Analyte Importance Analysis in Machine Learning-Based Detection of Wrong-Blood-in-Tube Errors Using Complete Blood Count Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Python and Libraries
2.2. Dataset
2.3. Filtering
2.4. Splitting the Dataset
2.5. Pairing
2.6. Data Quality
2.7. Non-WBIT Pair Generation
2.8. WBIT Pair Generation
- Temporal segmentation: The dataset was divided into 24-h intervals based on sample collection timestamps.
- Ward-based grouping: Within each 24-h interval, analyte vector pairs were grouped based on the ward associated with the second vector (i.e., the more recent sample in the pair).
- Pair swapping to simulate WBIT: For each (day × ward) group, we randomly selected pairs of analyte vector pairs, each from different patients. In each selected pair, the second analyte vectors were swapped to simulate a WBIT error (see Figure A3).
- This process was repeated until approximately 50% of the pairs in each (day × ward) group were converted to WBIT-labeled cases.
- Groups with fewer than two distinct patients were excluded from the simulation process. Additionally, slight class imbalance may occur as (day × ward) groups with an odd number of eligible pairs retain one unmatched non-WBIT pair, which is not discarded.
2.9. Feature Generation
2.10. Model Training
3. Results
3.1. Analyte Importance Analysis
3.2. Analyte Importance Rankings
3.3. Model Performance Using Smaller Analyte Sets
3.4. Explanations by Visualizations
4. Discussion
4.1. Analyte Importance
4.2. Model Behavior
4.3. Limitations and Outlook
4.3.1. Applicability
4.3.2. Undetected WBIT in Training Data
4.3.3. Time Series
4.3.4. Higher Order Classification-Algorithmic Extensions
4.3.5. Clinical Considerations
4.3.6. Explainability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUC | Area Under the Receiver Operating Characteristic Curve |
CBC | Complete Blood Count |
CI | Confidence Interval |
EDTA | Ethylenediaminetetraacetic Acid |
ERY | Erythrocytes (Red Blood Cells) |
HB | Hemoglobin |
HK | Hematocrit |
IQR | Interquartile Range |
LEUKO | Leukocytes (White Blood Cells) |
LIS | Laboratory Information System |
LOF | Local Outlier Factor |
LSTM | Long Short-Term Memory |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MCV | Mean Corpuscular Volume |
MDI | Mean Decrease in Impurity |
ML | Machine Learning |
PI | Permutation Importance |
PLT | Platelets |
PPV | Positive Predictive Value |
RFC | Random Forest Classifier |
ROC | Receiver Operating Characteristic |
SHAP | SHapley Additive exPlanations |
SVM | Support Vector Machine |
WBIT | Wrong Blood in Tube |
Appendix A
References
- Olver, P.; Bohn, M.; Adeli, K. Central role of laboratory medicine in public health and patient care. Clin. Chem. Lab. Med. 2023, 61, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Bolton-Maggs, P.H.; Wood, E.M.; Wiersum-Osselton, J.C. Wrong blood in tube–potential for serious outcomes: Can it be prevented? Br. J. Haematol. 2015, 168, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Dell’Osso, L.; Guerra, D.; Hernandez, J.; Rendon, L.; Fuller, D.; Villasante-Tezanos, A.; Garcia, J.; McCaffrey, P.; Zahner, C. How many mislabelled samples go unidentified? Results of a pilot study to determine the occult mislabelled sample rate. J. Clin. Pathol. 2024, 77, 647–650. [Google Scholar] [CrossRef]
- Lippi, G.; Blanckaert, N.; Bonini, P.; Green, S.; Kitchen, S.; Palicka, V.; Vassault, A.J.; Mattiuzzi, C.; Plebani, M. Causes, consequences, detection, and prevention of identification errors in laboratory diagnostics. Clin. Chem. Lab. Med. 2009, 47, 143–153. [Google Scholar] [CrossRef]
- Dunn, E.J.; Moga, P.J. Patient misidentification in laboratory medicine: A qualitative analysis of 227 root cause analysis reports in the Veterans Health Administration. Arch. Pathol. Lab. Med. 2010, 134, 244–255. [Google Scholar] [CrossRef]
- Turner, C.L.; Casbard, A.C.; Murphy, M.F. Barcode technology: Its role in increasing the safety of blood transfusion. Transfusion 2003, 43, 1200–1209. [Google Scholar] [CrossRef]
- Knels, R.; Ashford, P.; Bidet, F.; Böcker, W.; Briggs, L.; Bruce, P.; Csöre, M.; Distler, P.; Gutierrez, A.; Henderson, I.; et al. Guidelines for the use of RFID technology in transfusion medicine. Vox Sang. 2010, 98, 1–24. [Google Scholar] [CrossRef]
- Seok, H.S.; Choi, Y.; Yu, S.; Shin, K.H.; Kim, S.; Shin, H. Machine learning-based delta check method for detecting misidentification errors in tumor marker tests. Clin. Chem. Lab. Med. 2024, 62, 1421–1432. [Google Scholar] [CrossRef]
- Lahdenoja, O.; Hurnanen, T.; Iftikhar, Z.; Nieminen, S.; Knuutila, T.; Saraste, A.; Koivisto, T. Atrial fibrillation detection via accelerometer and gyroscope of a smartphone. IEEE J. Biomed. Health Inform. 2017, 22, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Quinodoz, M.; Royer-Bertrand, B.; Cisarova, K.; Di Gioia, S.A.; Superti-Furga, A.; Rivolta, C. DOMINO: Using machine learning to predict genes associated with dominant disorders. Am. J. Hum. Genet. 2017, 101, 623–629. [Google Scholar] [CrossRef]
- Çubukçu, H.C.; Topcu, D.I.; Yenice, S. Machine learning-based clinical decision support using laboratory data. Clin. Chem. Lab. Med. 2024, 62, 793–823. [Google Scholar] [CrossRef]
- Steinbach, D.; Ahrens, P.C.; Schmidt, M.; Federbusch, M.; Heuft, L.; Lübbert, C.; Nauck, M.; Grundling, M.; Lsermann, B.; Gibb, S.; et al. Applying machine learning to blood count data predicts sepsis with ICU admission. Clin. Chem. 2024, 70, 506–515. [Google Scholar] [CrossRef]
- Karaglani, M.; Gourlia, K.; Tsamardinos, I.; Chatzaki, E. Accurate blood-based diagnostic biosignatures for Alzheimer’s disease via automated machine learning. J. Clin. Med. 2020, 9, 3016. [Google Scholar] [CrossRef]
- Rosenbaum, M.W.; Baron, J.M. Using machine learning-based multianalyte delta checks to detect wrong blood in tube errors. Am. J. Clin. Pathol. 2018, 150, 555–566. [Google Scholar] [CrossRef]
- Farrell, C.J. Identifying mislabelled samples: Machine learning models exceed human performance. Ann. Clin. Biochem. 2021, 58, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Farrell, C.J. Decision support or autonomous artificial intelligence? The case of wrong blood in tube errors. Clin. Chem. Lab. Med. 2022, 60, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104. [Google Scholar]
- Mitani, T.; Doi, S.; Yokota, S.; Imai, T.; Ohe, K. Highly accurate and explainable detection of specimen mix-up using a machine learning model. Clin. Chem. Lab. Med. 2020, 58, 375–383. [Google Scholar] [CrossRef]
- Jackson, C.R.; Cervinski, M.A. Development and characterization of neural network-based multianalyte delta checks. J. Lab. Precis. Med. 2020, 5, 10. [Google Scholar] [CrossRef]
- Farrell, C.J.; Giannoutsos, J. Machine learning models outperform manual result review for the identification of wrong blood in tube errors in complete blood count results. Int. J. Lab. Hematol. 2022, 44, 497–503. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shapley, L.S. A value for n-person games. Contrib. Theory Games 1953, 2, 307–317. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30, pp. 4765–4774. [Google Scholar]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Go, L.T.; Go, L.T.; Gunaratne, M.D.; Abeykoon, J.P. Variation in Complete Blood Count Reports Across US Hospitals. JAMA Netw. Open 2025, 8, e2514050. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, S.; Rohith, V. Receiver Operator Characteristics (ROC) Analyses of Complete Blood Count (CBC) Delta. J. Clin. Diagn. Res. 2019, 13, EC09–EC11. [Google Scholar] [CrossRef]
- Aarsand, A.K.; Fernandez-Calle, P.; Webster, C.; Coskun, A.; Gonzales-Lao, E.; Diaz-Garzon, J.; Sufrate, B.; Parillo, I.M.; Galior, K.; Topcu, D.; et al. The EFLM Biological Variation Database. 2022. Available online: https://biologicalvariation.eu/ (accessed on 15 October 2024).
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Farrell, C.J.; Makuni, C.; Keenan, A.; Maeder, E.; Davies, G.; Giannoutsos, J. A Machine Learning Model for the Routine Detection of “Wrong Blood in Complete Blood Count Tube” Errors. Clin. Chem. 2023, 69, 1031–1037. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Volume 35, pp. 507–520. [Google Scholar]
- Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; Babenko, A. Revisiting deep learning models for tabular data. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Volume 34, pp. 18932–18943. [Google Scholar]
- Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss, C.B.; Goldstein, T. Saint: Improved neural networks for tabular data via row attention and contrastive pre-training, 2021. arXiv 2021, arXiv:2106.01342. [Google Scholar]
- Topcu, D. How to explain a machine learning model: HbA1c classification example. J. Med. Palliat. Care 2023, 4, 117–125. [Google Scholar] [CrossRef]
Analyte | Mean | Std Dev | Median | IQR | Min | Max |
---|---|---|---|---|---|---|
ERY | 4.11 | 0.75 | 4.1 | 1 | 0.7 | 10 |
HK | 37.02 | 6.52 | 37.3 | 9 | 5.7 | 84.5 |
LEUKO | 9.03 | 6.27 | 8 | 4.5 | 0.1 | 571.7 |
HB | 12.27 | 2.24 | 12.4 | 3.2 | 2.1 | 28.1 |
PLT | 255.38 | 112.85 | 238 | 117 | 3 | 2689 |
MCV | 90.7 | 7.42 | 90.5 | 8.2 | 37.5 | 144.7 |
MCHC | 33.13 | 1.27 | 33.2 | 1.5 | 23.1 | 152.1 |
MCH | 30.05 | 2.65 | 30.2 | 2.8 | 12 | 104.8 |
RDW | 14.89 | 2.01 | 14.4 | 2.2 | 10 | 40.3 |
age | 63.78 | 20.18 | 68 | 26 | 0 | 106 |
Category | Number of Samples |
---|---|
All samples | 523,844 (100.00%) |
Male: | 260,041 (49.64%) |
Female: | 263,690 (50.34%) |
Unidentified: | 113 (0.02%) |
Time difference from the last sample | |
<1 day: | 179,139 (34.20%) |
<1 week: | 112,293 (21.44%) |
<1 month: | 65,081 (12.42%) |
>1 month: | 167,331 (31.94%) |
Number of patients w.r.t. number of their samples | |
2 samples: | 22,946 (29.66%) |
3–5 samples: | 27,992 (36.19%) |
>5 samples: | 26,417 (34.15%) |
n | Analyte Combination | Accuracy | f1 | roc auc | ppv | Sensitivity |
---|---|---|---|---|---|---|
1 | MCV | 83.12 ± 0.12 | 81.08 ± 0.16 | 88.69 ± 0.14 | 89.86 ± 0.57 | 74.5 ± 0.3 |
MCH | 82.38 ± 0.18 | 79.83 ± 0.32 | 87.72 ± 0.19 | 88.93 ± 0.23 | 71.82 ± 0.81 | |
RDW | 80.62 ± 0.18 | 78.08 ± 0.23 | 86.44 ± 0.13 | 86.55 ± 0.17 | 71.11 ± 0.32 | |
HB | 75.9 ± 0.25 | 72.56 ± 0.4 | 81.58 ± 0.33 | 81.96 ± 0.11 | 66.75 ± 0.56 | |
ERY | 75.62 ± 0.18 | 71.75 ± 0.27 | 81.09 ± 0.21 | 81.08 ± 0.06 | 65.67 ± 0.65 | |
2 | MCV, RDW | 88.74 ± 0.1 | 88.01 ± 0.14 | 94.43 ± 0.14 | 91.28 ± 0.12 | 85.09 ± 0.16 |
MCH, RDW | 88.43 ± 0.1 | 87.64 ± 0.12 | 94.14 ± 0.05 | 91.19 ± 0.07 | 84.3 ± 0.27 | |
ERY, MCH | 87.64 ± 0.17 | 86.63 ± 0.25 | 93.35 ± 0.16 | 91.13 ± 0.15 | 82.59 ± 0.37 | |
HB, MCH | 87.48 ± 0.14 | 86.44 ± 0.22 | 93.26 ± 0.16 | 91.04 ± 0.22 | 82.47 ± 0.51 | |
ERY, MCV | 87.4 ± 0.17 | 86.4 ± 0.22 | 93.12 ± 0.16 | 90.95 ± 0.19 | 82.41 ± 0.49 | |
3 | HB, MCV, RDW | 90.12 ± 0.21 | 89.8 ± 0.17 | 95.68 ± 0.16 | 91.42 ± 0.17 | 89.48 ± 0.18 |
ERY, MCV, RDW | 90.06 ± 0.14 | 89.7 ± 0.27 | 95.59 ± 0.16 | 91.08 ± 0.18 | 89.39 ± 0.32 | |
HK, MCV, RDW | 90.04 ± 0.3 | 89.63 ± 0.16 | 95.52 ± 0.05 | 90.83 ± 0.1 | 89.03 ± 0.17 | |
ERY, MCH, RDW | 89.75 ± 0.08 | 89.22 ± 0.08 | 95.24 ± 0.16 | 90.63 ± 0.21 | 88.83 ± 0.34 | |
HB, MCH, RDW | 89.61 ± 0.15 | 89.18 ± 0.13 | 95.2 ± 0.14 | 90.46 ± 0.12 | 88.26 ± 0.26 | |
4 | HB, PLT, MCV, RDW | 92.35 ± 0.2 | 92.08 ± 0.21 | 97.24 ± 0.11 | 92.71 ± 0.16 | 91.68 ± 0.29 |
HK, PLT, MCV, RDW | 92.31 ± 0.18 | 92.04 ± 0.19 | 97.21 ± 0.11 | 92.67 ± 0.15 | 91.67 ± 0.29 | |
ERY, PLT, MCV, RDW | 92.17 ± 0.16 | 91.89 ± 0.2 | 97.15 ± 0.12 | 92.56 ± 0.16 | 91.61 ± 0.28 | |
HK, MCV, MCH, RDW | 92.12 ± 0.14 | 91.79 ± 0.15 | 96.98 ± 0.08 | 92.51 ± 0.11 | 91.1 ± 0.3 | |
HK, MCV, MCHC, RDW | 92.05 ± 0.16 | 91.76 ± 0.16 | 96.91 ± 0.11 | 92.49 ± 0.17 | 91.03 ± 0.21 | |
5 | HB, PLT, MCV, MCH, RDW | 93.46 ± 0.13 | 93.25 ± 0.16 | 97.86 ± 0.08 | 93.59 ± 0.17 | 92.91 ± 0.25 |
HK, PLT, MCV, MCH, RDW | 93.46 ± 0.18 | 93.24 ± 0.22 | 97.84 ± 0.09 | 93.59 ± 0.2 | 92.86 ± 0.25 | |
HK, PLT, MCV, MCHC, RDW | 93.41 ± 0.2 | 93.18 ± 0.19 | 97.83 ± 0.08 | 93.55 ± 0.18 | 92.84 ± 0.3 | |
HB, PLT, MCV, MCHC, RDW | 93.4 ± 0.17 | 93.15 ± 0.14 | 97.83 ± 0.09 | 93.54 ± 0.19 | 92.84 ± 0.3 | |
ERY, PLT, MCV, MCH, RDW | 93.37 ± 0.12 | 93.15 ± 0.2 | 97.82 ± 0.09 | 93.53 ± 0.17 | 92.8 ± 0.25 | |
6 | LEUKO, HB, PLT, MCV, MCH, RDW | 93.75 ± 0.14 | 93.55 ± 0.15 | 98.07 ± 0.08 | 93.83 ± 0.14 | 93.22 ± 0.18 |
ERY, LEUKO, PLT, MCV, MCH, RDW | 93.68 ± 0.15 | 93.49 ± 0.17 | 98.06 ± 0.09 | 93.82 ± 0.13 | 93.21 ± 0.26 | |
HK, LEUKO, PLT, MCV, MCH, RDW | 93.68 ± 0.17 | 93.48 ± 0.16 | 98.05 ± 0.08 | 93.81 ± 0.13 | 93.2 ± 0.26 | |
LEUKO, HB, PLT, MCV, MCHC, RDW | 93.67 ± 0.14 | 93.45 ± 0.15 | 98.03 ± 0.08 | 93.75 ± 0.13 | 93.17 ± 0.26 | |
HK, LEUKO, PLT, MCV, MCHC, RDW | 93.64 ± 0.13 | 93.4 ± 0.18 | 98.01 ± 0.08 | 93.71 ± 0.14 | 93.17 ± 0.22 | |
7 | ERY, LEUKO, HB, PLT, MCV, MCH, RDW | 93.79 ± 0.14 | 93.57 ± 0.14 | 98.11 ± 0.09 | 93.91 ± 0.15 | 93.27 ± 0.17 |
ERY, HK, LEUKO, PLT, MCV, MCH, RDW | 93.76 ± 0.15 | 93.56 ± 0.14 | 98.09 ± 0.09 | 93.89 ± 0.17 | 93.23 ± 0.23 | |
LEUKO, HB, PLT, MCV, MCHC, MCH, RDW | 93.74 ± 0.15 | 93.55 ± 0.18 | 98.08 ± 0.08 | 93.89 ± 0.1 | 93.22 ± 0.23 | |
HK, LEUKO, HB, PLT, MCV, MCH, RDW | 93.73 ± 0.17 | 93.52 ± 0.17 | 98.08 ± 0.09 | 93.86 ± 0.19 | 93.21 ± 0.26 | |
HK, LEUKO, PLT, MCV, MCHC, MCH, RDW | 93.72 ± 0.14 | 93.51 ± 0.16 | 98.07 ± 0.09 | 93.83 ± 0.16 | 93.2 ± 0.27 | |
8 | ERY, HK, LEUKO, HB, PLT, MCV, MCH, RDW | 93.79 ± 0.16 | 93.58 ± 0.17 | 98.11 ± 0.08 | 93.94 ± 0.12 | 93.27 ± 0.18 |
ERY, LEUKO, HB, PLT, MCV, MCHC, MCH, RDW | 93.77 ± 0.15 | 93.56 ± 0.14 | 98.11 ± 0.1 | 93.93 ± 0.13 | 93.2 ± 0.21 | |
HK, LEUKO, HB, PLT, MCV, MCHC, MCH, RDW | 93.74 ± 0.16 | 93.54 ± 0.16 | 98.09 ± 0.09 | 93.91 ± 0.14 | 93.19 ± 0.23 | |
ERY, HK, LEUKO, PLT, MCV, MCHC, MCH, RDW | 93.72 ± 0.15 | 93.52 ± 0.17 | 98.09 ± 0.09 | 93.89 ± 0.14 | 93.18 ± 0.23 | |
ERY, HK, LEUKO, HB, PLT, MCV, MCHC, RDW | 93.68 ± 0.19 | 93.51 ± 0.16 | 98.08 ± 0.08 | 93.81 ± 0.11 | 93.17 ± 0.24 | |
9 | ERY, HK, LEUKO, HB, PLT, MCV, MCHC, MCH, RDW | 93.75 ± 0.15 | 93.54 ± 0.16 | 98.09 ± 0.09 | 93.82 ± 0.1 | 93.23 ± 0.21 |
n | PPV@S0.8E0.005 | PPV@S0.5E0.005 | ROC AUC | F1 |
---|---|---|---|---|
9 | 17.25 (14.01, 26.0) | 34.17 (32.32, 45.0) | 97.92 (97.83, 98.0) | 92.8 (92.61, 92.97) |
8 | 19.09 (14.79, 25.93) | 42.29 (32.35, 46.07) | 97.93 (97.84, 98.01) | 92.82 (92.63, 93.0) |
7 | 15.78 (13.93, 26.28) | 35.24 (32.37, 44.49) | 97.92 (97.83, 97.99) | 92.86 (92.68, 93.04) |
6 | 19.29 (14.04, 25.49) | 32.82 (29.88, 43.28) | 97.89 (97.8, 97.97) | 92.76 (92.58, 92.93) |
5 | 16.74 (12.8, 22.86) | 35.47 (28.5, 39.87) | 97.63 (97.54, 97.72) | 92.46 (92.26, 92.64) |
4 | 15.65 (11.02, 20.16) | 25.47 (24.68, 35.55) | 97.26 (97.15, 97.36) | 91.93 (91.73, 92.13) |
3 | 8.75 (7.0, 16.64) | 23.45 (22.28, 33.33) | 95.63 (95.49, 95.77) | 89.56 (89.34, 89.79) |
2 | 7.66 (5.12, 11.66) | 17.7 (15.99, 20.09) | 94.42 (94.26, 94.58) | 88.03 (87.79, 88.26) |
1 | 4.9 (1.62, 5.07) | 29.58 (19.18, 37.8) | 89.28 (89.06, 89.52) | 81.65 (81.36, 81.97) |
Set Size (n) | Analyte | MDI | SHAP | PI |
---|---|---|---|---|
9 | MCV | 0.23 | 0.15 | 0.06 |
MCH | 0.21 | 0.14 | 0.03 | |
RDW | 0.19 | 0.13 | 0.1 | |
HB | 0.1 | 0.06 | 0.02 | |
PLT | 0.08 | 0.06 | 0.03 | |
ERY | 0.06 | 0.04 | 0 | |
HK | 0.06 | 0.03 | 0 | |
LEUKO | 0.04 | 0.02 | 0 | |
MCHC | 0.03 | 0.01 | 0 | |
8 | MCV | 0.24 | 0.15 | 0.08 |
RDW | 0.19 | 0.13 | 0.1 | |
MCH | 0.18 | 0.12 | 0.03 | |
HB | 0.11 | 0.07 | 0.02 | |
PLT | 0.09 | 0.06 | 0.03 | |
ERY | 0.07 | 0.05 | 0 | |
HK | 0.08 | 0.05 | 0 | |
LEUKO | 0.04 | 0.02 | 0 | |
7 | MCV | 0.25 | 0.16 | 0.1 |
MCH | 0.21 | 0.14 | 0.04 | |
RDW | 0.2 | 0.13 | 0.1 | |
HB | 0.12 | 0.08 | 0.03 | |
ERY | 0.08 | 0.06 | 0.01 | |
PLT | 0.09 | 0.06 | 0.03 | |
LEUKO | 0.04 | 0.02 | 0 | |
6 | MCV | 0.27 | 0.17 | 0.1 |
MCH | 0.21 | 0.14 | 0.05 | |
RDW | 0.21 | 0.14 | 0.1 | |
HB | 0.15 | 0.1 | 0.09 | |
PLT | 0.11 | 0.07 | 0.04 | |
LEUKO | 0.05 | 0.03 | 0 | |
5 | MCV | 0.28 | 0.17 | 0.1 |
MCH | 0.25 | 0.16 | 0.05 | |
RDW | 0.22 | 0.14 | 0.11 | |
HB | 0.15 | 0.1 | 0.09 | |
PLT | 0.1 | 0.06 | 0.04 | |
4 | MCV | 0.4 | 0.23 | 0.17 |
RDW | 0.29 | 0.18 | 0.12 | |
HB | 0.18 | 0.11 | 0.09 | |
PLT | 0.13 | 0.07 | 0.05 | |
3 | MCV | 0.44 | 0.23 | 0.18 |
RDW | 0.3 | 0.18 | 0.14 | |
HB | 0.25 | 0.15 | 0.1 | |
2 | MCV | 0.54 | 0.25 | 0.21 |
RDW | 0.46 | 0.22 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sürmeli, B.G.; Staritzbichler, R.; Ringel, C.; Al-Dakkak, S.; Dörksen, H.; Kaiser, T. Analyte Importance Analysis in Machine Learning-Based Detection of Wrong-Blood-in-Tube Errors Using Complete Blood Count Data. J. Pers. Med. 2025, 15, 404. https://doi.org/10.3390/jpm15090404
Sürmeli BG, Staritzbichler R, Ringel C, Al-Dakkak S, Dörksen H, Kaiser T. Analyte Importance Analysis in Machine Learning-Based Detection of Wrong-Blood-in-Tube Errors Using Complete Blood Count Data. Journal of Personalized Medicine. 2025; 15(9):404. https://doi.org/10.3390/jpm15090404
Chicago/Turabian StyleSürmeli, Barış Gün, René Staritzbichler, Clemens Ringel, Saleem Al-Dakkak, Helene Dörksen, and Thorsten Kaiser. 2025. "Analyte Importance Analysis in Machine Learning-Based Detection of Wrong-Blood-in-Tube Errors Using Complete Blood Count Data" Journal of Personalized Medicine 15, no. 9: 404. https://doi.org/10.3390/jpm15090404
APA StyleSürmeli, B. G., Staritzbichler, R., Ringel, C., Al-Dakkak, S., Dörksen, H., & Kaiser, T. (2025). Analyte Importance Analysis in Machine Learning-Based Detection of Wrong-Blood-in-Tube Errors Using Complete Blood Count Data. Journal of Personalized Medicine, 15(9), 404. https://doi.org/10.3390/jpm15090404