The Role of Artificial Intelligence in Imaging-Based Diagnosis of Retinal Dystrophy and Evaluation of Gene Therapy Efficacy
Abstract
1. Background
2. Materials and Methods
3. Results
3.1. Convolutional Neural Networks (CNNs)
3.2. Generative Adversarial Networks (GANs)
- Step 1. The generator (G) receives a random vector and generates data (e.g., retinal images).
- Step 2. The discriminator (D) receives both the data generated by G and real data (e.g., from a medical database).
- Step 3. D learns to distinguish between synthetic and real data, and G learns to create data in such a way as to “fool” D.
- Step 4. The networks learn simultaneously—the generator becomes better at creating realistic data, and the discriminator becomes better at recognizing it.
4. Discussion
4.1. AI in Diagnosis of Retinal Dystrophy
4.2. AI in Evaluation of Gene Therapy Efficacy
5. Challenges and Limitations
6. Future Directions
7. Ethics and Privacy
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Bennett, J.; Aleman, E.M.; Leroy, B.P.; Aleman, T.S. Clinical perspective: Treating RPE65-associated retinal dystrophy. Mol. Ther. 2021, 29, 442–463. [Google Scholar] [CrossRef]
- Georgiou, M.; Fujinami, K.; Michaelides, M. Inherited retinal diseases: Therapeutics, clinical trials and end points—A review. Clin. Exp. Ophthalmol. 2021, 49, 270–288. [Google Scholar] [CrossRef]
- Ziccardi, L.; Cordeddu, V.; Gaddini, L.; Matteucci, A.; Parravano, M.; Malchiodi-Albedi, F.; Varano, M. Gene therapy in retinal dystrophies. Int. J. Mol. Sci. 2019, 20, 5722. [Google Scholar] [CrossRef]
- Jaśkowiak, K.; Stopa, M.; Krawczyński, M.; Niewada, M.; Golicki, D. Inherited retinal dystrophies caused by RPE65 gene mutation: Clinical presentation, economic and social burden. Klin. Ocz./Acta Ophthalmol. Pol. 2022, 124, 7–15. [Google Scholar] [CrossRef]
- Chawla, H.; Tripathy, K.; Vohra, V. Retinal dystrophies. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK564379/ (accessed on 10 July 2025).
- Malvasi, M.; Casillo, L.; Avogaro, F.; Abbouda, A.; Vingolo, E.M. Gene therapy in hereditary retinal dystrophies: The usefulness of diagnostic tools in candidate patient selections. Int. J. Mol. Sci. 2023, 24, 13756. [Google Scholar] [CrossRef]
- Renner, A.B.; Kellner, U. Hereditary macular dystrophies. Klin. Monbl Augenheilkd. 2016, 233, 1124–1141. [Google Scholar] [CrossRef]
- Lim, J.I.; Rachitskaya, A.V.; Hallak, J.A.; Gholami, S.; Alam, M.N. Artificial intelligence for retinal diseases. Asia Pac. J. Ophthalmol. 2024, 13, 100096. [Google Scholar] [CrossRef]
- Daich Varela, M.; Sen, S.; Cabral De Guimaraes, T.A.; Kabiri, N.; Pontikos, N.; Balaskas, K.; Michaelides, M. Artificial intelligence in retinal disease: Clinical application, challenges, and future directions. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 3283–3297. [Google Scholar] [CrossRef]
- Tan, T.-E.; Chan, H.W.; Singh, M.; Wong, T.Y.; Pulido, J.S.; Michaelides, M.; Sohn, E.H.; Ting, D. Artificial intelligence for diagnosis of inherited retinal disease: An exciting opportunity and one step forward. Br. J. Ophthalmol. 2021, 105, 1187–1189. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Tseng, H.; Pakela, J.; Haken, R.K.T.; El Naqa, I. Introduction to machine and deep learning for medical physicists. Med. Phys. 2020, 47, e127–e147. [Google Scholar] [CrossRef]
- Chen, C.; Isa, N.A.M.; Liu, X. A review of convolutional neural network based methods for medical image classification. Comput. Biol. Med. 2025, 185, 109507. [Google Scholar] [CrossRef]
- Fujinami-Yokokawa, Y.; Pontikos, N.; Yang, L.; Tsunoda, K.; Yoshitake, K.; Iwata, T.; Miyata, H.; Fujinami, K.; Japan Eye Genetics Consortium. Prediction of Causative Genes in Inherited Retinal Disorders from Spectral-Domain Optical Coherence Tomography Utilizing Deep Learning Techniques. J. Ophthalmol. 2019, 2019, 1691064. [Google Scholar] [CrossRef]
- Fujinami-Yokokawa, Y.; Ninomiya, H.; Liu, X.; Yang, L.; Pontikos, N.; Yoshitake, K.; Iwata, T.; Sato, Y.; Hashimoto, T.; Tsunoda, K.; et al. Prediction of causative genes in inherited retinal disorder from fundus photography and autofluorescence imaging using deep learning techniques. Br. J. Ophthalmol. 2021, 105, 1272–1279. [Google Scholar] [CrossRef]
- Kominami, T.; Ueno, S.; Ota, J.; Inooka, T.; Oda, M.; Mori, K.; Nishiguchi, K.M. Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks. Jpn. J. Ophthalmol. 2025, 69, 236–244. [Google Scholar] [CrossRef]
- Chen, T.C.; Lim, W.S.; Wang, V.Y.; Ko, M.L.; Chiu, S.I.; Huang, Y.S.; Lai, F.; Yang, C.M.; Hu, F.R.; Jang, J.R.; et al. Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa—The Most Common Inherited Retinal Degeneration. J. Digit. Imaging 2021, 34, 948–958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miere, A.; Le Meur, T.; Bitton, K.; Pallone, C.; Semoun, O.; Capuano, V.; Colantuono, D.; Taibouni, K.; Chenoune, Y.; Astroz, P.; et al. Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence. J. Clin. Med. 2020, 9, 3303. [Google Scholar] [CrossRef]
- Pontikos, N.; Woof, W.A.; Lin, S.; Ghoshal, B.; Mendes, B.S.; Veturi, A.; Nguyen, Q.; Javanmardi, B.; Georgiou, M.; Hustinx, A.; et al. Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene. Nat. Mach. Intell. 2025, 7, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Ledo, A.R.; Rittscher, J. Automated Classification of Normal and Stargardt Disease Optical Coherence Tomography Images Using Deep Learning. Acta Ophthalmol. 2020, 98, e701–e708. [Google Scholar] [CrossRef] [PubMed]
- Hoyez, H.; Schockaert, C.; Rambach, J.; Mirbach, B.; Stricker, D. Unsupervised Image-to-Image Translation: A Review. Sensors 2022, 22, 8540. [Google Scholar] [CrossRef] [PubMed]
- Doorly, R.; Ong, J.; Waisberg, E.; Sarker, P.; Zaman, N.; Tavakkoli, A.; Lee, A.G. Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 263, 2117–2134. [Google Scholar] [CrossRef]
- Veturi, Y.A.; Woof, W.; Lazebnik, T.; Moghul, I.; Woodward-Court, P.; Wagner, S.K.; de Guimarães, T.A.C.; Varela, M.D.; Liefers, B.; Patel, P.J.; et al. SynthEye: Investigating the impact of synthetic data on artificial intelligence-assisted gene diagnosis of inherited retinal disease. Ophthalmol. Sci. 2022, 3, 100258. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L.; Sanders, K.M.; Baker, S.A. RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs using a Novel Multi-scale Generative Adversarial Network. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 17 March 2017. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 2019, 54, 30–44. [Google Scholar] [CrossRef]
- Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.; Baker, S.A.; Sanders, K.M. Fundus2Angio: A Conditional GAN Architecture for Generating Fluorescein Angiography Images from Retinal Fundus Photography. In Advances in Visual Computing—ISVC 2020; Lecture Notes in Computer Science; Bebis, G., Farzinfar, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 12510, pp. 125–138. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wu, X.; Jiang, J.; Qiang, W.; Xie, H.; Zhou, H.; Wu, S.; Shao, Y.; Chen, W. Artificial intelligence in ophthalmology: The path to the real-world clinic. Cell Rep. Med. 2023, 4, 101067. [Google Scholar] [CrossRef]
- Jafarbeglou, F.; Ahmadieh, H.; Soleimani, F.; Karimi, A.; Daftarian, N.; Fekri, S.; Naderan, M.; Azad, B.K.D.; Sheikhtaheri, A.; Khorrami, F.; et al. A deep learning model for diagnosis of inherited retinal diseases. Sci. Rep. 2025, 15, 22523. [Google Scholar] [CrossRef]
- Al Mouiee, D.; Meijering, E.; Kalloniatis, M.; Nivison-Smith, L.; Williams, R.A.; Nayagam, D.A.X.; Spencer, T.C.; Luu, C.D.; McGowan, C.; Epp, S.B.; et al. Classifying Retinal Degeneration in Histological Sections Using Deep Learning. Sci. Rep. 2021, 11, 13449. [Google Scholar] [CrossRef] [PubMed]
- Miere, A.; Capuano, V.; Kessler, A.; Zambrowski, O.; Jung, C.; Colantuono, D.; Pallone, C.; Semoun, O.; Petit, E.; Souied, E. Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging. Comput. Biol. Med. 2021, 130, 104198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Galles, D.; Klein, M.; Locke, K.G.; Birch, D.G. Application of a Deep Machine Learning Model for Automatic Measurement of EZ Width in SD-OCT Images of RP. Transl. Vis. Sci. Technol. 2020, 9, 15. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Kamran, S.A.; Masalkhi, M.; Paladugu, P.; Zaman, N.; Lee, A.G.; Tavakkoli, A. Generative artificial intelligence in ophthalmology. Surv. Ophthalmol. 2025, 70, 1–11. [Google Scholar] [CrossRef]
- Jeon, M.; Park, H.; Kim, H.J.; Morley, M.; Cho, H. k-SALSA: K-anonymous synthetic averaging of retinal images via local style alignment. In Computer Vision–ECCV 2022; Springer: Cham, Switzerland, 2022; Volume 13681, pp. 661–678. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Lim, G.; Ng, W.Y.; Tan, T.-E.; Lim, J.; Lim, S.H.; Foo, V.; Lim, J.; Sinisterra, L.G.; Zheng, F.; et al. Synthetic artificial intelligence using generative adversarial network for retinal imaging in detection of age-related macular degeneration. Front. Med. 2023, 10, 1184892. [Google Scholar] [CrossRef]
- Anaya-Sánchez, H.; Altamirano-Robles, L.; Díaz-Hernández, R.; Zapotecas-Martínez, S. WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models. Sensors 2024, 25, 167. [Google Scholar] [CrossRef]
- Mondal, A.K.; Swaroop, A. Network biology and medicine to rescue: Applications for retinal disease mechanisms and therapy. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2023; Volume 1415, pp. 165–171. [Google Scholar] [CrossRef]
- Trinh, H.; Vice, J.; Tajbakhsh, Z.; Charng, J.; Alam, K.; Chen, F.K.; Mian, A. Artificial Intelligence Techniques in Inherited Retinal Diseases: A Review. Biomed. Phys. Eng. Express 2025, 11, 042004. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, F.; Mittas, R.; Horlava, N.; Schiefelbein, J.; Asani, B.; Michalakis, S.; Gerhardt, M.; Priglinger, C.; Keeser, D.; Koutsouleris, N.; et al. Deep Learning-Based Retinal Layer Segmentation in Optical Coherence Tomography Scans of Patients with Inherited Retinal Diseases. Klin. Monatsblätter Für Augenheilkd. 2024, 242, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Diaz, G.; Lorenz, B.; Künzel, S.H.; Thiele, S.; Ortega-Cisneros, S.; Corrochano, E.B.; Holz, F.G.; Effland, A. Deep Learning-Based SD-OCT Layer Segmentation Quantifies Outer Retina Changes in Patients With Biallelic RPE65 Mutations Undergoing Gene Therapy. Investig. Ophthalmol. Vis. Sci. 2025, 66, 5. [Google Scholar] [CrossRef]
- Issa, M.; Sukkarieh, G.; Gallardo, M.; Sarbout, I.; Bonnin, S.; Tadayoni, R.; Milea, D. Applications of Artificial Intelligence to Inherited Retinal Diseases: A Systematic Review. Surv. Ophthalmol. 2025, 70, 255–264. [Google Scholar] [CrossRef]
- Nguyen, Q.; Woof, W. Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene). BMJ Open 2023, 13, e071043. [Google Scholar] [CrossRef]
- Wang, C.; Fang, C.; Zou, Y.; Yang, J.; Sawan, M. Artificial Intelligence Techniques for Retinal Prostheses: A Comprehensive Review and Future Direction. J. Neural Eng. 2023, 20, 016001. [Google Scholar] [CrossRef]
- Tom, E.; Keane, P.A.; Blazes, M.; Pasquale, L.R.; Chiang, M.F.; Lee, A.Y.; Lee, C.S.; Force, A.A.I.T. Protecting Data Privacy in the Age of AI-Enabled Ophthalmology. Transl. Vis. Sci. Technol. 2020, 9, 36. [Google Scholar] [CrossRef]



| AI Tool/Method | Clinical Application | Type of Input | Key Advantages |
|---|---|---|---|
| Convolutional networks (CNN) | Automatic analysis of OCT, FAF, OCTA images | Retinal images from OCT, FAF, OCTA | High precision detection of structural changes |
| Machine learning (ML) | Classification of IRD phenotypes, prediction of disease progression | Clinical, functional, genetic data | Integration of multidimensional data, possibility of prognosis |
| Deep learning (DL) | Automatic detection and segmentation of retinal lesions | OCT images, autofluorescence | Accurate segmentation and monitoring of lesions over time |
| Predictive algorithms | Predicting response to gene therapy | Clinical, genetic data | Personalizing therapy, optimizing treatment plan |
| Generative networks (GAN) | Synthesize images for training purposes | Retinal images | Increase training sets, improve quality of models |
| Publication | AI Method | Sample Size | Network | Image Type | Classes | Accuracy (%) |
|---|---|---|---|---|---|---|
| Fujinami-Yokokawa et al., 2019 [14] | DL | n = 178 | InceptionV3 | OCT | ABCA4, RP1L1, EYS, Normal | 90.9 |
| Fujinami-Yokokawa et al., 2021 [15] | DL—CNN | n = 417 | InceptionV3 | fundus images, FAF | ABCA4, EYS, RP1L1, Normal | 88.2 (fundus), 81.3 (FAF) |
| Kominami et al., 2025 [16] | CNN | n = 165 | VGG16, Xception, DenseNet201, MobileNet | FAF, color fundus images | Retinitis Pigmentosa (the severity of RP) | 63.75 (fundus), 87.50 (FAF) |
| Chen et al., 2021 [17] | DL | n = 8600 | Inception V3, Inception Resnet V2, Xception | fundus images | Retinitis Pigmentosa | 96.0 |
| Miere et al., 2020 [18] | DL—CNN | n = 251 | ResNet 101 | FAF | Stargardt Disease, Retinitis Pigmentosa, Best Disease, Normal | 95.0 |
| Pontikos et al., 2025 [19] | DL | n = 133 | Eye2Gene FAF Only/Eye2Gene | FAF, IR, OCT | 63 distinct IRD genes | 83.9 * |
| Publication | Image Count | Classes | Image Type | Sens (%) | Spec (%) | Acc (%) |
|---|---|---|---|---|---|---|
| Fujinami-Yokokawa et al., 2019 [14] | 19 | ABCA4 | OCT | 100.00 | 100.00 | 100.00 |
| Fujinami-Yokokawa et al., 2021 [15] | 37 | FAF | 97.5 | 94.8 | 81.3 | |
| Shah et al., 2020 [20] | 647 | Stargardt | OCT | 99.8 | 98.0 | 99.6 |
| Miere et al., 2020 [18] | 125 | FAF | 96.0 | 100.00 | 95.0 | |
| Chen et al., 2021 [17] | 193 | Retinitis Pigmentosa | fundus images | 95.71 | 98.53 | 96.0 |
| Miere et al., 2020 [18] | 160 | FAF | 100.0 | 97.0 | 95.0 |
| GAN Model | Sample Size | Purpose of the Study | Application in IRD | Main Conclusions | AUC (95% CI) |
|---|---|---|---|---|---|
| StyleGAN2-ADA | n = 15,692 | Generate synthetic FAF images in IRD patients | Fill in missing image data in IRD; train AI models for classification and lesion detection | Synthetic data improve accuracy of classification models, reduce risk of overfitting in small IRD datasets | - |
| RV-GAN (multi-scale GAN) | n = 15,120 | Precise vascular segmentation in fundus images | Assessment of vascular lesions in IRD patients from fundus images | GAN provides high accuracy in segmentation, enabling monitoring of microangiopathy in IRD | 0.988–0.991 * |
| AnoGAN | n = 8192 | Detection of abnormalities in OCT images | Identification of subclinical retinal changes in IRD | Allows detection of irregular patterns that may indicate early or atypical forms of IRD | ~0.85–0.90 * |
| f-AnoGAN | n = 70,000 | Faster and more accurate detection of anomalies | Reduced OCT analysis time in patients with IRD | Improved speed and quality of anomaly detection compared to classic AnoGAN | ~0.88–0.92 * |
| cGAN (conditional GAN) | n = 850 | Translation of fundus image to fluorescein angiography (FA) | Generation of FA without the need for invasive examination, helpful in IRD with a vascular component | GAN can predict FA from plain fundus, which aids non-invasive IRD monitoring | 0.91–0.95 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuchmacz, W.; Bobowska, B.; Forma, A.; Dzierżyński, E.; Puźniak, D.; Teresińska, B.; Baj, J.; Dolar-Szczasny, J. The Role of Artificial Intelligence in Imaging-Based Diagnosis of Retinal Dystrophy and Evaluation of Gene Therapy Efficacy. J. Pers. Med. 2025, 15, 605. https://doi.org/10.3390/jpm15120605
Chuchmacz W, Bobowska B, Forma A, Dzierżyński E, Puźniak D, Teresińska B, Baj J, Dolar-Szczasny J. The Role of Artificial Intelligence in Imaging-Based Diagnosis of Retinal Dystrophy and Evaluation of Gene Therapy Efficacy. Journal of Personalized Medicine. 2025; 15(12):605. https://doi.org/10.3390/jpm15120605
Chicago/Turabian StyleChuchmacz, Weronika, Barbara Bobowska, Alicja Forma, Eliasz Dzierżyński, Damian Puźniak, Barbara Teresińska, Jacek Baj, and Joanna Dolar-Szczasny. 2025. "The Role of Artificial Intelligence in Imaging-Based Diagnosis of Retinal Dystrophy and Evaluation of Gene Therapy Efficacy" Journal of Personalized Medicine 15, no. 12: 605. https://doi.org/10.3390/jpm15120605
APA StyleChuchmacz, W., Bobowska, B., Forma, A., Dzierżyński, E., Puźniak, D., Teresińska, B., Baj, J., & Dolar-Szczasny, J. (2025). The Role of Artificial Intelligence in Imaging-Based Diagnosis of Retinal Dystrophy and Evaluation of Gene Therapy Efficacy. Journal of Personalized Medicine, 15(12), 605. https://doi.org/10.3390/jpm15120605

