Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Data Collection and Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in BCVA over the Course of Time
3.6. Complications
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IOP | Intraocular pressure |
CECD | Corneal endothelial cell density |
CCT | Central corneal thickness |
CV | Coefficient of variation |
PHC | Percentage of hexagonal cells |
IOL | Intraocular lens |
BCVA | Best-corrected visual acuity |
CDE | Cumulative dissipated energy |
SD | Standard deviation |
POAG | Primary open-angle glaucoma |
References
- Li, Y.; Pan, A.P.; Yu, A.Y. Recent Progression of Pathogenesis and Treatment for Diabetic Cataracts. Semin. Ophthalmol. 2025, 40, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Shyam, M.; Sidharth, S.; Veronica, A.; Jagannathan, L.; Srirangan, P.; Radhakrishnan, V.; Sabina, E.P. Diabetic retinopathy: A comprehensive review of pathophysiology and emerging treatments. Mol. Biol. Rep. 2025, 52, 380. [Google Scholar] [CrossRef]
- Kingsbury, K.D.; Skeie, J.M.; Cosert, K.; Schmidt, G.A.; Aldrich, B.T.; Sales, C.S.; Weller, J.; Kruse, F.; Thomasy, S.M.; Schlötzer-Schrehardt, U.; et al. Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Investig. Ophthalmol.Vis. Sci. 2023, 64, 26. [Google Scholar] [CrossRef]
- Ciorba, A.L.; Roiu, G.; Abdelhamid, A.M.; Saber, S.; Cavalu, S. Evaluation of the Corneal Endothelium Following Cataract Surgery in Diabetic and Non-Diabetic Patients. Diagnostics 2023, 13, 1115. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Hao, J.; Sun, L.; Zhao, X.; Jia, X.; Liu, Z.; Zhang, K. Analysis of influencing factors of corneal edema after phacoemulsification for diabetic cataract. Cell. Mol. Biol. 2023, 69, 164–171. [Google Scholar] [CrossRef]
- Liu, Q.; Celis-Morales, C.; Sattar, N.; Welsh, P. Association of glycaemic control with intraocular pressure in a large general population: Results from the UK Biobank. Diabetes Obes. Metab. 2024, 26, 5192–5201. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, M.; Hong, Y. The causal effect of glaucoma and diabetic retinopathy: A Mendelian randomization study. Diabetol. Metab. Syndr. 2025, 17, 80. [Google Scholar] [CrossRef]
- Chen, P.P.; Lin, S.C.; Junk, A.K.; Radhakrishnan, S.; Singh, K.; Chen, T.C. The effect of phacoemulsification on intraocular pressure in glaucoma patients: A report by the American Academy of Ophthalmology. Ophthalmology 2015, 122, 1294–1307. [Google Scholar] [CrossRef]
- Hudovernik, M.; Pahor, D. Intraocular pressure after phacoemulsification with posterior chamber lens implantation in open-angle glaucoma. Klin. Monatsblätter Augenheilkd. 2003, 220, 835–839. [Google Scholar]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am. J. Ophthalmol. 2019, 207, 10–17. [Google Scholar] [CrossRef]
- Dewan, T.; Malik, P.K.; Kumari, R. Comparison of effective phacoemulsification time and corneal endothelial cell loss using 2 ultrasound frequencies. J. Cataract. Refract. Surg. 2019, 45, 1285–1293. [Google Scholar] [CrossRef]
- Fernández-Muñoz, E.; Zamora-Ortiz, R.; Gonzalez-Salinas, R. Endothelial cell density changes in diabetic and nondiabetic eyes undergoing phacoemulsification employing phaco-chop technique. Int. Ophthalmol. 2019, 39, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol. 2023, 23, 181. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J. Cataract. Refract. Surg. 2023, 49, 479–484. [Google Scholar] [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J. Clin. Med. 2024, 13, 7298. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Corneal endothelial cell loss in shallow anterior chamber eyes after phacoemulsification using the eight-chop technique. J. Clin. Med. 2025, 14, 3045. [Google Scholar] [CrossRef]
- Emery, J.M.; Little, J.H. Patient selection. In Phacoemulsification and Aspiration of Cataracts; Surgical Techniques, Complications, and Results; Emery, J.M., Little, J.H., Eds.; CV Mosby: St Louis, MO, USA, 1979; pp. 45–48. [Google Scholar]
- Tang, Y.; Chen, X.; Zhang, X.; Tang, Q.; Liu, S.; Yao, K. Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. Sci. Rep. 2017, 7, 14128. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, L.; Zhu, C.; Nan, W.; Ding, X.; Dong, Y.; Zhao, M. The effect of diabetes on corneal endothelium: A meta-analysis. BMC Ophthalmol. 2021, 21, 78. [Google Scholar] [CrossRef]
- Aldrich, B.T.; Schlötzer-Schrehardt, U.; Skeie, J.M.; Burckart, K.A.; Schmidt, G.A.; Reed, C.R.; Zimmerman, M.B.; Kruse, F.E.; Greiner, M.A. Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2130–2138. [Google Scholar] [CrossRef]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine 2021, 100, e27141. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, H.; Ding, Z.; Tang, C.; Liang, Y.; Li, Y.; Liang, H. Meta-analysis of corneal endothelial changes after phacoemulsification in diabetic and non-diabetic patients. BMC Ophthalmol. 2023, 23, 174. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Ameen, S.S.; Ayub, N.; Mehboob, M.A. Effects of anterior chamber depth and axial length on corneal endothelial cell density after phacoemulsification. Pak. J. Med. Sci. 2019, 35, 200–204. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: A randomized study. Indian J. Ophthalmol. 2022, 70, 794–798. [Google Scholar] [CrossRef]
- Morral, M.; Güell, J.L.; El Husseiny, M.A.; Elies, D.; Gris, O.; Manero, F. Paired-eye comparison of corneal endothelial cell counts after unilateral iris-claw phakic intraocular lens implantation. J. Cataract. Refract. Surg. 2016, 42, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Helvacioglu, F.; Yeter, C.; Sencan, S.; Tunc, Z.; Uyar, O.M. Comparison of two different ultrasound methods of phacoemulsification. Am. J. Ophthalmol. 2014, 158, 221–226. [Google Scholar] [CrossRef]
- Helvacioglu, F.; Yeter, C.; Tunc, Z.; Sencan, S. Outcomes of torsional microcoaxial phacoemulsification performed by 12-degree and 22-degree bent tips. J. Cataract. Refract. Surg. 2013, 39, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Uzun, F.; Findik, H.; Kaim, M. Preoperative Ocular Biometric Parameters as Predictors of Intraocular Pressure Reduction After Phacoemulsification Cataract Surgery in Non-Glaucomatous Eyes. Life 2025, 15, 381. [Google Scholar] [CrossRef]
- Benekos, K.; Katsanos, A.; Laspas, P.; Vagiakis, I.; Haidich, A.B.; Konstas, A.G. Intraocular Pressure Reduction Following Phacoemulsification in Patients with Exfoliation: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6774. [Google Scholar] [CrossRef]
- Irak-Dersu, I.; Nilson, C.; Zabriskie, N.; Durcan, J.; Spencer, H.J.; Crandall, A. Intraocular pressure change after temporal clear corneal phacoemulsification in normal eyes. Acta Ophthalmol. 2010, 88, 131–134. [Google Scholar] [CrossRef]
- Poley, B.J.; Lindstrom, R.L.; Samuelson, T.W. Long-term effects of phacoemulsification with intraocular lens implantation in normotensive and ocular hypertensive eyes. J. Cataract. Refract. Surg. 2008, 34, 735–742. [Google Scholar] [CrossRef]
- Kuehn, M.H.; Vranka, J.A.; Wadkins, D.; Jackson, T.; Cheng, L.; Ledolter, J. Circumferential trabecular meshwork cell density in the human eye. Exp. Eye Res. 2021, 205, 108494. [Google Scholar] [CrossRef] [PubMed]
- Akahoshi, T. Phaco Prechop. In Phaco Chop and Advanced Phaco Techniques; Chang, D.F., Ed.; SLACK Incorporated: Thorofare, NJ, USA, 2013; pp. 55–76. [Google Scholar]
- Sato, T. Reply: Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J. Cataract. Refract. Surg. 2023, 49, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
Characteristics/Parameters | Diabetes Group | Control Group | p-Value |
---|---|---|---|
Number of eyes | 94 | 87 | |
Age (years) | 74.6 ± 6.8 | 74.3 ± 5.5 | 0.71 a |
Sex Male | 43 (46%) | 30 (34%) | 0.12 b |
Female | 51 (54%) | 57 (66%) | |
Operative time (min) | 4.63 ± 1.24 | 4.91 ± 1.38 | 0.14 a |
Phaco time (s) | 15.5 ± 6.0 | 14.2 ±6.3 | 0.15 a |
Aspiration time (s) | 68.1 ± 16.7 | 67.6 ± 20.4 | 0.83 a |
CDE | 6.45 ± 2.30 | 5.91 ± 2.61 | 0.14 a |
Volume of fluid used (mL) | 27.0 ± 7.7 | 26.5 ± 8.1 | 0.65 a |
Mean CECD ± SD (% Decrease) | |||
---|---|---|---|
Time Period | Diabetes Group (n = 94) | Control Group (n = 87) | p-Value |
Preoperatively | 2670 ± 294 | 2652 ± 211 | 0.60 a |
7 weeks postoperatively | 2533 ± 272 b | 2576 ± 207 b | 0.23 a |
% Decrease | 5.1 ± 4.7 | 2.8 ± 2.5 | <0.01 c |
19 weeks postoperatively | 2570 ± 294 b | 2583 ± 221 b | 0.72 a |
% Decrease | 3.9 ± 4.8 | 2.6 ± 2.5 | 0.03 c |
1 year postoperatively | 2620 ± 306 b | 2620 ± 214 b | 0.99 a |
% Decrease | 2.1 ± 4.5 | 1.2 ± 1.9 | 0.10 a |
Time Period | Diabetes Group (n = 94) | Control Group (n = 87) | p-Value |
---|---|---|---|
CCT | Mean ± SD | ||
Preoperatively | 538 ± 34.0 | 536 ± 34.1 | 0.59 a |
7 weeks postoperatively | 547 ± 36.2 c | 537 ± 34.0 d | 0.09 a |
19 weeks postoperatively | 542 ± 33.3 c | 536 ± 32.7 d | 0.26 a |
1 year postoperatively | 537 ± 35.0 d | 531 ± 33.6 c | 0.24 a |
CV | Mean ± SD | ||
Preoperatively | 42.3 ± 5.5 | 39.8 ± 6.9 | <0.01 b |
7 weeks postoperatively | 41.3 ± 5.6 d | 39.1 ± 5.2 d | <0.01 b |
19 weeks postoperatively | 39.3 ± 6.0 c | 36.4 ± 4.9 c | <0.01 b |
1 year postoperatively | 37.6 ± 5.0 c | 35.7 ± 4.9 c | 0.01 b |
PHC | Mean ± SD | ||
Preoperatively | 39.7 ± 6.9 | 44.7 ± 5.6 | <0.01 b |
7 weeks postoperatively | 41.0 ± 6.5 d | 45.5 ± 6.7 d | <0.01 b |
19 weeks postoperatively | 44.5 ± 7.1 c | 48.1 ± 6.2 c | <0.01 b |
1 year postoperatively | 46.4 ± 6.7 c | 48.8 ± 7.0 c | 0.02 b |
Mean IOP ± SD (% Decrease) | |||
---|---|---|---|
Time Period | Diabetes Group (n = 94) | Control Group (n = 87) | p-Value |
Preoperatively | 13.7 ± 2.1 | 14.5 ± 2.0 | 0.01 a |
7 weeks postoperatively | 11.9 ± 2.3 b | 12.1 ± 1.8 b | 0.48 c |
% Decrease | 13.2 ± 11.6 | 16.1 ± 9.1 | 0.07 c |
19 weeks postoperatively | 12.3 ± 2.2 b | 12.6 ± 1.8 b | 0.19 c |
% Decrease | 10.7 ± 10.2 | 12.4 ± 10.0 | 0.26 c |
1 year postoperatively | 12.6 ± 2.1 b | 12.9 ± 1.9 b | 0.36 c |
% Decrease | 8.0 ± 10.9 | 11.2 ± 7.4 | 0.02 a |
Best-Corrected Visual Acuity | |||
---|---|---|---|
Time Period | Diabetes Group (n = 94) | Control Group (n = 87) | p-Value |
Preoperatively | 0.031 ± 0.030 | 0.074 ± 0.011 | 0.02 a |
7 weeks postoperatively | −0.040 ± 0.0049 c | −0.065 ± 0.00095 c | <0.01 b |
19 weeks postoperatively | −0.037 ± 0.0038 c | −0.0664 ± 0.00086 c | <0.01 b |
1 year postoperatively | −0.039 ± 0.0042 c | −0.064 ± 0.0010 c | <0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. J. Pers. Med. 2025, 15, 209. https://doi.org/10.3390/jpm15050209
Sato T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. Journal of Personalized Medicine. 2025; 15(5):209. https://doi.org/10.3390/jpm15050209
Chicago/Turabian StyleSato, Tsuyoshi. 2025. "Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes" Journal of Personalized Medicine 15, no. 5: 209. https://doi.org/10.3390/jpm15050209
APA StyleSato, T. (2025). Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. Journal of Personalized Medicine, 15(5), 209. https://doi.org/10.3390/jpm15050209