CITED Proteins in Cardiac Development and Lifelong Heart Function
Abstract
1. Introduction
2. Heart Development
3. Tracing the Role of CITED in Heart Development
4. Molecular Mechanisms of CITED-Mediated Cardiac GENE Regulation
4.1. CITED Proteins and Interacting Partners
4.2. Regulation of CITED Expression
4.3. CITED Proteins and Cardiogenesis
5. CITED2 Mutations and Congenital Heart Disease
6. CITED Genes in ADULT Heart Physiological Adaptations and Protection Against Pathological Stress
7. Clinical and Translational Applications
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bragança, J.; Pinto, R.; Silva, B.; Marques, N.; Leitão, H.S.; Fernandes, M.T. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J. Pers. Med. 2023, 13, 1263. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Rajamarthandan, S.; Francis, B.; O’Leary-Kelly, M.K.; Sinha, P. Update on stem cell technologies in congenital heart disease. J. Card. Surg. 2020, 35, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Elliott, P.A.; Asaki, S.Y.; Amdani, S.; Nguyen, Q.T.; Ronai, C.; Tierney, S.; Levy, V.Y.; Puri, K.; Altman, C.A.; et al. Addressing Disparities in Pediatric Congenital Heart Disease: A Call for Equitable Health Care. J. Am. Heart Assoc. 2024, 13, e032415. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2025, 32, 1001–1015. [Google Scholar] [CrossRef]
- Bamforth/Bragança, S.D.; Bragança, J.; Eloranta, J.J.; Murdoch, J.N.; Marques, F.I.R.; Kranc, K.R.; Farza, H.; Henderson, D.J.; Hurst, H.C.; Bhattacharya, S. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat. Genet. 2001, 29, 469–474. [Google Scholar] [CrossRef]
- Bragança, J.; Swingler, T.; Marques, F.I.R.; Jones, T.; Eloranta, J.J.; Hurst, H.C.; Shioda, T.; Bhattacharya, S. Human CREB-binding Protein/p300-interacting Transactivator with ED-rich Tail (CITED) 4, a New Member of the CITED Family, Functions as a Co-activator for Transcription Factor AP-2. J. Biol. Chem. 2002, 277, 8559–8565. [Google Scholar] [CrossRef]
- Yahata, T.; Shao, W.; Endoh, H.; Hur, J.; Coser, K.R.; Sun, H.; Ueda, Y.; Kato, S.; Isselbacher, K.J.; Brown, M.; et al. Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 2001, 15, 2598–2612. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Michels, C.L.; Leung, M.K.; Arany, Z.P.; Kung, A.L.; Livingston, D.M. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999, 13, 64–75. [Google Scholar] [CrossRef]
- Bamforth/Bragança, S.D.; Bragança, J.; Farthing, C.R.; Schneider, J.E.; Broadbent, C.; Michell, A.C.; Clarke, K.; Neubauer, S.; Norris, D.; Brown, N.A.; et al. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat. Genet. 2004, 36, 1189–1196. [Google Scholar] [CrossRef]
- MacDonald, S.T.; Bamforth, S.D.; Bragança, J.; Chen, C.-M.; Broadbent, C.; Schneider, J.E.; Schwartz, R.J.; Bhattacharya, S. A cell-autonomous role of Cited2 in controlling myocardial and coronary vascular development. Eur. Heart J. 2013, 34, 2557–2567. [Google Scholar] [CrossRef]
- MacDonald, S.T.; Bamforth, S.D.; Chen, C.-M.; Farthing, C.R.; Franklyn, A.; Broadbent, C.; Schneider, J.E.; Saga, Y.; Lewandoski, M.; Bhattacharya, S. Epiblastic Cited2 deficiency results in cardiac phenotypic heterogeneity and provides a mechanism for haploinsufficiency. Cardiovasc. Res. 2008, 79, 448–457. [Google Scholar] [CrossRef]
- Lopes Floro, K.; Artap, S.T.; Preis, J.I.; Fatkin, D.; Chapman, G.; Furtado, M.B.; Harvey, R.P.; Hamada, H.; Sparrow, D.B.; Dunwoodie, S.L. Loss of Cited2 causes congenital heart disease by perturbing left-right patterning of the body axis. Hum. Mol. Genet. 2011, 20, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Weninger, W.J.; Floro, K.L.; Bennett, M.B.; Withington, S.L.; Preis, J.I.; Barbera, J.P.M.; Mohun, T.J.; Dunwoodie, S.L. Cited2 is required both for heart morphogenesis and establishment of the left-right axis in mouse development. Development 2005, 132, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Withington, S.L.; Scott, A.N.; Saunders, D.N.; Lopes Floro, K.; Preis, J.I.; Michalicek, J.; Maclean, K.; Sparrow, D.B.; Barbera, J.P.M.; Dunwoodie, S.L. Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev. Biol. 2006, 294, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Doughman, Y.; Turakhia, M.; Jiang, W.; Landsettle, C.E.; Agani, F.H.; Semenza, G.L.; Watanabe, M.; Yang, Y.-C. Partial rescue of defects in Cited2-deficient embryos by HIF-1[alpha] heterozygosity. Dev. Biol. 2007, 301, 130. [Google Scholar] [CrossRef]
- Kuna, M.; Dhakal, P.; Iqbal, K.; Dominguez, E.M.; Kent, L.N.; Muto, M.; Moreno-Irusta, A.; Kozai, K.; Varberg, K.M.; Okae, H.; et al. CITED2 is a conserved regulator of the uterine-placental interface. Proc. Natl. Acad. Sci. USA 2023, 120, e2213622120. [Google Scholar] [CrossRef]
- Moreau, J.L.M.; Artap, S.T.; Shi, H.; Chapman, G.; Leone, G.; Sparrow, D.B.; Dunwoodie, S.L. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev. Biol. 2014, 392, 62–79. [Google Scholar] [CrossRef]
- Yahata, T.; Takedatsu, H.; Dunwoodie, S.L.; Bragança, J.; Swingler, T.; Withington, S.L.; Hur, J.; Coser, K.R.; Isselbacher, K.J.; Bhattacharya, S.; et al. Cloning of Mouse cited4, a Member of the CITED Family p300/CBP-Binding Transcriptional Coactivators: Induced Expression in Mammary Epithelial Cells. Genomics 2002, 80, 601–613. [Google Scholar] [CrossRef]
- Boström, P.; Mann, N.; Wu, J.; Quintero, P.A.; Plovie, E.R.; Panáková, D.; Gupta, R.K.; Xiao, C.; MacRae, C.A.; Rosenzweig, A.; et al. C/EBP[beta] Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell 2010, 143, 1072–1083. [Google Scholar] [CrossRef]
- Guo, H.-H.; Sun, Y.; Zhang, X.-l.; Jiang, X.-Y.; Zou, S.-M. Identification of duplicated Cited3 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala). Fish Physiol. Biochem. 2019, 45, 1141–1152. [Google Scholar] [CrossRef]
- Devakanmalai, G.S.; Zumrut, H.E.; Ozbudak, E.M. Cited3 activates Mef2c to control muscle cell differentiation and survival. Biol. Open 2013, 2, 505–514. [Google Scholar] [CrossRef]
- Pacheco-Leyva, I.; Matias, A.C.; Oliveira, D.V.; Santos, J.M.A.; Nascimento, R.; Guerreiro, E.; Michell, A.C.; van De Vrugt, A.M.; Machado-Oliveira, G.; Ferreira, G.; et al. CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells. Stem Cell Rep. 2016, 7, 1037–1049. [Google Scholar] [CrossRef]
- Kranc, K.R.; Oliveira, D.V.; Armesilla-Diaz, A.; Pacheco-Leyva, I.; Matias, A.C.; Escapa, A.L.; Subramani, C.; Wheadon, H.; Trindade, M.; Nichols, J.; et al. Acute loss of Cited2 impairs Nanog expression and decreases self-renewal of mouse embryonic stem cells. Stem Cells 2015, 33, 699–712. [Google Scholar] [CrossRef]
- Santos, J.M.; Mendes-Silva, L.; Afonso, V.; Martins, G.; Machado, R.S.R.; Lopes, J.A.; Cancela, L.; Futschik, M.E.; Sachinidis, A.; Gavaia, P.; et al. Exogenous Wnt5a and Wnt11 proteins rescue Cited2 dysfunction in mouse embryonic stem cells and zebrafish morphants. Cell Death Dis. 2019, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-M.; Bentham, J.; Cosgrove, C.; Braganca, J.; Cuenda, A.; Bamforth, S.D.; Schneider, J.E.; Watkins, H.; Keavney, B.; Davies, B.; et al. Functional Significance of SRJ Domain Mutations in CITED2. PLoS ONE 2012, 7, e46256. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Shioda, T.; Fenner, M.H.; Isselbacher, K.J. MSG1 and its related protein MRG1 share a transcription activating domain. Gene 1997, 204, 235–241. [Google Scholar] [CrossRef]
- Bezzerides, V.J.; Platt, C.; Lerchenmuller, C.; Paruchuri, K.; Oh, N.L.; Xiao, C.; Cao, Y.; Mann, N.; Spiegelman, B.M.; Rosenzweig, A. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight 2016, 1, e85904. [Google Scholar] [CrossRef]
- Dewing, J.M.; Saunders, V.; O’Kelly, I.; Wilson, D.I. Defining cardiac cell populations and relative cellular composition of the early fetal human heart. PLoS ONE 2022, 17, e0259477. [Google Scholar] [CrossRef]
- Bello, R.O.; Frew, S.; Siddiqui, Y.; Minhas, R. Advances and Prospects in Understanding Vertebrate Cardiac Conduction System, Pacemaker Cell, and Cardiac Muscle Development: Toward Novel Biological Therapies. Muscles 2023, 2, 338–352. [Google Scholar] [CrossRef]
- Sylva, M.; van den Hoff, M.J.B.; Moorman, A.F.M. Development of the Human Heart. Am. J. Med. Genet. Part A 2013, 164, 1347–1371. [Google Scholar] [CrossRef]
- Krishnan, A.; Samtani, R.; Dhanantwari, P.; Lee, E.; Yamada, S.; Shiota, K.; Donofrio, M.T.; Leatherbury, L.; Lo, C.W. A Detailed Comparison of Mouse and Human Cardiac Development. Pediatr. Res. 2014, 76, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Sahara, M.; Santoro, F.; Chien, K.R. Programming and reprogramming a human heart cell. EMBO J. 2015, 34, 710–738. [Google Scholar] [CrossRef] [PubMed]
- Bruneau, B.G. Signaling and Transcriptional Networks in Heart Development and Regeneration. Cold Spring Harb. Perspect. Biol. 2013, 5, a008292. [Google Scholar] [CrossRef] [PubMed]
- Liau, B.; Zhang, D.; Bursac, N. Functional Cardiac Tissue Engineering. Regen. Med. 2012, 7, 187–206. [Google Scholar] [CrossRef]
- Scuderi, G.J.; Butcher, J. Naturally Engineered Maturation of Cardiomyocytes. Front. Cell Dev. Biol. 2017, 5, 50. [Google Scholar] [CrossRef]
- Stefanovic, S.; Laforest, B.; Desvignes, J.-P.; Lescroart, F.; Argiro, L.; Maurel-Zaffran, C.; Salgado, D.; Plaindoux, E.; De Bono, C.; Pazur, K.; et al. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020, 9, e55124. [Google Scholar] [CrossRef]
- Mensah, I.K.; Emerson, M.L.; Tan, H.J.; Gowher, H. Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells by WNT Switch Method. Cells 2024, 13, 132. [Google Scholar] [CrossRef]
- Bondue, A.; Tannler, S.; Chiapparo, G.; Chabab, S.; Ramialison, M.; Paulissen, C.; Beck, B.; Harvey, R.; Blanpain, C. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J. Cell Biol. 2011, 192, 751–765. [Google Scholar] [CrossRef]
- Vincent, S.D.; Buckingham, M.E. How to Make a Heart: The Origin and Regulation of Cardiac Progenitor Cells. Curr. Top. Dev. Biol. 2010, 90, 1–40. [Google Scholar] [CrossRef]
- Sizarov, A.; Ya, J.; de Boer, B.A.; Lamers, W.H.; Christoffels, V.M.; Moorman, A.F.M. Formation of the Building Plan of the Human Heart. Circulation 2011, 123, 1125–1135. [Google Scholar] [CrossRef]
- Buijtendijk, M.F.J.; Barnett, P.; van den Hoff, M.J.B. Development of the human heart. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Christoffels, V.M.; Grieskamp, T.; Norden, J.; Mommersteeg, M.T.M.; Rudat, C.; Kispert, A. Tbx18 and the fate of epicardial progenitors. Nature 2009, 458, E8. [Google Scholar] [CrossRef] [PubMed]
- Mommersteeg, M.T.M.; DomÃnguez, J.N.; Wiese, C.; Norden, J.; de Gier-de Vries, C.; Burch, J.B.E.; Kispert, A.; Brown, N.A.; Moorman, A.F.M.; Christoffels, V.M. The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc. Res. 2010, 87, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Spater, D.; Hansson, E.M.; Zangi, L.; Chien, K.R. How to make a cardiomyocyte. Development 2014, 141, 4418–4431. [Google Scholar] [CrossRef]
- Zhang, H.; Lui, K.; Zhou, B. Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circ. Res. 2018, 122, 774–789. [Google Scholar] [CrossRef]
- Liyew, W.A.; Adane, F.; Wondemagegn, A.T.; Tsehay, B.; Deml, Y.A.; Abdu, H.M.; Animaw, Z. Roles of cardiac neural crest cells in cardiovascular development and associated congenital defects-an integrated review. Transl. Res. Anat. 2024, 36, 100304. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Fang, Z.; Zheng, X.; Zeng, Y.; Zhu, C.; Gu, J.; Tang, F.; Hu, Y.; Hu, G.; et al. Transcription coactivator Cited1 acts as an inducer of trophoblast-like state from mouse embryonic stem cells through the activation of BMP signaling. Cell Death Dis. 2018, 9, 924. [Google Scholar] [CrossRef]
- Dunwoodie, S.L.; Rodriguez, T.A.; Beddington, R.S.P. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech. Dev. 1998, 72, 27–40. [Google Scholar] [CrossRef]
- Savolainen, S.M.; Foley, J.F.; Elmore, S.A. Histology Atlas of the Developing Mouse Heart with Emphasis on E11.5 to E18.5. Toxicol. Pathol. 2009, 37, 395–414. [Google Scholar] [CrossRef]
- Howlin, J.; McBryan, J.; Napoletano, S.; Lambe, T.; McArdle, E.; Shioda, T.; Martin, F. CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene 2006, 25, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Novitskaya, T.; Baserga, M.; de Caestecker, M.P. Organ-Specific Defects in Insulin-Like Growth Factor and Insulin Receptor Signaling in Late Gestational Asymmetric Intrauterine Growth Restriction in Cited1 Mutant Mice. Endocrinology 2011, 152, 2503–2516. [Google Scholar] [CrossRef] [PubMed]
- Michell, A.C.; Bragança, J.; Broadbent, C.; Joyce, B.; Franklyn, A.; Schneider, J.E.; Bhattacharya, S.; Bamforth, S.D. A novel role for transcription factor Lmo4 in thymus development through genetic interaction with Cited2. Dev. Dyn. 2010, 239, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Spiller, C.; Harley, V.; Sinclair, A.; Dunwoodie, S.; Wilhelm, D.; Koopman, P. Gonadal defects in Cited2-mutant mice indicate a role for SF1 in both testis and ovary differentiation. Int. J. Dev. Biol. 2010, 54, 683–689. [Google Scholar] [CrossRef]
- Xu, B.; Qu, X.; Gu, S.; Doughman, Y.-Q.; Watanabe, M.; Dunwoodie, S.L.; Yang, Y.-C. Cited2 is required for fetal lung maturation. Dev. Biol. 2008, 317, 95–105. [Google Scholar] [CrossRef]
- Yin, Z.; Haynie, J.; Yang, X.; Han, B.; Kiatchoosakun, S.; Restivo, J.; Yuan, S.; Prabhakar, N.R.; Herrup, K.; Conlon, R.A.; et al. The essential role of Cited2, a negative regulator for HIF-1α, in heart development and neurulation. Proc. Natl. Acad. Sci. USA 2002, 99, 10488–10493. [Google Scholar] [CrossRef]
- Barbera, J.P.M.; Rodriguez, T.A.; Greene, N.D.E.; Weninger, W.J.; Simeone, A.; Copp, A.J.; Beddington, R.S.P.; Dunwoodie, S. Folic acid prevents exencephaly in Cited2 deficient mice. Hum. Mol. Genet. 2002, 11, 283–293. [Google Scholar] [CrossRef]
- Rodriguez, T.A.; Sparrow, D.B.; Scott, A.N.; Withington, S.L.; Preis, J.I.; Michalicek, J.; Clements, M.; Tsang, T.E.; Shioda, T.; Beddington, R.S.P.; et al. Cited1 Is Required in Trophoblasts for Placental Development and for Embryo Growth and Survival. Mol. Cell. Biol. 2004, 24, 228–244. [Google Scholar] [CrossRef]
- Kuna, M.; Soares, M.J. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024, 46, e2300118. [Google Scholar] [CrossRef]
- Paradis, A.N.; Gay, M.S.; Zhang, L. Binucleation of cardiomyocytes: The transition from a proliferative to a terminally differentiated state. Drug Discov. Today 2014, 19, 602–609. [Google Scholar] [CrossRef]
- Clark, A.L.; Naya, F.J. MicroRNAs in the MEF2-regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Co-activator Cited2. J. Biol. Chem. 2015, 290, 23162–23172. [Google Scholar] [CrossRef] [PubMed]
- Herrer, I.; Roselló-Lletí, E.; Ortega, A.; Tarazón, E.; Molina-Navarro, M.M.; Triviño, J.C.; Martínez-Dolz, L.; Almenar, L.; Lago, F.; Sánchez-Lázaro, I.; et al. Gene expression network analysis reveals new transcriptional regulators as novel factors in human ischemic cardiomyopathy. BMC Med. Genom. 2015, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, Q.; Zhan, J.; Wang, Q.; Zhang, D.; He, S.; Pu, S.; Zhou, Z. Cited2 regulates proliferation and survival in young and old mouse cardiac stem cells. BMC Mol. Cell Biol. 2019, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Derks, W.; Rode, J.; Collin, S.; Rost, F.; Heinke, P.; Hariharan, A.; Pickel, L.; Simonova, I.; Lázár, E.; Graham, E.; et al. A Latent Cardiomyocyte Regeneration Potential in Human Heart Disease. Circulation 2025, 151, 245–256. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, X.; Huang, G.N. Heart regeneration from the whole-organism perspective to single-cell resolution. npj Regen. Med. 2024, 9, 34. [Google Scholar] [CrossRef]
- Du, C.; Li, Z.; Zou, B.; Li, X.; Chen, F.; Liang, Y.; Luo, X.; Shu, S. Novel heterozygous variants in the EP300 gene cause Rubinstein-Taybi syndrome 2: Reports from two Chinese children. Mol. Genet. Genom. Med. 2023, 11, e2192. [Google Scholar] [CrossRef]
- Thienpont, B.; Breckpot, J.; Holvoet, M.; Vermeesch, J.R.; Devriendt, K. A microduplication of CBP in a patient with mental retardation and a congenital heart defect. Am. J. Med. Genet. A 2007, 143a, 2160–2164. [Google Scholar] [CrossRef]
- Shi, G.; Boyle, S.C.; Sparrow, D.B.; Dunwoodie, S.L.; Shioda, T.; de Caestecker, M.P. The Transcriptional Activity of CITED1 Is Regulated by Phosphorylation in a Cell Cycle-dependent Manner. J. Biol. Chem. 2006, 281, 27426–27435. [Google Scholar] [CrossRef]
- Machado-Oliveira, G.; Guerreiro, E.; Matias, A.C.; Facucho-Oliveira, J.; Pacheco-Leyva, I.; Bragança, J. FBXL5 modulates HIF-1α transcriptional activity by degradation of CITED2. Arch. Biochem. Biophys. 2015, 576, 61–72. [Google Scholar] [CrossRef]
- Fox, S.B.; Bragança, J.; Turley, H.; Campo, L.; Han, C.; Gatter, K.C.; Bhattacharya, S.; Harris, A.L. CITED4 Inhibits Hypoxia-Activated Transcription in Cancer Cells, and Its Cytoplasmic Location in Breast Cancer Is Associated with Elevated Expression of Tumor Cell Hypoxia-Inducible Factor 1α. Cancer Res. 2004, 64, 6075–6081. [Google Scholar] [CrossRef]
- Lou, X.; Sun, S.; Chen, W.; Zhou, Y.; Huang, Y.; Liu, X.; Shan, Y.; Wang, C. Negative Feedback Regulation of NF-κB Action by CITED2 in the Nucleus. J. Immunol. 2011, 186, 539–548. [Google Scholar] [CrossRef]
- Hui, B.S. CITED2 mechanoregulation of matrix metalloproteinases. Ann. New York Acad. Sci. 2010, 1192, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Yokota, H.; Goldring, M.B.; Sun, H.B. CITED2-mediated Regulation of MMP-1 and MMP-13 in Human Chondrocytes under Flow Shear. J. Biol. Chem. 2003, 278, 47275–47280. [Google Scholar] [CrossRef] [PubMed]
- Wojciak, J.M.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J. 2009, 28, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Chang, P.-Y.; Chao, C.C.K. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene. Nucleic Acids Res. 2015, 15, 10760–10781. [Google Scholar] [CrossRef]
- Mattes, K.; Berger, G.; Geugien, M.; Vellenga, E.; Schepers, H. CITED2 affects leukemic cell survival by interfering with p53 activation. Cell Death Dis. 2017, 8, e3132. [Google Scholar] [CrossRef]
- Bragança, J.; Eloranta, J.J.; Bamforth, S.D.; Ibbitt, J.C.; Hurst, H.C.; Bhattacharya, S. Physical and Functional Interactions among AP-2 Transcription Factors, p300/CREB-binding Protein, and CITED2. J. Biol. Chem. 2003, 278, 16021–16029. [Google Scholar] [CrossRef]
- Glenn, D.J.; Maurer, R.A. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone α-subunit gene expression. J. Biol. Chem. 1999, 274, 36159–36167. [Google Scholar] [CrossRef]
- Qu, X.; Lam, E.; Doughman, Y.Q.; Chen, Y.; Chou, Y.T.; Lam, M.; Turakhia, M.; Dunwoodie, S.L.; Watanabe, M.; Xu, B.; et al. Cited2, a coactivator of HNF4alpha, is essential for liver development. EMBO J. 2007, 26, 4445–4456. [Google Scholar] [CrossRef]
- Tien, E.S.; Davis, J.W.; Vanden Heuvel, J.P. Identification of the CREB-binding Protein/p300-interacting protein CITED2 as a peroxisome proliferator-activated receptor alpha coregulator. J. Biol. Chem. 2004, 279, 24053–24063. [Google Scholar] [CrossRef]
- Gonzalez, Y.R.; Zhang, Y.; Behzadpoor, D.; Cregan, S.; Bamforth, S.; Slack, R.S.; Park, D.S. CITED2 Signals through Peroxisome Proliferator-Activated Receptor-{gamma} to Regulate Death of Cortical Neurons after DNA Damage. J. Neurosci. 2008, 28, 5559–5569. [Google Scholar] [CrossRef]
- Chou, Y.T.; Wang, H.; Chen, Y.; Danielpour, D.; Yang, Y.C. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene 2006, 25, 5547–5560. [Google Scholar] [CrossRef]
- Sakai, M.; Matsumoto, M.; Tujimura, T.; Yongheng, C.; Noguchi, T.; Inagaki, K.; Inoue, H.; Hosooka, T.; Takazawa, K.; Kido, Y.; et al. CITED2 links hormonal signaling to PGC-1[alpha] acetylation in the regulation of gluconeogenesis. Nat. Med. 2012, 18, 612–617. [Google Scholar] [CrossRef]
- Val, P.; Martinez-Barbera, J.-P.; Swain, A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development 2007, 134, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Buaas, F.W.; Val, P.; Swain, A. The transcription co-factor CITED2 functions during sex determination and early gonad development. Hum. Mol. Genet. 2009, 18, 2989–3001. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, D.A.; Maxwell, J.N.; Nelson, D.E. Exploring the role of CITED transcriptional regulators in the control of macrophage polarization. Front. Immunol. 2024, 15, 1365718. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.B.; Zhu, Y.X.; Yin, T.; Sledge, G.; Yang, Y.-C. MRG1, the product of a melanocyte-specific gene related gene, is a cytokine-inducible transcription factor with transformation activity. Proc. Natl. Acad. Sci. USA 1998, 95, 13555–13560. [Google Scholar] [CrossRef]
- Leffers, H.; Naesby, M.; Vendelbo, B.; Skakkebæk, N.E.; Jorgensen, M. Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: Implications for exposure assessment of potential endocrine disrupters. Hum. Reprod. 2001, 16, 1037–1045. [Google Scholar] [CrossRef]
- Dijkmans, T.F.; Hooijdonk, L.W.A.V.; Schouten, T.G.; Kamphorst, J.T.; Fitzsimons, C.P.; Vreugdenhil, E. Identification of new Nerve Growth Factor-responsive immediate early genes. Brain Res. 2009, 1249, 19–33. [Google Scholar] [CrossRef]
- Parmentier-Batteur, S.; Jin, K.; Xie, L.; Mao, X.O.; Greenberg, D.A. DNA Microarray Analysis of Cannabinoid Signaling in Mouse Brain in Vivo. Mol. Pharmacol. 2002, 62, 828–835. [Google Scholar] [CrossRef]
- Haase, M.; Schott, M.; Bornstein, S.R.; Malendowicz, L.K.; Scherbaum, W.A.; Willenberg, H.S. CITED2 is expressed in human adrenocortical cells and regulated by basic fibroblast growth factor. J. Endocrinol. 2007, 192, 459–465. [Google Scholar] [CrossRef]
- Wang, X.; Lockhart, S.M.; Rathjen, T.; Albadawi, H.; Sørensen, D.; Neill, B.T.; Dwivedi, N.; Preil, S.R.; Beck, H.C.; Dunwoodie, S.L.; et al. Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells. Diabetes 2016, 65, 3680–3689. [Google Scholar] [CrossRef]
- Tanaka, T.; Yamaguchi, J.; Higashijima, Y.; Nangaku, M. Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J. 2013, 27, 4059–4075. [Google Scholar] [CrossRef]
- Collett, G.P.; Redman, C.W.; Sargent, I.L.; Vatish, M. Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget 2018, 9, 6707–6717. [Google Scholar] [CrossRef]
- Bakker, W.J.; Harris, I.S.; Mak, T.W. FOXO3a Is Activated in Response to Hypoxic Stress and Inhibits HIF1-Induced Apoptosis via Regulation of CITED2. Mol. Cell 2007, 28, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Gabut, M.; Samavarchi-Tehrani, P.; Wang, X.; Slobodeniuc, V.; O’Hanlon, D.; Sung, H.-K.; Alvarez, M.; Talukder, S.; Pan, Q.; Mazzoni, E.O.; et al. An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming. Cell 2011, 147, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, S.; Hayashi, K.; Kurimoto, K.; Ohta, H.; Yabuta, Y.; Iwanari, H.; Mochizuki, Y.; Hamakubo, T.; Kato, Y.; Shirahige, K.; et al. A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants. Dev. Cell 2013, 27, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.R.; Shih, S.-C.; Otu, H.H.; Spokes, K.C.; Okada, Y.; Curiel, D.T.; Minami, T.; Aird, W.C. A Novel Class of Vascular Endothelial Growth Factor-responsive Genes That Require Forkhead Activity for Expression. J. Biol. Chem. 2006, 281, 35544–35553. [Google Scholar] [CrossRef]
- Bakker, W.J.; van Dijk, T.B.; Parren-van Amelsvoort, M.; Kolbus, A.; Yamamoto, K.; Steinlein, P.; Verhaak, R.G.W.; Mak, T.W.; Beug, H.; Lowenberg, B.; et al. Differential Regulation of Foxo3a Target Genes in Erythropoiesis. Mol. Cell. Biol. 2007, 27, 3839–3854. [Google Scholar] [CrossRef]
- Sengupta, A.; Molkentin, J.; Paik, J.; Depinho, R.; Yutzey, K. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J. Biol. Chem. 2011, 286, 7468–7478. [Google Scholar] [CrossRef]
- Plisov, S.; Tsang, M.; Shi, G.; Boyle, S.; Yoshino, K.; Dunwoodie, S.L.; Dawid, I.B.; Shioda, T.; Perantoni, A.O.; de Caestecker, M.P. Cited1 Is a Bifunctional Transcriptional Cofactor That Regulates Early Nephronic Patterning. J. Am. Soc. Nephrol. 2005, 16, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Price, F.D.; Yin, H.; Jones, A.; van Ijcken, W.; Grosveld, F.; Rudnicki, M.A. Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells. Stem Cells 2013, 31, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Guo, J.; Divieti, P.; Shioda, T.; Bringhurst, F.R. CBP/p300-Interacting Protein CITED1 Modulates Parathyroid Hormone Regulation of Osteoblastic Differentiation. Endocrinology 2008, 149, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- McFadden, D.G.; Barbosa, A.C.; Richardson, J.A.; Schneider, M.D.; Srivastava, D.; Olson, E.N. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 2005, 132, 189–201. [Google Scholar] [CrossRef]
- Singh, M.K.; Christoffels, V.M.; Dias, J.M.; Trowe, M.-O.; Petry, M.; Schuster-Gossler, K.; BürGer, A.; Ericson, J.; Kispert, A. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 2005, 132, 2697–2707. [Google Scholar] [CrossRef]
- Lai, D.; Liu, X.; Forrai, A.; Wolstein, O.; Michalicek, J.; Ahmed, I.; Garratt, A.N.; Birchmeier, C.; Zhou, M.; Hartley, L.; et al. Neuregulin 1 Sustains the Gene Regulatory Network in Both Trabecular and Nontrabecular Myocardium. Circ. Res. 2010, 107, 715–727. [Google Scholar] [CrossRef]
- Ryall, K.A.; Bezzerides, V.J.; Rosenzweig, A.; Saucerman, J.J. Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. J. Mol. Cell. Cardiol. 2014, 72, 74–84. [Google Scholar] [CrossRef]
- Chou, Y.-T.; Yang, Y.-C. Post-transcriptional Control of Cited2 by Transforming Growth Factor beta: REGULATION VIA SMADS AND CITED2 CODING REGION. J. Biol. Chem. 2006, 281, 18451–18462. [Google Scholar] [CrossRef]
- Yadav, M.L.; Jain, D.; Neelabh; Agrawal, D.; Kumar, A.; Mohapatra, B. A Gain-of-function mutation in CITED2 is associated with Congenital Heart Disease. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2021, 822, 111741. [Google Scholar] [CrossRef]
- Shin, D.H.; Li, S.H.; Chun, Y.S.; Huang, L.E.; Kim, M.S.; Park, J.W. CITED2 mediates the paradoxical responses of HIF-1alpha to proteasome inhibition. Oncogene 2008, 27, 1939–1944. [Google Scholar] [CrossRef]
- Li, Q.; Ramirez-Bergeron, D.L.; Dunwoodie, S.L.; Yang, Y.-C. Cited2 controls pluripotency and cardiomyocyte differentiation of murine embryonic stem cells through Oct4. J. Biol. Chem. 2012, 287, 29088–29100. [Google Scholar] [CrossRef]
- Kokkinopoulos, I.; Ishida, H.; Saba, R.; Ruchaya, P.; Cabrera, C.; Struebig, M.; Barnes, M.; Terry, A.; Kaneko, M.; Shintani, Y.; et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE 2015, 10, e0140831. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Diaz, A.D.; Benham, A.; Xu, X.; Wijaya, C.S.; Fa’aK, F.; Luo, W.; Soibam, B.; Azares, A.; et al. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Sci. Rep. 2016, 6, 31457. [Google Scholar] [CrossRef]
- Kumar, N.; Richter, J.; Cutts, J.; Bush, K.T.; Trujillo, C.; Nigam, S.K.; Gaasterland, T.; Brafman, D.; Willert, K. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. eLife 2015, 4, e08413. [Google Scholar] [CrossRef] [PubMed]
- Miake, J.; Notsu, T.; Higaki, K.; Hidaka, K.; Morisaki, T.; Yamamoto, K.; Hisatome, I. Cited4 is related to cardiogenic induction and maintenance of proliferation capacity of embryonic stem cell-derived cardiomyocytes during in vitro cardiogenesis. PLoS ONE 2017, 12, e0183225. [Google Scholar] [CrossRef] [PubMed]
- Alabdi, L.; He, M.; Yang, Q.; Norvil, A.B.; Gowher, H. The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J. Biol. Chem. 2018, 293, 11109–11119. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wu, X.; Li, Y.; Yang, X.; Hu, J.; Zheng, M.; Tian, J. CITED2 Mutation and methylation in children with congenital heart disease. J. Biomed. Sci. 2014, 21, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Wu, Y.; Tan, S.; Wen, Q.; Wang, J.; Zhu, X.; Wang, X.; Li, C.; Ma, X.; et al. Variations of CITED2 Are Associated with Congenital Heart Disease (CHD) in Chinese Population. PLoS ONE 2014, 9, e98157. [Google Scholar] [CrossRef]
- Li, B.; Pu, T.; Liu, Y.; Xu, Y.; Xu, R. CITED2 Mutations in Conserved Regions Contribute to Conotruncal Heart Defects in Chinese Children. DNA Cell Biol. 2017, 36, 589–595. [Google Scholar] [CrossRef]
- Liu, S.; Su, Z.; Tan, S.; Ni, B.; Pan, H.; Liu, B.; Wang, J.; Xiao, J.; Chen, Q. Functional Analyses of a Novel CITED2 Nonsynonymous Mutation in Chinese Tibetan Patients with Congenital Heart Disease. Pediatr. Cardiol. 2017, 38, 1226–1231. [Google Scholar] [CrossRef]
- Hu, P.; Qiao, F.; Wang, Y.; Meng, L.; Ji, X.; Luo, C.; Xu, T.; Zhou, R.; Zhang, J.; Yu, B.; et al. Clinical application of targeted next-generation sequencing on fetuses with congenital heart defects. Ultrasound Obs. Gynecol. 2018, 5, 205–211. [Google Scholar] [CrossRef]
- Yaqoob, H.; Ahmad, H.; Ali, S.I.; Patel, N.; Arif, A. Missense mutations in the CITED2 gene may contribute to congenital heart disease. BMC Cardiovasc. Disord. 2024, 24, 516. [Google Scholar] [CrossRef]
- Imam, R.; Aizezi, M.; Yan, F.; Zhu, T.; Zhang, W. Sequence variations in GATA4 and CITED2 gene among patients with cardiac septation defects from Xinjiang, China. Cardiol. Young 2024, 34, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Dianatpour, S.; Khatami, M.; Heidari, M.M.; Hadadzadeh, M. Novel Point Mutations of CITED2 Gene Are Associated with Non-familial Congenital Heart Disease (CHD) in Sporadic Pediatric Patients. Appl. Biochem. Biotechnol. 2020, 190, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Sperling, S.; Grimm, C.H.; Dunkel, I.; Mebus, S.; Sperling, H.-P.; Ebner, A.; Galli, R.; Lehrach, H.; Fusch, C.; Berger, F.; et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum. Mutat. 2005, 26, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Lyu, G.; Zhang, C.; Ling, T.; Liu, R.; Zong, L.; Guan, Y.; Huang, X.; Sun, L.; Zhang, L.; Li, C.; et al. Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genom. 2018, 19, 428. [Google Scholar] [CrossRef]
- Boyd, R.; McMullen, H.; Beqaj, H.; Kalfa, D. Environmental Exposures and Congenital Heart Disease. Pediatrics 2021, 149, e2021052151. [Google Scholar] [CrossRef]
- Bentham, J.; Michell, A.C.; Lockstone, H.; Andrew, D.; Schneider, J.E.; Brown, N.A.; Bhattacharya, S. Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left-right patterning defects. Hum. Mol. Genet. 2010, 9, 3394–3401. [Google Scholar] [CrossRef]
- Su, D.; Song, J.-X.; Gao, Q.; Guan, L.; Li, Q.; Shi, C.; Ma, X. Cited2 participates in cardiomyocyte apoptosis and maternal diabetes-induced congenital heart abnormality. Biochem. Biophys. Res. Commun. 2016, 479, 887–892. [Google Scholar] [CrossRef]
- Gu, H.; Yu, J.; Dong, D.; Zhou, Q.; Wang, J.-Y.; Fang, S.; Yang, P. High glucose-repressed CITED2 expression through miR-200b triggers the unfolded protein response and endoplasmic reticulum stress. Diabetes 2015, 65, 149–163. [Google Scholar] [CrossRef]
- Pavlinkova, G.; Salbaum, J.M.; Kappen, C. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genom. 2009, 10, 274. [Google Scholar] [CrossRef]
- Lu, X.; Lan, X.; Fu, X.; Li, J.; Wu, M.; Xiao, L.; Zeng, Y. Screening Preeclampsia Genes and the Effects of CITED2 on Trophoblastic Function. Int. J. Gen. Med. 2024, 17, 3493–3509. [Google Scholar] [CrossRef]
- Yang, C.; Song, Z. CITED2 is highly-expressed and PRX4 is poorly-expressed in preeclampsia and have diagnostic values. J. Hum. Hypertens. 2025, 39, 293–300. [Google Scholar] [CrossRef]
- Zheng, S.-Q.; Chen, H.-X.; Liu, X.-C.; Yang, Q.; He, G.-W. Genetic analysis of the CITED2 gene promoter in isolated and sporadic congenital ventricular septal defects. J. Cell. Mol. Med. 2021, 25, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, H.-X.; Hou, H.-T.; Yin, X.-Y.; Yang, Q.; Han, J.; He, G.-W. Genetic Variants of CITED2 Gene Promoter in Human Atrial Septal Defects: Case-Control Study and Cellular Functional Verification. J. Cardiovasc. Dev. Dis. 2022, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Laugier, L.; Frade, A.F.; Ferreira, F.M.; Baron, M.A.; Teixeira, P.C.; Cabantous, S.; Ferreira, L.R.P.; Louis, L.; Rigaud, V.O.C.; Gaiotto, F.A.; et al. Whole-Genome Cardiac DNA Methylation Fingerprint and Gene Expression Analysis Provide New Insights in the Pathogenesis of Chronic Chagas Disease Cardiomyopathy. Clin. Infect. Dis. 2017, 65, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhao, J.; Fan, M.; Wang, J.; Ji, Z. CITED2 Attenuates Ischemia Reperfusion-Induced Pyroptosis and Injury in Cardiomyocyte. Int. Heart J. 2024, 65, 1087–1094. [Google Scholar] [CrossRef]
- Lei, L.; Mason, S.; Liu, D.; Huang, Y.; Marks, C.; Hickey, R.; Jovin, I.S.; Pypaert, M.; Johnson, R.S.; Giordano, F.J. Hypoxia-Inducible Factor-Dependent Degeneration, Failure, and Malignant Transformation of the Heart in the Absence of the von Hippel-Lindau Protein. Mol. Cell. Biol. 2008, 28, 3790–3803. [Google Scholar] [CrossRef]
- Orea-Soufi, A.; Paik, J.; Bragança, J.; Donlon, T.A.; Willcox, B.J.; Link, W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol. Sci. 2022, 43, 1070–1084. [Google Scholar] [CrossRef]
- Sawicki, K.T.; De Jesus, A.; Ardehali, H. Iron Metabolism in Cardiovascular Disease: Physiology, Mechanisms, and Therapeutic Targets. Circ. Res. 2023, 132, 379–396. [Google Scholar] [CrossRef]
- Naderi, N.; Hemmatinafar, M.; Gaeini, A.A.; Bahramian, A.; Ghardashi-Afousi, A.; Kordi, M.R.; Darbandi-Azar, A.; Karimzade, F.; Mohebbi, H.; Barati, M. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPÎ2 in rats after myocardial infarction. Life Sci. 2019, 221, 319–326. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, J.; Zhu, H.; Wei, X.; Platt, C.; Damilano, F.; Xiao, C.; Bezzerides, V.; Boström, P.; Che, L.; et al. miR-222 Is Necessary for Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling. Cell Metab. 2015, 21, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Lerchenmüller, C.; Rabolli, C.; Yeri, A.; Kitchen, R.; Salvador, A.; Liu, L.; Ziegler, O.; Danielson, K.; Platt, C.; Shah, R.; et al. CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress. Circ. Res. 2020, 127, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Singh, S.S.A. Gene therapy and regenerative tissue engineering in congenital heart disease. Transl. Pediatr. 2019, 8, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.; Deng, R.; Cowan, D.B.; Wang, D.Z. Application of CRISPR-Cas9 gene editing for congenital heart disease. Clin. Exp. Pediatr. 2021, 64, 269–279. [Google Scholar] [CrossRef]
- Grisorio, L.; Bongianino, R.; Gianeselli, M.; Priori, S.G. Gene therapy for cardiac diseases: Methods, challenges, and future directions. Cardiovasc. Res. 2024, 120, 1664–1682. [Google Scholar] [CrossRef]
- Romeo, F.J.; Mavropoulos, S.A.; Ishikawa, K. Progress in Clinical Gene Therapy for Cardiac Disorders. Mol. Diagn. Ther. 2023, 27, 179–191. [Google Scholar] [CrossRef]
- Lerchenmüller, C.; Hastings, M.H.; Rabolli, C.P.; Betge, F.; Roshan, M.; Liu, L.X.; Liu, X.; Heß, C.; Roh, J.D.; Platt, C.; et al. CITED4 gene therapy protects against maladaptive cardiac remodeling after ischemia/reperfusion injury in mice. Mol. Ther. 2024, 32, 3683–3694. [Google Scholar] [CrossRef]
- Gao, S.; Li, D.; Wang, B.; Zhang, H.; Chen, L. Two promising approaches in the treatment of myocardial infarction: Stem cells and gene therapy. Front. Cardiovasc. Med. 2025, 12, 1540066. [Google Scholar] [CrossRef]
- Carvalho, A.B.; Kasai-Brunswick, T.H.; Campos de Carvalho, A.C. Advanced cell and gene therapies in cardiology. eBioMedicine 2024, 103, 105125. [Google Scholar] [CrossRef]
- Sturzu, A.C.; Rajarajan, K.; Passer, D.; Plonowska, K.; Riley, A.; Tan, T.C.; Sharma, A.; Xu, A.F.; Engels, M.C.; Feistritzer, R.; et al. Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss. Circulation 2015, 132, 109–121. [Google Scholar] [CrossRef]
- Hofbauer, P.; Jahnel, S.M.; Mendjan, S. In vitro models of the human heart. Development 2021, 148, dev199672. [Google Scholar] [CrossRef]
- Yang, R.; Goedel, A.; Kang, Y.; Si, C.; Chu, C.; Zheng, Y.; Chen, Z.; Gruber, P.J.; Xiao, Y.; Zhou, C.; et al. Amnion signals are essential for mesoderm formation in primates. Nat. Commun. 2021, 12, 5126. [Google Scholar] [CrossRef]
- Rivron, N.C.; Frias-Aldeguer, J.; Vrij, E.J.; Boisset, J.-C.; Korving, J.; Vivié, J.; Truckenmüller, R.K.; van Oudenaarden, A.; van Blitterswijk, C.A.; Geijsen, N. Blastocyst-like structures generated solely from stem cells. Nature 2018, 557, 106–111. [Google Scholar] [CrossRef]
- Yu, L.; Wei, Y.; Duan, J.; Schmitz, D.A.; Sakurai, M.; Wang, L.; Wang, K.; Zhao, S.; Hon, G.C.; Wu, J. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021, 591, 620–626. [Google Scholar] [CrossRef]
- Pocock, M.W.; Reid, J.D.; Robinson, H.R.; Charitakis, N.; Krycer, J.R.; Foster, S.R.; Fitzsimmons, R.L.; Lor, M.; Devilée, L.A.C.; Batho, C.A.P.; et al. Maturation of human cardiac organoids enables complex disease modeling and drug discovery. Nat. Cardiovasc. Res. 2025, 4, 821–840. [Google Scholar] [CrossRef]



| CITED Protein | CITED-Interacting Protein | Cardiovascular Target Genes | References |
|---|---|---|---|
| CITED1 | CBP/p300 | Unknown | [7] |
| CITED2 | CBP/p300 | Pitx2c | [5,8] |
| TFAP2 | Pitx2c, Vegfa, Lefty1 *, Lefty2 *, Nodal * | [5,9,10,13,77] | |
| ISL1 | Mefc2* | [22] | |
| Unknown | Isl1 | [22] | |
| Unknown | Brachyury/T *, Mesp1 *, Gata4 *, Nkx2.5 *, Tbx5 *, Wnt5a *, Wnt11 * | [22,24] | |
| Unknown | p57 | [61] | |
| Smad2 | Nodal * | [12] | |
| CITED4 | CBP/p300 | Unknown | [6,70] |
| Unknown | Cyclin D1 * | [19] |
| Cardiovascular Anomaly | Estimated Average % with CITED2 Mutations * | % of CHD Patients with CITED2 Variants (Mutated CITED2/Total CHD Patients) | References |
|---|---|---|---|
| All anomalies | ~1.53% | ~3.33% (4/120) | [125] |
| ~1.69% (19/1126) | [25] | ||
| ~0.71% (5/700) | [118] | ||
| ~0.33% (2/605) | [119] | ||
| Ventricular Septal Defect (VSD) | ~0.94% | ~1.02% (4/392) | [125] |
| ~0.86% (6/700) | [118] | ||
| Atrial Septal Defect (ASD) | ~0.35% | ~1.02% (4/392) | [125] |
| ~0.16% (1/605) | [119] | ||
| ~0.14% (1/700) | [118] | ||
| ~0.09% (1/1126) | [25] | ||
| Patent Ductus Arteriosus (PDA) | ~0.35% | ~0.33% (2/605 | [119] |
| Tetralogy of Fallot (TOF) | ~0.29% | ~0.77% (3/392) | [125] |
| ~0.16% (1/605) | [119] | ||
| ~0.14% (1/700) | [118] | ||
| ~0.09% (1/1126) | [25] | ||
| Transposition of the Great Arteries (TGA) | ~0.17% | ~0.26% (1/392) | [125] |
| ~0.16% (1/605) | [119] | ||
| ~0.09% (1/1126) | [25] | ||
| Patent Foramen Ovale (PFO) | ~0.16% | ~0.16% (1/605) | [119] |
| Atrioventricular Septal Defect (AVSD) | ~0.115% | ~0.14% (1/700) | [118] |
| ~0.09% (1/1126) | [25] | ||
| Pulmonary Stenosis (PS) | ~0.115% | ~0.14% (1/700) | [118] |
| ~0.09% (1/1126) | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragança, J.; Cabrita Pinto, R.L.; Ventura, I.; Ferreira, S.; Marreiros, A. CITED Proteins in Cardiac Development and Lifelong Heart Function. J. Pers. Med. 2025, 15, 542. https://doi.org/10.3390/jpm15110542
Bragança J, Cabrita Pinto RL, Ventura I, Ferreira S, Marreiros A. CITED Proteins in Cardiac Development and Lifelong Heart Function. Journal of Personalized Medicine. 2025; 15(11):542. https://doi.org/10.3390/jpm15110542
Chicago/Turabian StyleBragança, José, Rute Luísa Cabrita Pinto, Igor Ventura, Silvana Ferreira, and António Marreiros. 2025. "CITED Proteins in Cardiac Development and Lifelong Heart Function" Journal of Personalized Medicine 15, no. 11: 542. https://doi.org/10.3390/jpm15110542
APA StyleBragança, J., Cabrita Pinto, R. L., Ventura, I., Ferreira, S., & Marreiros, A. (2025). CITED Proteins in Cardiac Development and Lifelong Heart Function. Journal of Personalized Medicine, 15(11), 542. https://doi.org/10.3390/jpm15110542

