Weekend Effect and Predictors of Mortality for Patients Presenting to Emergency Department with COVID-19 Infection
Abstract
1. Introduction
2. Methods
2.1. Study Design and Sample Size
2.2. Study Protocol, Variables, and Measures
2.3. Statistical Analysis/Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/deaths?n=o (accessed on 13 May 2025).
- Centers for Disease Control and Prevention (CDC) COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 13 May 2025).
- Kim, M.S.; An, M.H.; Kim, W.J.; Hwang, T.H. Comparative Efficacy and Safety of Pharmacological Interventions for the Treatment of COVID-19: A Systematic Review and Network Meta-Analysis. PLoS Med. 2020, 17, e1003501. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of MRNA BNT162b2 Vaccine against SARS-CoV-2 Infections and COVID-19 Cases, Hospitalisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using National Surveillance Data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Bonanad, C.; García-Blas, S.; Tarazona-Santabalbina, F.; Sanchis, J.; Bertomeu-González, V.; Fácila, L.; Ariza, A.; Núñez, J.; Cordero, A. The Effect of Age on Mortality in Patients with COVID-19: A Meta-Analysis with 611,583 Subjects. J. Am. Med. Dir. Assoc. 2020, 21, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Uzel Şener, M.; Yıldız, M.; Kavurgacı, S.; Öztürk Ergür, F.; Şener, A.; Öztürk, A. Evaluation of Mortality Predictors in Hospitalized COVID-19 Patients: Retrospective Cohort Study. Tuberk. Ve Toraks 2021, 69, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, P.; Bastos, L.S.L.; Dantas, L.F.; Zampieri, F.G.; Soares, M.; Hamacher, S.; Salluh, J.I.F.; Bozza, F.A. Evolving Changes in Mortality of 13,301 Critically Ill Adult Patients with COVID-19 over 8 Months. Intensive Care Med. 2021, 47, 538–548. [Google Scholar] [CrossRef]
- Garg, S.; Patel, K.; Pham, H.; Whitaker, M.; O’Halloran, A.; Milucky, J.; Anglin, O.; Kirley, P.D.; Reingold, A.; Kawasaki, B.; et al. Clinical Trends Among U.S. Adults Hospitalized With COVID-19, March to December 2020. Ann. Intern. Med. 2021, 174, 1409–1419. [Google Scholar] [CrossRef]
- González-Gancedo, J.; Morales-Cané, I.; Rodríguez-Muñoz, P.M.; Hidalgo-Lopezosa, P.; Del Rocío Valverde-León, M.; Fernández-Martínez, M.E.; Fabbian, F.; Rodríguez-Borrego, M.A.; López-Soto, P.J. Mortality and Critical Conditions in COVID-19 Patients at Private Hospitals: Weekend Effect? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3377–3385. [Google Scholar] [CrossRef]
- Alsagban, A.; Singh, A.; Baidya, A.; Dalal, M.; Khaliq, W. Predictors of Hospitalization for Patients Presenting to Emergency Department with COVID-19 Infection. J. Clin. Med. 2025, 14, 413. [Google Scholar] [CrossRef]
- Mellacheruvu, S.P.; Lekkala, S.P.; Khela, P.S.; Singh, G.; Gill, K.S.; Vaghani, U.P.; Jitta, S.R.; Hingora, M.J.; Patel, M.; Dadana, S.; et al. Was There a Weekend Effect on Mortality Rates for Hospitalized Patients with COVID-19 and Acute Myocardial Infarction? Insights from the National Inpatient Sample, 2020. J. Med. Life 2024, 17, 286–291. [Google Scholar] [CrossRef]
- Amigo, F.; Dalmau-Bueno, A.; García-Altés, A. Do Hospitals Have a Higher Mortality Rate on Weekend Admissions? An Observational Study to Analyse Weekend Effect on Urgent Admissions to Hospitals in Catalonia. BMJ Open 2021, 11, e047836. [Google Scholar] [CrossRef]
- Walker, A.S.; Mason, A.; Quan, T.P.; Fawcett, N.J.; Watkinson, P.; Llewelyn, M.; Stoesser, N.; Finney, J.; Davies, J.; Wyllie, D.H.; et al. Mortality Risks Associated with Emergency Admissions during Weekends and Public Holidays: An Analysis of Electronic Health Records. Lancet 2017, 390, 62–72. [Google Scholar] [CrossRef]
- Pauls, L.A.; Johnson-Paben, R.; McGready, J.; Murphy, J.D.; Pronovost, P.J.; Wu, C.L. The Weekend Effect in Hospitalized Patients: A Meta-Analysis. J. Hosp. Med. 2017, 12, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Armoiry, X.; Higenbottam, C.; Cowley, N.; Basra, R.; Watson, S.I.; Tarrant, C.; Boyal, A.; Sutton, E.; Wu, C.W.; et al. Magnitude and Modifiers of the Weekend Effect in Hospital Admissions: A Systematic Review and Meta-Analysis. BMJ Open 2019, 9, e025764. [Google Scholar] [CrossRef] [PubMed]
- Honeyford, K.; Cecil, E.; Lo, M.; Bottle, A.; Aylin, P. The Weekend Effect: Does Hospital Mortality Differ by Day of the Week? A Systematic Review and Meta-Analysis. BMC Health Serv. Res. 2018, 18, 870. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Sutton, M.; Clough, S.; Warner, R.; Doran, T. Impact of Out-of-Hours Admission on Patient Mortality: Longitudinal Analysis in a Tertiary Acute Hospital. BMJ Qual. Saf. 2018, 27, 445–454. [Google Scholar] [CrossRef]
- Meacock, R.; Anselmi, L.; Kristensen, S.R.; Doran, T.; Sutton, M. Higher Mortality Rates amongst Emergency Patients Admitted to Hospital at Weekends Reflect a Lower Probability of Admission. J. Health Serv. Res. Policy 2017, 22, 12–19. [Google Scholar] [CrossRef]
- Wongvibulsin, S.; Garibaldi, B.T.; Antar, A.A.R.; Wen, J.; Wang, M.C.; Gupta, A.; Bollinger, R.; Xu, Y.; Wang, K.; Betz, J.F.; et al. Development of Severe COVID-19 Adaptive Risk Predictor (SCARP), a Calculator to Predict Severe Disease or Death in Hospitalized Patients With COVID-19. Ann. Intern. Med. 2021, 174, 777–785. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Sun, J.; Girling, A.J.; Aldridge, C.; Evison, F.; Beet, C.; Boyal, A.; Rudge, G.; Lilford, R.J.; Bion, J. Sicker Patients Account for the Weekend Mortality Effect among Adult Emergency Admissions to a Large Hospital Trust. BMJ Qual. Saf. 2019, 28, 223–230. [Google Scholar] [CrossRef]
- Black, N. Is Hospital Mortality Higher at Weekends? If so, Why? Lancet 2016, 388, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.M.; Redelmeier, D.A. Mortality among Patients Admitted to Hospitals on Weekends as Compared with Weekdays. N. Engl. J. Med. 2001, 345, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Hoshijima, H.; Takeuchi, R.; Mihara, T.; Kuratani, N.; Mizuta, K.; Wajima, Z.; Masaki, E.; Shiga, T. Weekend versus Weekday Admission and Short-Term Mortality. Medicine 2017, 96, e6685. [Google Scholar] [CrossRef] [PubMed]
- Tolvi, M.; Mattila, K.; Haukka, J.; Aaltonen, L.M.; Lehtonen, L. Analysis of Weekend Effect on Mortality by Medical Specialty in Helsinki University Hospital over a 14-Year Period. Health Policy 2020, 124, 1209–1216. [Google Scholar] [CrossRef]
- Manadan, A.; Arora, S.; Whittier, M.; Edigin, E.; Kansal, P. Patients Admitted on Weekends Have Higher In-Hospital Mortality than Those Admitted on Weekdays: Analysis of National Inpatient Sample. Am. J. Med. Open 2023, 9, 100028. [Google Scholar] [CrossRef]
- Castaño-Pérez, S.; Medina García, J.A.; Cabrera de León, A. The Dose–Response Effect of Time between Emergency Admission and Inpatient Care on Mortality. Sci. Rep. 2023, 13, 22244. [Google Scholar] [CrossRef]
- Wunsch, H.; Mapstone, J.; Brady, T.; Hanks, R.; Rowan, K. Hospital Mortality Associated with Day and Time of Admission to Intensive Care Units. Intensive Care Med. 2004, 30, 895–901. [Google Scholar] [CrossRef]
- Bray, B.D.; Cloud, G.C.; James, M.A.; Hemingway, H.; Paley, L.; Stewart, K.; Tyrrell, P.J.; Wolfe, C.D.A.; Rudd, A.G. Weekly Variation in Health-Care Quality by Day and Time of Admission: A Nationwide, Registry-Based, Prospective Cohort Study of Acute Stroke Care. Lancet 2016, 388, 170–177. [Google Scholar] [CrossRef]
- Freemantle, N.; Richardson, M.; Wood, J.; Ray, D.; Khosla, S.; Shahian, D.; Roche, W.R.; Stephens, I.; Keogh, B.; Pagano, D. Weekend Hospitalization and Additional Risk of Death: An Analysis of Inpatient Data. J. R Soc. Med. 2012, 105, 74–84. [Google Scholar] [CrossRef]
- Manzoor, F.; Redelmeier, D.A. COVID-19 Deaths on Weekends. BMC Public Health 2023, 23, 1596. [Google Scholar] [CrossRef]
- Aly, H. A Closer Look at the Weekend Effect and COVID-19 Mortalities. J. Neonatal Perinat. Med. 2021, 14, 7–8. [Google Scholar] [CrossRef]
- Patel, S.Y.; Mehrotra, A.; Huskamp, H.A.; Uscher-Pines, L.; Ganguli, I.; Barnett, M.L. Variation In Telemedicine Use And Outpatient Care During The COVID-19 Pandemic In The United States. Health Aff. 2021, 40, 349–358. [Google Scholar] [CrossRef]
- McCracken, C.E.; Gander, J.C.; McDonald, B.; Goodrich, G.K.; Tavel, H.M.; Basra, S.; Weinfield, N.S.; Ritzwoller, D.P.; Roblin, D.W.; Davis, T.L. Impact of COVID-19 on Trends in Outpatient Clinic Utilization. Med. Care 2023, 61, S4–S11. [Google Scholar] [CrossRef]
- Xie, J.; Covassin, N.; Fan, Z.; Singh, P.; Gao, W.; Li, G.; Kara, T.; Somers, V.K. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin. Proc. 2020, 95, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Alhusain, F.; Alromaih, A.; Alhajress, G.; Alsaghyir, A.; Alqobaisi, A.; Alaboodi, T.; Alsalamah, M. Predictors and Clinical Outcomes of Silent Hypoxia in COVID-19 Patients, a Single-Center Retrospective Cohort Study. J. Infect. Public Health 2021, 14, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Mejía, F.; Medina, C.; Cornejo, E.; Morello, E.; Vásquez, S.; Alave, J.; Schwalb, A.; Málaga, G. Oxygen Saturation as a Predictor of Mortality in Hospitalized Adult Patients with COVID-19 in a Public Hospital in Lima, Peru. PLoS ONE 2020, 15, e0244171. [Google Scholar] [CrossRef] [PubMed]
- Yadaw, A.S.; Li, Y.C.; Bose, S.; Iyengar, R.; Bunyavanich, S.; Pandey, G. Clinical Features of COVID-19 Mortality: Development and Validation of a Clinical Prediction Model. Lancet Digit. Health 2020, 2, e516–e525. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, D.; Chen, C.; Lu, W.; Liu, H.; Lv, T.; Song, Y.; Zhang, F. PaO2/FiO2 and IL-6 Are Risk Factors of Mortality for Intensive Care COVID-19 Patients. Sci. Rep. 2021, 11, 7334. [Google Scholar] [CrossRef]
- Reiterer, M.; Rajan, M.; Gómez-Banoy, N.; Lau, J.D.; Gomez-Escobar, L.G.; Ma, L.; Gilani, A.; Alvarez-Mulett, S.; Sholle, E.T.; Chandar, V.; et al. Hyperglycemia in Acute COVID-19 Is Characterized by Insulin Resistance and Adipose Tissue Infectivity by SARS-CoV-2. Cell Metab. 2021, 33, 2174–2188. [Google Scholar] [CrossRef]
- Hartmann, B.; Verket, M.; Balfanz, P.; Hartmann, N.U.; Jacobsen, M.; Brandts, J.; Dreher, M.; Kossack, N.; Häckl, D.; Marx, N.; et al. Glycaemic Variability Is Associated with All-Cause Mortality in COVID-19 Patients with ARDS, a Retrospective Subcohort Study. Sci. Rep. 2022, 12, 9862. [Google Scholar] [CrossRef]
- Pei, Y.; Ma, Y.; Xiang, Y.; Zhang, G.; Feng, Y.; Li, W.; Zhou, Y.; Li, S. Stress Hyperglycemia Ratio and Machine Learning Model for Prediction of All-Cause Mortality in Patients Undergoing Cardiac Surgery. Cardiovasc. Diabetol. 2025, 24, 77. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Z.; Shi, R.; Wang, X.; Li, X. Stress Hyperglycemia Ratio Association with All-Cause Mortality in Critically Ill Patients with Coronary Heart Disease: An Analysis of the MIMIC-IV Database. Sci. Rep. 2024, 14, 29110. [Google Scholar] [CrossRef]
- Song, L.; Ying, J.; Li, M.; Weng, C.; Jia, S.; Ying, L.; Li, Z. Association between Stress Hyperglycemia Ratio and Mortality in Patients with Heart Failure Complicated by Sepsis. Sci. Rep. 2024, 14, 31380. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, Z.; Zhang, J. Hyperglycemia at Admission Is a Strong Predictor of Mortality and Severe/Critical Complications in COVID-19 Patients: A Meta-Analysis. Biosci. Rep. 2021, 41, BSR20203584. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Wang, W.; Zhang, M.; Liu, C.; Xiao, X.; Liu, Z.; Hu, W.; Jin, P. Hyperglycemia Is a Strong Predictor of Poor Prognosis in COVID-19. Diabetes Res. Clin. Pract. 2020, 167, 108338. [Google Scholar] [CrossRef]
- Peña, J.; Chia, S.; Flores, O.; Oliveros, L.; Jasso, L.; Guevara, X. Hyperglycemia as a Predictor of Mortality in Adult Patients with COVID-19 Hospitalized in a Public Hospital in Peru. Endocr. Metab. Sci. 2024, 16, 100185. [Google Scholar] [CrossRef]
Characteristics ◊ | Weekend (n = 685) | Weekday (n = 2082) | p-Value * |
---|---|---|---|
Age in years, mean (SD) | 55.7 (19) | 54.8 (19) | 0.29 |
BMI kg/m2 ≥ 30, n (%) | 222 (39) | 671 (39) | 0.96 |
Female, n (%) | 306 (45) | 957 (46) | 0.57 |
Race | 0.64 | ||
White, n (%) | 185 (28) | 534 (26) | |
African American, n (%) | 217 (32) | 698 (34) | |
Others (Asian, American Indian, American native Hawaiian or Pacific Island), n (%) | 267 (40) | 807 (40) | |
Ethnicity | |||
Hispanic or Latino, n (%) | 225 (33) | 682 (33) | 0.96 |
Married or living with a partner, n (%) | 211 (41) | 704 (45) | 0.17 |
Employment status, n (%) | 0.71 | ||
Employed | 256 (40) | 765 (40) | |
Unemployed, with disability or unable to work | 341 (53) | 1,032 (54) | |
Retired, student, homemaker | 42 (7) | 109 (6) | |
Uninsured, n (%) | 109 (17) | 359 (18) | 0.41 |
No primary care physician, n (%) | 311 (45) | 876 (42) | 0.13 |
Median ED length of stay in minutes, (IQR) | 276 (162–413) | 261 (146–395) | 0.07 ** |
Mean hospital length of stay in days, (SD) | 6.9 (10.6) | 6.6 (10.2) | 0.59 |
Cigarette use (current and ex-smoker vs. never), n (%) | 142 (21) | 433 (21) | >0.99 |
Alcohol use (current and past vs. never), n (%) | 212 (31) | 659 (32) | 0.74 |
Reported exposure to COVID-19, n (%) | 245 (36) | 755 (36) | 0.86 |
Reported recent travel, n (%) | 18 (3) | 93 (4) | 0.03 |
Presented to ED from nursing home, inpatient rehab, group home, adult daycare, homeless, n (%) | 109 (16) | 307 (15) | 0.46 |
COVID-19 tested more than once, n (%) | 420 (61) | 1249 (60) | 0.56 |
Age adjusted Charlson comorbidity index (CCI) ¥ > 3, n (%) | 287 (42) | 839 (40) | 0.47 |
Mean duration of symptoms at presentation in days, (SD) | 5 (6) | 5.6 (6.1) | 0.04 |
Admitted to the hospitalized from ED, n (%) | 440 (64) | 1238 (59) | 0.03 |
Mortality, n (%) | 190 (28) | 567 (27) | 0.81 |
Variables ◊ | Weekend (n = 685) | Weekday (n = 2082) | p-Value * |
---|---|---|---|
Symptoms at presentation | |||
Fever, n (%) | 414 (60) | 1323 (64) | 0.15 |
Chills, n (%) | 161 (24) | 559 (27) | 0.09 |
Dry cough, n (%) | 351 (51) | 1099 (53) | 0.51 |
Productive cough, n (%) | 57 (8) | 169 (8) | 0.87 |
Nasal congestion, n (%) | 48 (7) | 153 (7) | 0.80 |
Rhinorrhea, n (%) | 23 (3) | 62 (3) | 0.61 |
Conjunctival irritation, n (%) | 3 (0.4) | 4 (0.2) | 0.38 |
Sore throat, n (%) | 93 (14) | 330 (16) | 0.16 |
Dysphagia, n (%) | 5 (0.7) | 5 (0.2) | 0.08 |
Shortness of breath, n (%) | 330 (48) | 947 (46) | 0.23 |
Hemoptysis, n (%) | 7 (1) | 15 (0.7) | 0.46 |
Myalgia, n (%) | 217 (32) | 731 (35) | 0.10 |
Fatigue, n (%) | 175 (26) | 491 (24) | 0.30 |
Headache, n (%) | 97 (14) | 352 (17) | 0.10 |
Anorexia, n (%) | 14 (2) | 39 (2) | 0.75 |
Loss of smell, n (%) | 35 (5) | 119 (6) | 0.63 |
Alteration in taste sensation, n (%) | 42 (6) | 168 (8) | 0.11 |
Diarrhea, n (%) | 89 (13) | 288 (14) | 0.61 |
Nausea, n (%) | 48 (7) | 133 (6) | 0.59 |
Vomiting, n (%) | 72 (11) | 190 (9) | 0.29 |
Appetite loss, n (%) | 47 (7) | 152 (7) | 0.73 |
Chest pain, n (%) | 96 (14) | 302 (15) | 0.80 |
Abdominal pain, n (%) | 46 (7) | 160 (8) | 0.45 |
Generalized weakness, n (%) | 81 (12) | 233 (11) | 0.68 |
Dizziness, n (%) | 34 (5) | 102 (5) | 0.92 |
Seizure, n (%) | 2 (0.3) | 13 (0.6) | 0.38 |
Syncope, n (%) | 56 (8) | 154 (7) | 0.51 |
Clinical signs at presentation to ED | |||
Frail, n (%) | 106 (15) | 257 (12) | 0.04 |
Dry oral mucosa, n (%) | 64 (9) | 139 (7) | 0.02 |
Poor orodental hygiene, n (%) | 3 (0.4) | 7 (0.3) | 0.72 |
Conjunctival injection, n (%) | 2 (0.3) | 8 (0.4) | >0.99 |
Throat congestion, n (%) | 2 (0.3) | 10 (0.5) | 0.74 |
Tonsillar swelling, n (%) | 0 (0) | 2 (0.1) | 1.00 |
Lymphadenopathy, n (%) | 1 (0.1) | 1 (0.1) | 0.43 |
Respiratory distress, n (%) | 135 (20) | 335 (16) | 0.03 |
Hypoxia, n (%) | 123 (18) | 308 (15) | 0.05 |
Wheezing, rhonchi or coarse breath sounds, n (%) | 85 (12) | 219 (11) | 0.81 |
Crackles, n (%) | 52 (8) | 114 (5) | 0.05 |
Elevated jugular venous pressure (JVP), n (%) | 8 (1) | 22 (1) | 0.83 |
Tenderness on examination, n (%) | 36 (5) | 98 (5) | 0.54 |
Facial drool, n (%) | 1 (0.2) | 5 (0.2) | >0.99 |
Angle of mouth deviation, n (%) | 0 (0) | 1 (0.1) | >0.99 |
Motor weakness, n (%) | 15 (2) | 23 (1) | 0.06 |
Sensory loss, n (%) | 3 (0.4) | 7 (0.3) | 0.72 |
Tremors, n (%) | 5 (0.7) | 14 (0.7) | 0.80 |
Edema, n (%) | 26 (4) | 67 (3) | 0.47 |
Unresponsive, n (%) | 17 (3) | 47 (2) | 0.77 |
Vitals at initial ED encounter | |||
Systolic blood pressure, mean (SD) | 131 (22) | 132 (22) | 0.17 |
Diastolic blood pressure, mean (SD) | 77 (15) | 78 (14) | 0.61 |
Heart rate, mean (SD) | 95 (18) | 95 (19) | 0.76 |
Mean arterial pressure, mean (SD) | 95 (16) | 96 (15) | 0.22 |
Temperature, mean (SD) | 37.4 (0.87) | 37.4 (0.86) | 0.36 |
Respiratory rate per minute, mean (SD) | 21 (6) | 20 (6) | 0.02 |
Peripheral oxygen saturation SpO2, mean (SD) | 95 (4.5) | 96 (4.9) | 0.50 |
Use of oxygen at home prior to admission, n (%) | 7 (1) | 17 (0.8) | 0.64 |
FiO2%, mean (SD) | 25 (14.3) | 25 (13.4) | 0.48 |
Mortality, n (%) | 190 (28) | 567 (27) | 0.81 |
Variables ◊ | Weekend (n = 685) | Weekday (n = 2082) | p-Value * |
---|---|---|---|
Common primary diagnosis at presentation | |||
Acute respiratory failure, n (%) | 182 (27) | 489 (23) | 0.11 |
Pneumonia, n (%) | 287 (42) | 786 (38) | 0.06 |
Pulmonary embolism, n (%) | 5 (0.7) | 16 (0.8) | >0.99 |
Congestive heart failure, n (%) | 14 (2) | 27 (1) | 0.20 |
Sepsis, n (%) | 44 (6) | 106 (5) | 0.21 |
COPD exacerbation, n (%) | 9 (1) | 25 (1) | 0.84 |
Deep venous thrombosis, n (%) | 2 (0.3) | 7 (0.3) | >0.99 |
Cerebrovascular event, n (%) | 3 (0.4) | 3 (0.1) | 0.17 |
Acute renal failure, n (%) | 29 (4) | 113 (5) | 0.23 |
Acute bronchitis, n (%) | 30 (4) | 78 (4) | 0.50 |
Unresponsive, n (%) | 17 (3) | 47 (2) | 0.77 |
Laboratory work up at admission | |||
Hemoglobin, mean (SD) | 13 (2.4) | 13 (2.2) | 0.46 |
White blood cell count, mean (SD) | 8 (6.7) | 7.7 (5.9) | 0.34 |
Absolute neutrophil count, mean (SD) | 5.7 (3.7) | 5.8 (4.3) | 0.59 |
Absolute lymphocyte count, mean (SD) | 1.5 (3.9) | 1.3 (3.9) | 0.35 |
Neutrophil to lymphocyte count ratio ≥ 3, n (%) | 371 (70) | 1,058 (71) | 0.50 |
Platelet count, mean (SD) | 214 (83) | 220 (91) | 0.20 |
Erythrocyte sedimentation rate, mean (SD) | 57.3 (34) | 61.3 (35) | 0.28 |
Serum ferritin, median (IQR) | 657 (300–1215) | 637 (313–1151) | 0.82 |
Sodium, mean (SD) | 137 (5.8) | 137 (5.9) | 0.94 |
Creatinine, mean (SD) | 1.44 (2) | 1.48 (2) | 0.73 |
Glomerular fraction rate, mean (SD) | 77 (34) | 76 (34) | 0.38 |
Glucose, mean (SD) | 141 (71) | 145 (76) | 0.29 |
Chloride, mean (SD) | 100 (6) | 100 (6.5) | 0.77 |
Potassium, mean (SD) | 4.1 (0.6) | 4.1 (0.6) | 0.55 |
Hemoglobin A1c, mean (SD) | 7.3 (1.9) | 7.4 (2.2) | 0.42 |
Aspartate aminotransferase (AST), mean (SD) | 59 (133) | 54 (113) | 0.45 |
Alanine aminotransferase (ALT), mean (SD) | 44 (58) | 44 (160) | 0.99 |
Alkaline phosphatase, mean (SD) | 93 (72) | 91 (54) | 0.58 |
Albumin, mean (SD) | 3.7 (0.6) | 3.8 (0.7) | 0.02 |
Calcium, mean (SD) | 8.9 (0.7) | 8.9 (0.7) | 0.58 |
Total bilirubin, mean (SD) | 0.59 (0.56) | 0.55 (0.51) | 0.20 |
C-reactive protein (CRP), median (IQR) | 11.8 (3.9–36.8) | 11.1 (4.5–34.2) | 0.90 ** |
Lactate dehydrogenase (LDH), median (IQR) | 343 (255–477) | 354 (257–509) | 0.55 ** |
Creatinine Phosphokinase (CPK), median (IQR) | 127 (74–284) | 129.5 (62–281) | 0.56 ** |
Positive troponin, n (%) | 81 (20) | 227 (20) | >0.99 |
Pro-B-type natriuretic peptide (Pro-BNP), median (IQR) | 205 (53–1181) | 190 (44–947) | 0.27 ** |
INR, mean (SD) | 1.16 (0.64) | 1.17 (0.65) | 0.67 |
D-dimer, mean (SD) | 1.92 (3.8) | 2.5 (5.1) | 0.06 |
Prothrombin time (PT), mean (SD) | 11.6 (3.6) | 12 (5.7) | 0.29 |
Activated partial thromboplastin time (APTT), mean (SD) | 33 (13.1) | 32 (8.5) | 0.18 |
Interleukin-6 (IL6), median (IQR) | 61 (24.4–158.3) | 59.6 (23.4–151) | 0.97 ** |
Procalcitonin high-risk, n (%) | 63 (27) | 180 (28) | 0.73 |
Type and Screen ordered, n (%) | 203 (30) | 567 (27) | 0.24 |
Blood culture collected, n (%) | 305 (45) | 816 (39) | 0.02 |
Positive Blood culture, n (%) | 28 (9) | 59 (7) | 0.32 |
Urine culture collected, n (%) | 117 (17) | 318 (15) | 0.28 |
Urine culture positive, n (%) | 41 (71) | 107 (70) | >0.99 |
Sputum culture collected, n (%) | 19 (2.8) | 43 (2) | 0.30 |
Sputum culture positive, n (%) | 9 (47) | 23 (54) | 0.78 |
Comprehensive viral panel, n (%) | 25 (4) | 89 (4) | 0.51 |
Comprehensive viral panel positive, n (%) | 1 (3.8) | 1 (1) | 0.40 |
QTc > 500 milliseconds, n (%) | 41 (9) | 99 (8) | 0.49 |
30-day readmission to the same health care system, n (%) | 69 (10) | 187 (9) | 0.40 |
Imaging work up at admission *** | |||
Duplex studies done at extremities to r/o DVT, n (%) | 21 (3) | 43 (2) | 0.14 |
CT head and neck with abnormality, n (%) | 9 (14) | 39 (18) | 0.57 |
CT Chest with abnormality, n (%) | 78 (90) | 323 (88) | 0.85 |
CTA chest with abnormality, n (%) | 6 (17) | 24 (21) | 0.81 |
CT abdomen pelvis with abnormality, n (%) | 24 (48) | 72 (43) | 0.63 |
Chest x-ray (CXR) with abnormal read, n (%) | 358 (68) | 1035 (68) | 0.87 |
Echocardiography with abnormal read, n (%) | 11 (21) | 41 (26) | 0.47 |
Ultrasound abdomen with abnormal read, n (%) | 6 (30) | 11 (28) | >0.99 |
MRI brain with abnormal read, n (%) | 3 (60) | 8 (38) | 0.62 |
MRI abdomen pelvis with abnormal read, n (%) | 1 (100) | 1 (33) | 0.99 |
Risk Factors Analysis | Odds Ratio (95% CI) | |
---|---|---|
Socioeconomic predictors | Unadjusted Model 1* | Adjusted Model 2* |
Age ≥ 55 years | 1.21 (1.02–1.43) | 1.47 (1.01–2.15) |
Uninsured | 1.20 (0.96–1.49) | 2.05 (1.25–3.37) |
No primary care provider | 1.65 (1.40–1.96) | 1.73 (1.32–2.26) |
Reported exposure to COVID-19 | 0.74 (0.62–0.88) | 0.72 (0.53–0.96) |
Presentation symptoms predictors | Unadjusted Model * | Adjusted Model 3* |
Chills | 1.16 (0.96–1.40) | 1.40 (1.14–1.73) |
Dry cough | 0.73 (0.61–0.86) | 0.71 (0.59–0.87) |
Productive cough | 0.84 (0.61–1.16) | 0.70 (0.50–0.99) |
Sore throat | 1.15 (0.92–1.45) | 1.32 (1.04–1.68) |
Myalgia | 0.78 (0.66–0.94) | 0.81 (0.66–0.98) |
Presentation signs predictors | Unadjusted Model * | Adjusted Model 4* |
Frail | 1.25 (0.99–1.59) | 1.35 (1.03–1.76) |
Crackles | 0.52 (0.24–0.79) | 0.52 (0.34–0.79) |
Presentation vital statistics predictors | Unadjusted Model * | Adjusted Model 5* |
Respiratory rate; <20 per minute vs. ≥20 per minute | 0.86 (0.72–1.02) | 0.72 (0.59–0.87) |
Pulse oxygen: SpO2 level < 95% vs. ≥ 95% | 1.39 (1.16–1.68) | 1.53 (1.25–1.87) |
Presentation laboratory work up predictors | Unadjusted Model * | Adjusted Model 6* |
Hematology | ||
Neutrophil to lymphocyte count ratio ≥ 3 | 1.19 (0.96–1.48) | 1.38 (0.50–2.71) |
Serum chemistry | Unadjusted Model * | Adjusted Model 7* |
Hyperglycemia (Glucose > 100 mg/dL vs. 71–100 mg/dL) | 1.62 (1.26–2.08) | 5.59 (1.18–26.4) |
Potassium millimoles per liter (mmol/L) | 1.22 (1.04–1.44) | 2.64 (1.13–6.14) |
Creatinine Phosphokinase (CPK), units per liter < 165–232 vs. >165–232 | 1.34 (0.98–1.83) | 0.37 (0.15–0.91) |
C-reactive protein (CRP) mg/dL | 1.00 (0.99–1.00) | 0.98 (0.97–0.99) |
Final adjusted model | Adjusted Model 8* | |
No primary care provider | 3.47 (2.37–5.07) | |
Crackles | 0.47 (0.24–0.92) | |
Pulse oxygen: SpO2 level < 95% vs. ≥5% | 1.46 (1.001–2.12) | |
Hyperglycemia (Glucose > 100 mg/dL vs. 71–100 mg/dL) | 2.13 (1.25–3.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Gnanaraj, J.; Jain, E.; Kaur, J.; Khaliq, W. Weekend Effect and Predictors of Mortality for Patients Presenting to Emergency Department with COVID-19 Infection. J. Pers. Med. 2025, 15, 402. https://doi.org/10.3390/jpm15090402
Singh A, Gnanaraj J, Jain E, Kaur J, Khaliq W. Weekend Effect and Predictors of Mortality for Patients Presenting to Emergency Department with COVID-19 Infection. Journal of Personalized Medicine. 2025; 15(9):402. https://doi.org/10.3390/jpm15090402
Chicago/Turabian StyleSingh, Amteshwar, Jerome Gnanaraj, Evani Jain, Japleen Kaur, and Waseem Khaliq. 2025. "Weekend Effect and Predictors of Mortality for Patients Presenting to Emergency Department with COVID-19 Infection" Journal of Personalized Medicine 15, no. 9: 402. https://doi.org/10.3390/jpm15090402
APA StyleSingh, A., Gnanaraj, J., Jain, E., Kaur, J., & Khaliq, W. (2025). Weekend Effect and Predictors of Mortality for Patients Presenting to Emergency Department with COVID-19 Infection. Journal of Personalized Medicine, 15(9), 402. https://doi.org/10.3390/jpm15090402