption for Restorative Purposes. J. Clin. Med. 2021, 10, 5950. [Google Scholar] [CrossRef]
  168. Humphrey, J.M.; Kenny, D.J.; Barrett, E.J. Clinical Outcomes for Permanent Incisor Luxations in a Pediatric Population. I. Intrusions. Dent. Traumatol. 2003, 19, 266–273. [Google Scholar] [CrossRef] [PubMed]
  169. Wang, N.; Chen, J.; Zhao, Y. Clinical Outcomes of 79 Traumatically Intruded Permanent Teeth in Chinese Children and Adolescents: A Retrospective Study. Dent. Traumatol. 2020, 36, 174–184. [Google Scholar] [CrossRef]
  170. Heithersay, G.S. Combined Endodontic-Orthodontic Treatment of Transverse Root Fractures in the Region of the Alveolar Crest. Oral Surg. Oral Med. Oral Pathol. 1973, 36, 404–415. [Google Scholar] [CrossRef] [PubMed]
  171. Boyd, R.L. Esthetic Orthodontic Treatment Using the Invisalign Appliance for Moderate to Complex Malocclusions. J. Dent. Educ. 2008, 72, 948–967. [Google Scholar] [CrossRef]
  172. Andreasen, J.O. Etiology and Pathogenesis of Traumatic Dental Injuries. A Clinical Study of 1,298 Cases. Scand. J. Dent. Res. 1970, 78, 329–342. [Google Scholar] [CrossRef] [PubMed]
  173. Harris, K.; Ojima, K.; Dan, C.; Upadhyay, M.; Alshehri, A.; Kuo, C.-L.; Mu, J.; Uribe, F.; Nanda, R. Evaluation of Open Bite Closure Using Clear Aligners: A Retrospective Study. Prog. Orthod. 2020, 21, 23. [Google Scholar] [CrossRef] [PubMed]
  174. Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
  175. Liu, Y.; Hu, W. Force Changes Associated with Different Intrusion Strategies for Deep-Bite Correction by Clear Aligners. Angle Orthod. 2018, 88, 771–778. [Google Scholar] [CrossRef]
  176. Tan, Y.-Z.; Levin, L.; Guo, W.; Chen, Y. Dental Injuries at the Xi’an, China Stomatological Hospital: A Retrospective Study. Dent. Traumatol. 2020, 36, 505–509. [Google Scholar] [CrossRef] [PubMed]
  177. Campbell, K.M.; Casas, M.J.; Kenny, D.J. Development of Ankylosis in Permanent Incisors Following Delayed Replantation and Severe Intrusion. Dent. Traumatol. 2007, 23, 162–166. [Google Scholar] [CrossRef]
  178. Chan, A.W.; Cheung, G.S.; Ho, M.W. Different Treatment Outcomes of Two Intruded Permanent Incisors—A Case Report. Dent. Traumatol. 2001, 17, 275–280. [Google Scholar] [CrossRef]
  179. Duarte, P.H.M.; Weissheimer, T.; Michel, C.H.T.; Só, G.B.; da Rosa, R.A.; Só, M.V.R. Do Orthodontic Movements of Traumatized Teeth Induce Dental Pulp Necrosis? A Systematic Review. Clin. Oral Investig. 2023, 27, 4117–4129. [Google Scholar] [CrossRef]
  180. Weissheimer, T.; Silva, E.J.N.L.; Pinto, K.P.; Só, G.B.; Rosa, R.A.; Só, M.V.R. Do Orthodontic Tooth Movements Induce Pulp Necrosis? A Systematic Review. Int. Endod. J. 2021, 54, 1246–1262. [Google Scholar] [CrossRef]
  181. Lanning, S.K.; Waldrop, T.C.; Gunsolley, J.C.; Maynard, J.G. Surgical Crown Lengthening: Evaluation of the Biological Width. J. Periodontol. 2003, 74, 468–474. [Google Scholar] [CrossRef]
  182. Calişkan, M.K. Surgical Extrusion of a Completely Intruded Permanent Incisor. J. Endod. 1998, 24, 381–384. [Google Scholar] [CrossRef] [PubMed]
  183. Nelson-Filho, P.; Faria, G.; Assed, S.; Pardini, L.C. Surgical Repositioning of Traumatically Intruded Permanent Incisor: Case Report with a 10-Year Follow Up. Dent. Traumatol. 2006, 22, 221–225. [Google Scholar] [CrossRef]
  184. Ingber, J.S.; Rose, L.F.; Coslet, J.G. The “Biologic Width”—A Concept in Periodontics and Restorative Dentistry. Alpha Omegan 1977, 70, 62–65. [Google Scholar] [PubMed]
  185. Spalding, P.M.; Fields, H.W.; Torney, D.; Cobb, H.B.; Johnson, J. The Changing Role of Endodontics and Orthodontics in the Management of Traumatically Intruded Permanent Incisors. Pediatr. Dent. 1985, 7, 104–110. [Google Scholar]
  186. Hettiarachchi, R.M.; Kularatna, S.; Downes, M.J.; Byrnes, J.; Kroon, J.; Lalloo, R.; Johnson, N.W.; Scuffham, P.A. The Cost-Effectiveness of Oral Health Interventions: A Systematic Review of Cost-Utility Analyses. Community Dent. Oral Epidemiol. 2018, 46, 118–124. [Google Scholar] [CrossRef]
  187. Perez, B.; Becker, A.; Chosack, A. The Repositioning of a Traumatically Intruded Mature, Rooted Permanent Incisor with a Removable Orthodontic Appliance. J. Pedod. 1982, 6, 343–354. [Google Scholar]
  188. Salama, H.; Salama, M. The Role of Orthodontic Extrusive Remodeling in the Enhancement of Soft and Hard Tissue Profiles Prior to Implant Placement: A Systematic Approach to the Management of Extraction Site Defects. Int. J. Periodontics Restor. Dent. 1993, 13, 312–333. [Google Scholar]
  189. Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
  190. Bruhnke, M.; Bitter, K.; Beuer, F.; Böse, M.W.H.; Neumeyer, S.; Naumann, M. Tooth Preservation of Deeply Destroyed Teeth by Forced Orthodontic Extrusion: A Case Series. Quintessence Int. 2022, 53, 522–531. [Google Scholar] [CrossRef]
  191. Andreasen, J.O.; Bakland, L.K.; Andreasen, F.M. Traumatic Intrusion of Permanent Teeth. Part 3. A Clinical Study of the Effect of Treatment Variables Such as Treatment Delay, Method of Repositioning, Type of Splint, Length of Splinting and Antibiotics on 140 Teeth. Dent. Traumatol. 2006, 22, 99–111. [Google Scholar] [CrossRef] [PubMed]
  192. Mamber, E.K. Treatment of Intruded Permanent Incisors: A Multidisciplinary Approach. Endod. Dent. Traumatol. 1994, 10, 98–104. [Google Scholar] [CrossRef] [PubMed]
  193. Spinas, E.; Pipi, L.; Mezzena, S.; Giannetti, L. Use of Orthodontic Methods in the Treatment of Dental Luxations: A Scoping Review. Dent. J. 2021, 9, 18. [Google Scholar] [CrossRef] [PubMed]
  194. Bose, R.; Nummikoski, P.; Hargreaves, K. A Retrospective Evaluation of Radiographic Outcomes in Immature Teeth with Necrotic Root Canal Systems Treated with Regenerative Endodontic Procedures. J. Endod. 2009, 35, 1343–1349. [Google Scholar] [CrossRef]
  195. Garnett, B.S.; Mahood, K.; Nguyen, M.; Al-Khateeb, A.; Liu, S.; Boyd, R.; Oh, H. Cephalometric Comparison of Adult Anterior Open Bite Treatment Using Clear Aligners and Fixed Appliances. Angle Orthod. 2019, 89, 3–9. [Google Scholar] [CrossRef]
  196. Moshiri, S.; Araújo, E.A.; McCray, J.F.; Thiesen, G.; Kim, K.B. Cephalometric Evaluation of Adult Anterior Open Bite Non-Extraction Treatment with Invisalign. Dental Press. J. Orthod. 2017, 22, 30–38. [Google Scholar] [CrossRef]
  197. Küçükkeleş, N.; Acar, A.; Demirkaya, A.A.; Evrenol, B.; Enacar, A. Cephalometric Evaluation of Open Bite Treatment with NiTi Arch Wires and Anterior Elastics. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 555–562. [Google Scholar] [CrossRef]
  198. Levine, H.L.; Stahl, S.S. Repair Following Periodontal Flap Surgery with the Retention of Gingival Fibers. J. Periodontol. 1972, 43, 99–103. [Google Scholar] [CrossRef]
  199. Cantekin, K.; Herdem, G.; Peduk, K. Revascularization in an Immature Necrotic Permanent Incisor after Severe Intrusive Luxation Injury: A Case Report. Eur. J. Paediatr. Dent. 2014, 15, 203–206. [Google Scholar]
  200. Tsilingaridis, G.; Malmgren, B.; Andreasen, J.O.; Wigen, T.I.; Maseng Aas, A.-L.; Malmgren, O. Scandinavian Multicenter Study on the Treatment of 168 Patients with 230 Intruded Permanent Teeth—A Retrospective Cohort Study. Dent. Traumatol. 2016, 32, 353–360. [Google Scholar] [CrossRef]
  201. Barootchi, S.; Tavelli, L.; Di Gianfilippo, R.; Shedden, K.; Oh, T.-J.; Rasperini, G.; Neiva, R.; Giannobile, W.V.; Wang, H.-L. Soft Tissue Phenotype Modification Predicts Gingival Margin Long-Term (10-Year) Stability: Longitudinal Analysis of Six Randomized Clinical Trials. J. Clin. Periodontol. 2022, 49, 672–683. [Google Scholar] [CrossRef] [PubMed]
  202. Saroğlu, I.; Tunç, E.S.; Sönmez, H. Spontaneous Re-Eruption of Intruded Permanent Incisors: Five Case Reports. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, e60–e65. [Google Scholar] [CrossRef]
  203. Naumann, M.; Koelpin, M.; Beuer, F.; Meyer-Lueckel, H. 10-Year Survival Evaluation for Glass-Fiber-Supported Postendodontic Restoration: A Prospective Observational Clinical Study. J. Endod. 2012, 38, 432–435. [Google Scholar] [CrossRef] [PubMed]
  204. Goenka, P.; Marwah, N.; Dutta, S. A Multidisciplinary Approach to the Management of a Subgingivally Fractured Tooth: A Clinical Report. J. Prosthodont. 2011, 20, 218–223. [Google Scholar] [CrossRef] [PubMed]
  205. Sapir, S.; Mamber, E.; Slutzky-Goldberg, I.; Fuks, A.B. A Novel Multidisciplinary Approach for the Treatment of an Intruded Immature Permanent Incisor. Pediatr. Dent. 2004, 26, 421–425. [Google Scholar] [PubMed]
  206. Pjetursson, B.E.; Sailer, I.; Latyshev, A.; Rabel, K.; Kohal, R.-J.; Karasan, D. A Systematic Review and Meta-Analysis Evaluating the Survival, the Failure, and the Complication Rates of Veneered and Monolithic All-Ceramic Implant-Supported Single Crowns. Clin. Oral Implants Res. 2021, 32 (Suppl. S21), 254–288. [Google Scholar] [CrossRef]
  207. Sailer, I.; Strasding, M.; Valente, N.A.; Zwahlen, M.; Liu, S.; Pjetursson, B.E. A Systematic Review of the Survival and Complication Rates of Zirconia-Ceramic and Metal-Ceramic Multiple-Unit Fixed Dental Prostheses. Clin. Oral Implants Res. 2018, 29 (Suppl. S16), 184–198. [Google Scholar] [CrossRef]
Figure 1. Intraoral x-ray of a tooth with a destructive carious lesion.
Figure 1. Intraoral x-ray of a tooth with a destructive carious lesion.
Jpm 15 00408 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Malcangi, G.; Marinelli, G.; Di Giulio Cesare, M.; Di Serio, S.; Longo, M.; Carbonara, A.; Inchingolo, F.; Inchingolo, A.D.; Bordea, I.R.; Palermo, A.; et al. Orthodontic Extrusion in Daily Clinical Practice: Management of Fractured or Damaged Anterior Teeth. J. Pers. Med. 2025, 15, 408. https://doi.org/10.3390/jpm15090408

AMA Style

Malcangi G, Marinelli G, Di Giulio Cesare M, Di Serio S, Longo M, Carbonara A, Inchingolo F, Inchingolo AD, Bordea IR, Palermo A, et al. Orthodontic Extrusion in Daily Clinical Practice: Management of Fractured or Damaged Anterior Teeth. Journal of Personalized Medicine. 2025; 15(9):408. https://doi.org/10.3390/jpm15090408

Chicago/Turabian Style

Malcangi, Giuseppina, Grazia Marinelli, Maral Di Giulio Cesare, Sharon Di Serio, Marialuisa Longo, Andrea Carbonara, Francesco Inchingolo, Alessio Danilo Inchingolo, Ioana Roxana Bordea, Andrea Palermo, and et al. 2025. "Orthodontic Extrusion in Daily Clinical Practice: Management of Fractured or Damaged Anterior Teeth" Journal of Personalized Medicine 15, no. 9: 408. https://doi.org/10.3390/jpm15090408

APA Style

Malcangi, G., Marinelli, G., Di Giulio Cesare, M., Di Serio, S., Longo, M., Carbonara, A., Inchingolo, F., Inchingolo, A. D., Bordea, I. R., Palermo, A., Inchingolo, A. M., & Dipalma, G. (2025). Orthodontic Extrusion in Daily Clinical Practice: Management of Fractured or Damaged Anterior Teeth. Journal of Personalized Medicine, 15(9), 408. https://doi.org/10.3390/jpm15090408

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop