Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis
Abstract
:1. Introduction
2. Methods
3. Air Pollution
- Take-home messages:
- −
- Chronic exposure to fine particulate matter (PM 2.5, <2.5 μm in diameter) is strongly associated with worsened clinical outcomes in AS.
- −
- Air pollution provokes inflammatory immune responses involving both innate and adaptive immune mechanisms, with effects extending from the respiratory tract to systemic circulation.
- −
- Recent studies underscore the involvement of TNF and Th17 cells as central drivers of proinflammatory activity, contributing significantly to the immunopathogenesis of AS.
4. Smoking Cigarettes and e-Cigarettes
- Take-home messages:
- −
- Current smoking, as opposed to a prior history of smoking, appears to be a significant risk factor for AS and is associated with increased disease activity in affected individuals.
- −
- The proinflammatory and pro-oxidative properties of smoking are believed to contribute to disease initiation, particularly in genetically susceptible individuals, and may promote the progression from nr-axSpA to AS.
- −
- While clinical data on e-cigarette use in patients with AS are lacking, findings from a murine model of arthritis indicate that nicotine may exacerbate inflammatory arthritis.
5. Intestinal Microbiome
- Take-home messages:
- −
- The introduction of commensal bacteria, such as Bacteroides vulgatus, into transgenic animal models has been shown to induce the development of arthritis.
- −
- HLA-B27 may confer susceptibility to AS by altering the composition of the GM and presenting a distinct repertoire of peptides within the intestinal environment, thereby promoting microbial dysbiosis, local inflammation, and the enhanced production of IL-23 and other proinflammatory mediators.
- −
- Paneth cells, a specialized subset of antimicrobial epithelial cells in the small intestine, secrete IL-23 and activate IL-23-responsive immune populations—such as ILC3s, γδ T cells, and MAIT cells—which can migrate from the gut to peripheral inflammatory sites, including the entheses, contributing to the pathogenesis of SpA.
5.1. Infections
5.2. Other Infections
6. Diet
- Take-home messages:
- −
- Zhang et al. proposed that alterations in the GM observed in AS may have been influenced by dietary factors.
- −
- Recent research indicates that the Western diet—characterized by a high intake of starch and saturated fats—may increase the risk of autoimmune diseases by impairing gut barrier integrity and altering microbial composition and metabolism.
- −
- A low-starch diet has been shown to reduce total serum IgA levels in both HCs and patients with AS, potentially leading to decreased inflammation and symptom relief.
- −
- The Mediterranean diet, rich in dietary fiber, whole grains, vegetables, and unsaturated fats such as olive oil and nuts, shares features with anti-inflammatory dietary patterns and may offer benefits in managing inflammatory conditions like AS.
7. Genetic and Environmental Factors
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sieper, J.; Poddubnyy, D. Axial spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Kenna, T.; Wordsworth, B.P. Genetics of ankylosing spondylitis—Insights into pathogenesis. Nat. Rev. Rheumatol. 2016, 12, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, F.; Gentileschi, S.; Cigolini, C.; Terenzi, R.; Pata, A.P.; Esti, L.; Carli, L. Axial spondyloarthritis: One year in review 2023. Clin. Exp. Rheumatol. 2023, 41, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- De Cata, A.; Inglese, M.; Rubino, R.; Molinaro, F.; Mazzoccoli, G. The synovio-entheseal complex in enthesoarthritis. Clin. Exp. Med. 2016, 16, 109–124. [Google Scholar] [CrossRef]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Me-chanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef]
- Hiraiwa, K.; van Eeden, S.F. Contribution of lung macrophages to the infammatory responses induced by exposure to air pollutants. Mediat. Infamm. 2013, 2013, 619523. [Google Scholar]
- Adami, G.; Pontalti, M.; Cattani, G.; Rossini, M.; Viapiana, O.; Orsolini, G.; Benini, C.; Bertoldo, E.; Fracassi, E.; Gatti, D.; et al. Association between long-term exposure to air pollution and immunemediated diseases: A population-based cohort study. RMD Open 2022, 8, e002055. [Google Scholar] [CrossRef]
- Ziadé, N.; Bouzamel, M.; Mrad-Nakhlé, M.; Karam, G.A.; Hmamouchi, I.; Abouqal, R.; Farah, W. Prospective correlational time-series analysis of the influence of weather and air pollution on joint pain in chronic rheumatic diseases. Clin. Rheumatol. 2021, 40, 3929–3940. [Google Scholar] [CrossRef]
- Soleimanifar, N.; Nicknam, M.H.; Bidad, K.; Jamshidi, A.R.; Mahmoudi, M.; Mostafaei, S.; Hosseini-Khah, Z.; Nikbin, B. Effect of food intake and ambient air pollution exposure on ankylosing spondylitis disease activity. Adv. Rheumatol. 2019, 59, 9. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, S.; Kim, K.; Chang, J.; Kim, S.M.; Kim, S.R.; Lee, G.; Son, J.S.; Kim, K.H.; Lee, E.Y.; et al. Association of particulate matter with autoimmune rheumatic diseases among adults in South Korea. Rheumatology 2021, 60, 5117–5126. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Xu, Z.; Wu, G.-C.; Mao, Y.-M.; Liu, L.-N.; Wu, Q.; Dan, Y.-L.; Tao, S.-S.; Zhang, Q.; Sam, N.B.; et al. Emerging role of air pollution in autoimmune diseases. Autoimmun. Rev. 2019, 18, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Glencross, D.A.; Ho, T.R.; Camina, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its efects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent. Eur. J. Immunol. 2017, 42, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Cox, F.A.; Stiller-Winkler, R.; Hadnagy, W.; Ranft, U.; Idel, H. Soluble tumor necrosis factor receptor (sTNF RII) in sera of children and traffic-derived particulate air pollution. Zentralbl. Hyg. Umweltmed. 1999, 202, 489–500. [Google Scholar] [CrossRef]
- Nakamura, R.; Inoue, K.I.; Fujitani, Y.; Kiyono, M.; Hirano, S.; Takano, H. Effects of nanoparticle-rich diesel exhaust particles on IL-17 production in vitro. J. Immunotoxicol. 2012, 9, 72–76. [Google Scholar] [CrossRef]
- Mann, E.H.; Ho, T.R.; Pfeffer, P.E.; Matthews, N.C.; Chevretton, E.; Mudway, I.; Kelly, F.J.; Hawrylowicz, C.M. Vitamin D counteracts an IL-23-dependent IL-17A(+) IFN-gamma(+) response driven by urban particulate matter. Am. J. Respir. Cell Mol. Biol. 2017, 57, 355–366. [Google Scholar] [CrossRef]
- Veldhoen, M.; Hirota, K.; Westendorf, A.M.; Buer, J.; Dumoutier, L.; Renauld, J.C.; Stockinger, B. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008, 453, 106–109. [Google Scholar] [CrossRef]
- van Voorhis, M.; Knopp, S.; Julliard, W.; Fechner, J.H.; Zhang, X.; Schauer, J.J.; Mezrich, J.D. Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor. PLoS ONE 2013, 8, e82545. [Google Scholar] [CrossRef]
- Estrella, B.; Naumova, E.N.; Cepeda, M.; Voortman, T.; Katsikis, P.D.; Drexhage, H.A. Effects of air pollution on lung innate lymphoid cells: Review of in vitro and in vivo experimental studies. Int. J. Environ. Res. Public Health 2019, 16, 2347. [Google Scholar] [CrossRef]
- Kao, C.-M.; Huang, W.-N.; Chen, Y.-H.; Chen, H.-H. Association between air pollutants and initiation of biological therapy in patients with ankylosing spondylitis: A nationwide, population-based, nested case–control study. Arthritis Res. Ther. 2023, 25, 75. [Google Scholar] [CrossRef]
- Videm, V.; Cortes, A.; Thomas, R.; Brown, M.A. Current smoking is associated with incident ankylosing spondylitis—The HUNT population-based Norwegian health study. J. Rheumatol. 2014, 41, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wan, W.; Liu, J.; Dai, S.; Zou, Y.; Qian, Q.; Ding, Y.; Xu, X.; Ji, H.; He, H.; et al. Smoking quantity determines disease activity and function in Chinese patients with ankylosing spondylitis. Clin. Rheumatol. 2018, 37, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Nikiphorou, E.; Ramiro, S.; Sepriano, A.; Ruyssen-Witrand, A.; Landewé, R.B.; van der Heijde, D. Do smoking and socioeconomic factors influence Imaging Outcomes in Axial Spondyloarthritis? Five-Year Data From the DESIR Cohort. Arthritis Rheumatol. 2020, 72, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Luria, A.; Rhodes, C.; Raghu, H.; Lingampalli, N.; Sharpe, O.; Rada, B.; Sohn, D.H.; Robinson, W.H.; Sokolove, J. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis. Rheumatology 2017, 56, 644–653. [Google Scholar] [CrossRef]
- Poddubnyy, D.; Haibel, H.; Listing, J.; Märker-Hermann, E.; Zeidler, H.; Braun, J.; Sieper, J.; Rudwaleit, M. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 2012, 64, 1388–1398. [Google Scholar] [CrossRef]
- Ward, M.M.; Hendrey, M.R.; Malley, J.D.; Learch, T.J.; Davis, J.C.; Reveille, J.D.; Weisman, M.H. Clinical and immunogenetic prognostic factors for radiographic severity in ankylosing spondylitis. Arthritis Care Res. 2009, 61, 859–866. [Google Scholar] [CrossRef]
- Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2002, 2, 372–377. [Google Scholar] [CrossRef]
- Pacheco-Tena, C.; González-Chávez, S.A. The danger model approach to the pathogenesis of the rheumatic diseases. J. Immonol. Res. 2015, 2015, 506089. [Google Scholar] [CrossRef]
- Rath, H.C.; Herfarth, H.H.; Ikeda, J.S.; Grenther, W.B.; Hamm, T.E.; Balish, E.; Taurog, J.D.; Hammer, R.E.; Wilson, K.H.; Sartor, R.B. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Investig. 1996, 98, 945–953. [Google Scholar] [CrossRef]
- Martínez, A.; Pacheco-Tena, C.; Vázquez-Mellado, J.; Burgos-Vargas, R. Relationship between disease activity and infection in patients with spondyloarthropathies. Ann. Rheum. Dis. 2004, 63, 1338–1340. [Google Scholar] [CrossRef]
- Rosenbaum, J.T.; Davey, M.P. Time for a gut check: Evidence for the hypothesis that HLA–B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 2011, 63, 3195–3198. [Google Scholar] [CrossRef] [PubMed]
- Asquith, M.; Sternes, P.R.; Costello, M.E.; Karstens, L.; Diamond, S.; Martin, T.M.; Li, Z.; Marshall, M.S.; Spector, T.D.; le Cao, K.A.; et al. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome. Arthritis Rheumatol. 2019, 71, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, O.; Cantero-Hinojosa, J.; Paule-Sastre, P.; Gómez-Magán, J.C.; Salvatierra-Ríos, D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br. J. Rheumatol. 1994, 33, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Sharif, K.; Bridgewood, C.; Dubash, S.; McGonagle, D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology 2020, 59, iv67–iv78. [Google Scholar] [CrossRef]
- Ciccia, F.; Bombardieri, M.; Principato, A.; Giardina, A.; Tripodo, C.; Porcasi, R.; Peralta, S.; Franco, V.; Giardina, E.; Craxi, A.; et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009, 60, 955–965. [Google Scholar] [CrossRef]
- Costello, M.E.; Ciccia, F.; Willner, D.; Warrington, N.; Robinson, P.C.; Gardiner, B.; Marshall, M.; Kenna, T.J.; Triolo, G.; Brown, M.A. Brief report: Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015, 67, 686–691. [Google Scholar] [CrossRef]
- Klingberg, E.; Magnusson, M.K.; Strid, H.; Deminger, A.; Ståhl, A.; Sundin, J.; Simrén, M.; Carlsten, H.; Öhman, L.; Forsblad-D’elia, H. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther. 2019, 21, 248. [Google Scholar] [CrossRef]
- Wen, C.; Zheng, Z.; Shao, T.; Liu, L.; Xie, Z.; Le Chatelier, E.; He, Z.; Zhong, W.; Fan, Y.; Zhang, L.; et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017, 18, 142. [Google Scholar] [CrossRef]
- Yin, J.; Stemes, P.R.; Wang, M.; Song, J.; Morrison, M.; Li, T.; Zhou, L.; Wu, X.; He, F.; Zhu, J.; et al. Shotgun metagenomics reveals an enrichment of potentially crossreactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 2020, 79, 132–140. [Google Scholar] [CrossRef]
- Mielants, H.; Veys, E.M.; Cuvelier, C.; de Vos, M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br. J. Rheumatol. 1988, 27, 95–105. [Google Scholar] [CrossRef]
- Klingberg, E.; Oleröd, G.; Hammarsten, O.; Forsblad-D’elia, H. The vitamin D status in ankylosing spondylitis in relation to intestinal inflammation, disease activity, and bone health: A cross-sectional study. Osteoporos. Int. 2016, 27, 2027–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, R.; Zhang, X.; Fang, G.; Chen, J.; Li, J.; Xu, S.; Qian, L.; Chen, W.; Pan, F. Fecal microbiota in patients with ankylosing spondylitis: Correlation with dietary factors and disease activity. Clin. Chim. Acta 2019, 497, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Tito, R.Y.; Cypers, H.; Joossens, M.; Varkas, G.; Van Praet, L.; Glorieus, E.; Van den Bosch, F.; De Vos, M.; Raes, J.; Elewaut, D. Brief report: Dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2017, 69, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Breban, M.; Tap, J.; Leboime, A.; Said-Nahal, R.; Langella, P.; Chiocchia, G.; Furet, J.P.; Sokol, H. Faecal microbiota study reveals specifc dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 1614–1622. [Google Scholar] [CrossRef]
- Mielants, H.; De Keyser, F.; Baeten, D.; Van den Bosch, F. Gut inflammation in the spondyloarthropathies. Curr. Rheumatol. Rep. 2005, 7, 188–194. [Google Scholar] [CrossRef]
- Gill, T.; Asquith, M.; Rosenbaum, J.T.; Colbert, R.A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol. 2015, 27, 319–325. [Google Scholar] [CrossRef]
- Berland, M.; Meslier, V.; Berreira Ibraim, S.; Le Chatelier, E.; Pons, N.; Maziers, N.; Thirion, F.; Gauthier, F.; Plaza Oñate, F.; Furet, J.P.; et al. Both disease activity and HLA-B27 status are associated with gut microbiome dysbiosis in spondyloarthritis patients. Arthritis Rheumatol. 2023, 75, 41–52. [Google Scholar] [CrossRef]
- Stoll, M.L.; Sawhney, H.; Wells, P.M.; Sternes, P.R.; Reveille, J.D.; Morrow, C.D.; Steves, C.J.; Brown, M.A.; Gensler, L.S. The faecal microbiota is distinct in HLA-B27+ ankylosing spondylitis patients versus HLA-B27+ healthy controls. Clin. Exp. Rheumatol. 2023, 41, 1096–1104. [Google Scholar] [CrossRef]
- Vallier, M.; Segurens, B.; Larsonneur, E.; Meyer, V.; Ferreira, S.; Caloustian, C.; Deleuze, J.F.; Dougados, M.; Chamaillard, M.; Miceli-Richard, C. Characterisation of gut microbiota composition in patients with axial spondyloarthritis and its modulation by TNF inhibitor treatment. RMD Open 2023, 9, e002794. [Google Scholar] [CrossRef]
- Mo, C.; Lou, X.; Xue, J.; Shi, Z.; Zhao, Y.; Wang, F.; Chen, G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut. Pathog. 2024, 16, 41. [Google Scholar] [CrossRef]
- Ciccia, F.; Guggino, G.; Rizzo, A.; Alessandro, R.; Luchetti, M.M.; Milling, S.; Saieva, L.; Cypers, H.; Stampone, T.; Di Benedetto, P.; et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 2017, 76, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Veys, E.; van Leare, M. Serum IgG, IgM, and IgA levels in ankylosing spondylitis. Ann. Rheum. Dis. 1973, 32, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Laurent, M.R.; Panayi, G.S. Acute-phase proteins and serum immunoglobulins in ankylosing spondylitis. Ann. Rheum. Dis. 1983, 42, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Demetter, P.; Van Huysse, J.A.; De Keyser, F.; Van Damme, N.; Verbruggen, G.; Mielants, H.; De Vos, M.; Veys, E.M.; Cuvelier, C.A. Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J. Pathol. 2002, 198, 517–522. [Google Scholar] [CrossRef]
- Romero-Sánchez, C.; Bautista-Molano, W.; Parra, V.; De Avila, J.; Rueda, J.C.; Bello-Gualtero, J.M.; Londoño, J.; Valle-Oñate, R. Gastrointestinal symptoms and elevated levels of anti-saccharomyces cerevisiae antibodies are associated with higher disease activity in Colombian patients with spondyloarthritis. Int. J. Rheumatol. 2017, 2017, 4029584. [Google Scholar] [CrossRef]
- Wallis, D.; Asaduzzaman, A.; Weisman, M.; Haroon, N.; Anton, A.; McGovern, D.; Targan, S.; Inman, R. Elevated serum anti-fagellin antibodies implicate subclinical bowel infammation in ankylosing spondylitis: An observational study. Arthritis Res. Ther. 2013, 15, R166. [Google Scholar] [CrossRef]
- Henke, M.T.; Kenny, D.J.; Cassilly, C.D.; Vlamakis, H.; Xavier, R.J.; Clardy, J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an infammatory polysaccharide. Proc. Natl. Acad. Sci. USA 2019, 16, 12672–12677. [Google Scholar] [CrossRef]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, H.; Marotta, F.; Singh, V. Probiotics—A Probable Therapeutic Agent For Spondyloarthropathy. Int. J. Probiotics Prebiotics. 2017, 12, 57–68. [Google Scholar]
- Baharav, E.; Weinberger, A.; Mor, F.; Halpern, M. Lactobacillus GG bacteria ameliorate arthritis in Lewis rats. J. Nutr. 2004, 134, 1964–1969. [Google Scholar] [CrossRef]
- Yan, F.; Polk, D.B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem. 2002, 277, 50959–50965. [Google Scholar] [CrossRef] [PubMed]
- Asquith, M.; Elewaut, D.; Lin, P.; Rosenbaum, J.T. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-Y.; Yuan, D.; Zhang, S.-X. Role of the microbiome and its metabolites in ankylosing spondylitis. Front. Immunol. 2022, 13, 1010572. [Google Scholar] [CrossRef] [PubMed]
- Ebringer, R.; Cooke, D.; Cawdell, D.R.; Cowling, P.; Ebringer, A. Ankylosing spondylitis: Klebsiella and HL-A B27. Rheumatol. Rehabil. 1977, 16, 190–196. [Google Scholar] [CrossRef]
- Seager, K.; Bashir, H.V.; Geczy, A.F.; Edmonds, J.; de Vere-Tyndall, A. Evidence for a specific B27-associated cell surface marker on lymphocytes of patients with ankylosing spondylitis. Nature 1979, 277, 68–70. [Google Scholar] [CrossRef]
- Warren, R.E.; Brewerton, D.A. Faecal carriage of klebsiella by patients with ankylosing spondylitis and rheumatoid arthritis. Ann. Rheum. Dis. 1980, 39, 37–44. [Google Scholar] [CrossRef]
- Stebbings, S.; Munro, K.; Simon, M.A.; Tannock, G.; Highton, J.; Harmsen, H.; Welling, G.; Seksik, P.; Dore, J.; Grame, G.; et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology 2002, 41, 1395–1401. [Google Scholar] [CrossRef]
- Ebringer, A. The cross-tolerance hypothesis, HLA-B27 and ankylosing spondylitis. Br. J. Rheumatol. 1983, 22, 53–66. [Google Scholar] [CrossRef]
- Schwimmbeck, P.L.; Yu, D.T.; Oldstone, M.B. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter’s syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J. Exp. Med. 1987, 166, 173–181. [Google Scholar] [CrossRef]
- de Vries, D.D.; Dekker-Saeys, A.J.; Gyodi, E.; Bohm, U.; Ivanyi, P. Absence of autoantibodies to peptides shared by HLA-B27.5 and Klebsiella pneumoniae nitrogenase in serum samples from HLA-B27 positive patients with ankylosing spondylitis and Reiter’s syndrome. Ann. Rheum. Dis. 1992, 51, 783–789. [Google Scholar] [CrossRef]
- Mäki-Ikola, O.; Lehtinen, K.; Nissiläa, M.; Granfors, K. IgM, IgA and IgG class serum antibodies against Klebsiella pneumoniae and Escherichia coli lipopolysaccharides in patients with ankylosing spondylitis. Br. J. Rheumatol. 1994, 33, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Kijlstra, A.; Luyendijk, L.; van der Gaag, R.; van Kregten, E.; Linssen, A.; Willers, J.M. IgG and IgA immune response against klebsiella in HLA-B27-associated anterior uveitis. Br. J. Ophthalmol. 1986, 70, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Geczy, A.F.; Alexander, K.; Bashir, H.V.; Edmonds, J.P. Characterization of a factor(s) present in Klebsiella culture filtrates that specifically modifies an HLA-B27-associated cell-surface component. J. Exp. Med. 1980, 152 Pt 2, 331s–340s. [Google Scholar] [PubMed]
- Trapani, J.A.; McKenzie, I.F. Klebsiella ‘modifying factor’: Binding studies with HLA-B27+ and B27− lymphocytes. Ann. Rheum. Dis. 1985, 44, 169–175. [Google Scholar] [CrossRef]
- Ngo, K.Y.; Rochu, D.; D’Ambrosio, A.M.; Muller, J.Y.; Lucotte, G. Klebsiella plasmid K21 is not involved in the aetiology of ankylosing spondylitis. Exp. Clin. Immunogenet. 1984, 1, 140–144. [Google Scholar]
- Sprenkels, S.H.D.; Van Kregten, E.; Feltkamp, T.E.W. IgA antibodies against Klebsiella and other Gram-negative bacteria in ankylosing spondylitis and acute anterior uveitis. Clin. Rheumatol. 1996, 15, 48–51. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.-J.; Chen, J.; Huang, X.-L.; Fang, G.-S.; Yang, L.-J.; Duan, Y.; Wang, J. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review. Microb. Pathog. 2018, 117, 49–54. [Google Scholar] [CrossRef]
- Puccetti, A.; Dolcino, M.; Tinazzi, E.; Moretta, F.; D’angelo, S.; Olivieri, I.; Lunardi, C. Antibodies directed against a peptide epitope of a klebsiella pneumoniae-derived protein are present in ankylosing spondylitis. PLoS ONE 2017, 12, e0171073. [Google Scholar] [CrossRef]
- Rashid, T.; Wilson, C.; Ebringer, A. Raised incidence of ankylosing spondylitis among Inuit populations could be due to high HLA-B27 association and starch consumption. Rheumatol. Int. 2015, 35, 945–951. [Google Scholar] [CrossRef]
- Breban, M.; Beaufrère, M.; Glatigny, S. The microbiome in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101495. [Google Scholar] [CrossRef]
- Wei, J.C.-C.; Chou, M.-C.; Huang, J.-Y.; Chang, R.; Hung, Y.-M. The association between Candida infection and ankylosing spondylitis: A population-based matched cohort study. Curr. Med. Res. Opin. 2020, 36, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-Y.; Lin, J.-Y.; Wang, Y.-T.; Huang, J.-Y.; Wei, J.C.-C.; Chiou, J.-Y. Risk of ankylosing spondylitis following human papillomavirus infection: A nationwide, population-based, cohort study. J. Autoimmun. 2020, 113, 102482. [Google Scholar] [CrossRef] [PubMed]
- Damba, J.J.; Laskine, M.; Jin, Y.; Sinyavskaya, L.; Durand, M. Incidence of autoimmune diseases in people living with HIV compared to a matched population: A cohort study. Clin. Rheumatol. 2021, 40, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Viladomiu, M.; Kivolowitz, C.; Abdulhamid, A.; Dogan, B.; Victorio, D.; Castellanos, J.G.; Woo, V.; Teng, F.; Tran, N.L.; Sczesnak, A.; et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 2017, 9, eaaf9655. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 2012, 4, 1095–1119. [Google Scholar] [CrossRef]
- Ebringer, A.; Wilson, C. The use of a low starch diet in the treatment of patients suffering from ankylosing spondylitis. Clin. Rheumatol. 1996, 15, 62–66. [Google Scholar] [CrossRef]
- Cao, G.; Wang, Q.; Huang, W.; Tong, J.; Ye, D.; He, Y.; Liu, Z.; Tang, X.; Cheng, H.; Wen, Q.; et al. Long-term consumption of caffeine-free high sucrose cola beverages aggravates the pathogenesis of EAE in mice. Cell Discov. 2017, 3, 17020. [Google Scholar] [CrossRef]
- Di Luccia, B.; Crescenzo, R.; Mazzoli, A.; Cigliano, L.; Venditti, P.; Walser, J.-C.; Widmer, A.; Baccigalupi, L.; Ricca, E.; Iossa, S. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS ONE 2015, 10, e0134893. [Google Scholar] [CrossRef]
- Macfarlane, T.V.; Abbood, H.M.; Pathan, E.; Gordon, K.; Hinz, J.; Macfarlane, G.J. Relationship between diet and ankylosing spondylitis: A systematic review. Eur. J. Rheumatol. 2018, 5, 45–52. [Google Scholar] [CrossRef]
- Andoh, A.; Bamba, T.; Sasaki, M. Physiological and anti-inflammatory roles of dietary fiber and butyrate in intestinal functions. J. Parenter. Enter. Nutr. 1999, 23, S70–S73. [Google Scholar] [CrossRef]
- Looijer-van Langen, M.A.; Dieleman, L.A. Prebiotics in chronic intestinal inflammation. Inflamm. Bowel. Dis. 2009, 15, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Christl, S.U.; Eisner, H.D.; Dusel, G.; Kasper, H.; Scheppach, W. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: A potential role for these agents in the pathogenesis of ulcerative colitis. Dig. Dis. Sci. 1996, 41, 2477–2481. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Vuillermin, P.J.; Goverse, G.; Vinuesa, C.G.; Mebius, R.E.; Macia, L.; Mackay, C.R. Dietary fiber and bacterial scfa enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016, 15, 2809–2824. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef]
- Sureda, A.; Del Mar Bibiloni, M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J.A. Adherence to the Mediterranean diet and inflammatory markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Poggioli, R.; Hirani, K.; Jogani, V.G.; Ricordi, C. Modulation of inflammation and immunity by omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7380–7400. [Google Scholar] [CrossRef]
- Niu, Q.; Wei, W.; Huang, Z.; Zhang, J.; Yang, B.; Wang, L. Association between food allergy and ankylosing spondylitis: An observational study. Medicine 2019, 98, e14421. [Google Scholar] [CrossRef]
- Bowness, P. HLA-B27. Annu. Rev. Immunol. 2015, 33, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Taurog, J.D.; Richardson, J.A.; Croft, J.T.; Simmons, W.A.; Zhou, M.; Fernández-Sueiro, J.L.; Balish, E.; Hammer, R.E. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 1994, 180, 2359–2364. [Google Scholar] [CrossRef] [PubMed]
- Ciccia, F.; Dussias, N.K.; Gandolfo, S.; Rizzello, F.; Gionchetti, P. The effect of anti-TNF drugs on the intestinal microbiota in patients with spondyloarthritis, rheumatoid arthritis, and inflammatory bowel diseases. Rheumatol. Immunol. Res. 2024, 5, 27–33. [Google Scholar] [CrossRef] [PubMed]
Environmental Factors | Pathogenic Link | Pathogenesis | References |
---|---|---|---|
Particulate matter <2,5M SO2-O3-NO2 | Aryl hydrocarbon receptor | Lymphocytes Th-17-TNF | [9,10,11,17,18] |
Nicotine-containing products, including e-cigarettes | Soluble receptors | IL 15, IL-1Ra, IL-6, sIL- 6R and vascular endothelial growth factor receptor-3 | [2,25,26,28] |
Bacteroidaceae, Porphyromonadaceae, Lachnospiraceae, Rikenellaceae, Prevotellaceae | Paneth cells | IL-23-responsive immune populations, including group 3 innate lymphoid cells (ILC3) and γδ T cells | [36,37,38] |
Klebsiella, Enterobacteriaceae | HLA-B27 | Immunoglobulin A (IgA)-coated microbiota | [65,71,72,84] |
Diet high in starch and fat, Western diet | CD103⁺ dendritic cells (DCs) | T follicular helper cell activity | [85,91,94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benucci, M.; Russo, E.; Li Gobbi, F.; Manfredi, M.; Infantino, M. Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis. J. Pers. Med. 2025, 15, 237. https://doi.org/10.3390/jpm15060237
Benucci M, Russo E, Li Gobbi F, Manfredi M, Infantino M. Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis. Journal of Personalized Medicine. 2025; 15(6):237. https://doi.org/10.3390/jpm15060237
Chicago/Turabian StyleBenucci, Maurizio, Edda Russo, Francesca Li Gobbi, Mariangela Manfredi, and Maria Infantino. 2025. "Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis" Journal of Personalized Medicine 15, no. 6: 237. https://doi.org/10.3390/jpm15060237
APA StyleBenucci, M., Russo, E., Li Gobbi, F., Manfredi, M., & Infantino, M. (2025). Inflammatory Arthritis and the Environment: Causes and Consequences of Spondyloarthritis. Journal of Personalized Medicine, 15(6), 237. https://doi.org/10.3390/jpm15060237