Exploring the Evidence for Personalized Pharmacotherapy in Type 2 Diabetes—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategies
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
2.5. Data Synthesis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias in Studies
3.4. Results of Individual Studies
3.5. Strength of Evidence
4. Discussion
4.1. Metformin
4.2. GLP-1 RAs
4.3. SGLT2 Inhibitors
4.4. Thiazolidinediones
4.5. DPP-4 Inhibitors
4.6. Insulin Therapy
4.7. Other Therapies
4.8. Overview of miRNAs Affected by Currently Approved Diabetes Drugs
5. Future Directions
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Ebekozien, O.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar]
- Burns, C.; Francis, N. Type 2 Diabetes-Etiology, Epidemiology, Pathogenesis, Treatment. In Metabolic Syndrome; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–20. [Google Scholar]
- Gregg, E.W.; Buckley, J.; Ali, M.K.; Davies, J.; Flood, D.; Mehta, R.; Griffiths, B.; Lim, L.-L.; Manne-Goehler, J.; Pearson-Stuttard, J.; et al. Improving Health Outcomes of People with Diabetes: Target Setting for the WHO Global Diabetes Compact. Lancet 2023, 401, 1302–1312. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Khurana, R.N.; Nguyen, Q.D.; Kelly, S.P.; Lum, F.; Hall, R.; Abbass, I.M.; Abolian, A.M.; Stoilov, I.; To, T.M.; et al. Risk of Blindness among Patients with Diabetes and Newly Diagnosed Diabetic Retinopathy. Diabetes Care 2021, 44, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.; Immanuel, J.; Hague, W.M.; Teede, H.; Nolan, C.J.; Peek, M.J.; Flack, J.R.; McLean, M.; Wong, V.; Hibbert, E.; et al. Treatment of Gestational Diabetes Mellitus Diagnosed Early in Pregnancy. N. Engl. J. Med. 2023, 388, 2132–2144. [Google Scholar] [CrossRef]
- Malaza, N.; Masete, M.; Adam, S.; Dias, S.; Nyawo, T.; Pheiffer, C. A Systematic Review to Compare Adverse Pregnancy Outcomes in Women with Pregestational Diabetes and Gestational Diabetes. Int. J. Environ. Res. Public. Health 2022, 19, 10846. [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The Burden and Risks of Emerging Complications of Diabetes Mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 3. Prevention or Delay of Diabetes and Associated Comorbidities: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S50–S58. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S207–S238. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.T.; Greenway, F.; Tucker, T.R.; Alexander, M.; Jackson, L.K.; Hepford, S.A.; Loveridge, B.; Lakey, J.R. A Receptor Story: Insulin Resistance Pathophysiology and Physiologic Insulin Resensitization’s Role as a Treatment Modality. Int. J. Mol. Sci. 2023, 24, 10927. [Google Scholar] [CrossRef]
- Barroso, E.; Jurado-Aguilar, J.; Wahli, W.; Palomer, X.; Vázquez-Carrera, M. Increased Hepatic Gluconeogenesis and Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2024, 35, 1062–1077. [Google Scholar] [CrossRef]
- Lima, J.E.; Moreira, N.C.; Sakamoto-Hojo, E.T. Mechanisms Underlying the Pathophysiology of Type 2 Diabetes: From Risk Factors to Oxidative Stress, Metabolic Dysfunction, and Hyperglycemia. Mutat. Res. Toxicol. Environ. Mutagen. 2022, 874, 503437. [Google Scholar] [CrossRef]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 Diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- Genitsaridi, I.; Salpea, P.; Salim, A.; Sajjadi, S.F.; Tomic, D.; James, S.; Thirunavukkarasu, S.; Issaka, A.; Chen, L.; Basit, A.; et al. IDF Diabetes Atlas: Global, Regional and National Diabetes Prevalence Estimates for 2024 and Projections for 2050. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5327047 (accessed on 24 August 2025).
- Voeltz, D.; Tönnies, T.; Brinks, R.; Hoyer, A. Future Prevalence of Type 2 Diabetes—A Comparative Analysis of Chronic Disease Projection Methods. PLoS ONE 2022, 17, e0264739. [Google Scholar] [CrossRef]
- Deutsch, A.J.; Ahlqvist, E.; Udler, M.S. Phenotypic and Genetic Classification of Diabetes. Diabetologia 2022, 65, 1758–1769. [Google Scholar] [CrossRef]
- Gouda, P.; Zheng, S.; Peters, T.; Fudim, M.; Randhawa, V.K.; Ezekowitz, J.; Mavrakanas, T.A.; Giannetti, N.; Tsoukas, M.; Lopes, R.; et al. Clinical Phenotypes in Patients with Type 2 Diabetes Mellitus: Characteristics, Cardiovascular Outcomes and Treatment Strategies. Curr. Heart Fail. Rep. 2021, 18, 253–263. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S128–S145. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef]
- Mizukami, H.; Kudoh, K. Diversity of Pathophysiology in Type 2 Diabetes Shown by Islet Pathology. J. Diabetes Investig. 2022, 13, 6–13. [Google Scholar] [CrossRef]
- Sanches, J.M.; Zhao, L.N.; Salehi, A.; Wollheim, C.B.; Kaldis, P. Pathophysiology of Type 2 Diabetes and the Impact of Altered Metabolic Interorgan Crosstalk. FEBS J. 2023, 290, 620–648. [Google Scholar] [CrossRef] [PubMed]
- Piragine, E.; Petri, D.; Martelli, A.; Calderone, V.; Lucenteforte, E. Adherence to Oral Antidiabetic Drugs in Patients with Type 2 Diabetes: Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1981. [Google Scholar] [CrossRef]
- Altabas, V.; Orlović, Z.; Baretić, M. Addressing the Shortage of GLP-1 RA and Dual GIP/GLP-1 RA-Based Therapies—A Systematic Review. Diabetology 2025, 6, 52. [Google Scholar] [CrossRef]
- Perez, A.; Redondo-Anton, J.; Romera, I.; Lizan, L.; Rubio-de Santos, M.; Diaz-Cerezo, S.; Orozco-Beltran, D. Disease and Economic Burden of Poor Metabolic and Weight Control in Type 2 Diabetes in Spain: A Systematic Literature Review. Diabetes Ther. 2024, 15, 325–341. [Google Scholar] [CrossRef]
- Chew, B.-H.; Mohd-Yusof, B.-N.; Lai, P.S.M.; Khunti, K. Overcoming Therapeutic Inertia as the Achilles’ Heel for Improving Suboptimal Diabetes Care: An Integrative Review. Endocrinol. Metab. 2023, 38, 34–42. [Google Scholar] [CrossRef]
- Fralick, M.; Jenkins, A.J.; Khunti, K.; Mbanya, J.C.; Mohan, V.; Schmidt, M.I. Global Accessibility of Therapeutics for Diabetes Mellitus. Nat. Rev. Endocrinol. 2022, 18, 199–204. [Google Scholar] [CrossRef]
- Tobias, D.K.; Merino, J.; Ahmad, A.; Aiken, C.; Benham, J.L.; Bodhini, D.; Clark, A.L.; Colclough, K.; Corcoy, R.; Cromer, S.J.; et al. Second International Consensus Report on Gaps and Opportunities for the Clinical Translation of Precision Diabetes Medicine. Nat. Med. 2023, 29, 2438–2457. [Google Scholar] [CrossRef]
- Laakso, M.; Fernandes Silva, L. Genetics of Type 2 Diabetes: Past, Present, and Future. Nutrients 2022, 14, 3201. [Google Scholar] [CrossRef] [PubMed]
- DeForest, N.; Majithia, A.R. Genetics of Type 2 Diabetes: Implications from Large-Scale Studies. Curr. Diab. Rep. 2022, 22, 227–235. [Google Scholar] [CrossRef]
- Yang, Y.; Luan, Y.; Feng, Q.; Chen, X.; Qin, B.; Ren, K.-D.; Luan, Y. Epigenetics and beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front. Pharmacol. 2022, 12, 807413. [Google Scholar] [CrossRef] [PubMed]
- Ansah, E.O. Ethical Challenges and Controversies in the Practice and Advancement of Gene Therapy. Adv. Cell Gene Ther. 2022, 2022, 1015996. [Google Scholar] [CrossRef]
- Capparelli, R.; Iannelli, D. Role of Epigenetics in Type 2 Diabetes and Obesity. Biomedicines 2021, 9, 977. [Google Scholar] [CrossRef]
- Ling, C.; Bacos, K.; Rönn, T. Epigenetics of Type 2 Diabetes Mellitus and Weight Change—A Tool for Precision Medicine? Nat. Rev. Endocrinol. 2022, 18, 433–448. [Google Scholar] [CrossRef]
- Santaló, J.; Berdasco, M. Ethical Implications of Epigenetics in the Era of Personalized Medicine. Clin. Epigenet. 2022, 14, 44. [Google Scholar] [CrossRef]
- Diener, C.; Keller, A.; Meese, E. Emerging Concepts of miRNA Therapeutics: From Cells to Clinic. Trends Genet. 2022, 38, 613–626. [Google Scholar] [CrossRef]
- Mendonca, A.; Thandapani, P.; Nagarajan, P.; Venkatesh, S.; Sundaresan, S. Role of microRNAs in Regulation of Insulin Secretion and Insulin Signaling Involved in Type 2 Diabetes Mellitus. J. Biosci. 2022, 47, 58. [Google Scholar] [CrossRef]
- Auddino, S.; Aiello, E.; Grieco, G.E.; Dotta, F.; Sebastiani, G. A Three-Layer Perspective on miRNA Regulation in β Cell Inflammation. Trends Endocrinol. Metab. 2025, 36, 623–637. [Google Scholar] [CrossRef]
- Jiménez-Lucena, R.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; López-Moreno, J.; Roncero-Ramos, I.; Molina-Abril, H.; Yubero-Serrano, E.M.; Caballero-Villarraso, J.; Delgado-Lista, J.; Castaño, J.P.; et al. Circulating miRNAs as Predictive Biomarkers of Type 2 Diabetes Mellitus Development in Coronary Heart Disease Patients from the CORDIOPREV Study. Mol. Ther. Nucleic Acids 2018, 12, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Massart, J.; Sjögren, R.J.O.; Lundell, L.S.; Mudry, J.M.; Franck, N.; O’Gorman, D.J.; Egan, B.; Zierath, J.R.; Krook, A. Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle. Diabetes 2017, 66, 1807–1818. [Google Scholar] [CrossRef]
- García-Jacobo, R.E.; Uresti-Rivera, E.E.; Portales-Pérez, D.P.; González-Amaro, R.; Lara-Ramírez, E.E.; Enciso-Moreno, J.A.; García-Hernández, M.H. Circulating miR-146a, miR-34a and miR-375 in Type 2 Diabetes Patients, Pre-Diabetic and Normal-Glycaemic Individuals in Relation to β-Cell Function, Insulin Resistance and Metabolic Parameters. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, M.; Sadeghi, F.; Mirzapour, A.; Khafri, S.; Korani, B.; Al-E-Ahmad, A.; Parsian, H. Association of MicroRNA-103 Expression with Type 2 Diabetes Mellitus. Casp. J. Intern. Med. 2025, 16, 106–113. [Google Scholar]
- Latreille, M.; Herrmanns, K.; Renwick, N.; Tuschl, T.; Malecki, M.T.; McCarthy, M.I.; Owen, K.R.; Rülicke, T.; Stoffel, M. miR-375 Gene Dosage in Pancreatic β-Cells: Implications for Regulation of β-Cell Mass and Biomarker Development. J. Mol. Med. 2015, 93, 1159–1169. [Google Scholar] [CrossRef]
- He, X.; Kuang, G.; Wu, Y.; Ou, C. Emerging Roles of Exosomal miRNAs in Diabetes Mellitus. Clin. Transl. Med. 2021, 11, e468. [Google Scholar] [CrossRef]
- Miao, X.; Davoudi, M.; Alitotonchi, Z.; Ahmadi, E.S.; Amraee, F.; Alemi, A.; Afrisham, R. Managing Cardiovascular Events, Hyperglycemia, and Obesity in Type 2 Diabetes through microRNA Regulation Linked to Glucagon-like Peptide-1 Receptor Agonists. Diabetol. Metab. Syndr. 2025, 17, 13. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Bustin, S.A.; Ruijter, J.M.; van den Hoff, M.J.; Kubista, M.; Pfaffl, M.W.; Shipley, G.L.; Tran, N.; Rödiger, S.; Untergasser, A.; Mueller, R.; et al. MIQE 2.0: Revision of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments Guidelines. Clin. Chem. 2025, 71, 634–651. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. Handbook for Grading the Quality of Evidence and the Strength of Recommendations Using the Grade Approach (Updated October 2013); The Grade Working Group: Freiburg, Germany, 2013. [Google Scholar]
- Hong, S.J.; Choi, S.C.; Cho, J.Y.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.-S. Pioglitazone Increases Circulating MicroRNA-24 with Decrease in Coronary Neointimal Hyperplasia in Type 2 Diabetic Patients–Optical Coherence Tomography Analysis–. Circ. J. 2015, 79, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Demirsoy, İ.H.; Ertural, D.Y.; Balci, Ş.; Çınkır, Ü.; Sezer, K.; Tamer, L.; Aras, N. Profiles of Circulating MiRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J. Med. Biochem. 2018, 37, 499. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, G.; Besharat, Z.M.; Chiacchiarini, M.; Abballe, L.; Sabato, C.; Vacca, A.; Borgiani, P.; Dotta, F.; Tesauro, M.; Po, A.; et al. Circulating microRNAs in Elderly Type 2 Diabetic Patients. Int. J. Endocrinol. 2018, 2018, 6872635. [Google Scholar] [CrossRef]
- Nunez Lopez, Y.O.; Retnakaran, R.; Zinman, B.; Pratley, R.E.; Seyhan, A.A. Predicting and Understanding the Response to Short-Term Intensive Insulin Therapy in People with Early Type 2 Diabetes. Mol. Metab. 2019, 20, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Solini, A.; Seghieri, M.; Giannini, L.; Biancalana, E.; Parolini, F.; Rossi, C.; Dardano, A.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J. Clin. Endocrinol. Metab. 2019, 104, 4253–4263. [Google Scholar] [CrossRef]
- Giglio, R.V.; Nikolic, D.; Volti, G.L.; Stoian, A.P.; Banerjee, Y.; Magan-Fernandez, A.; Castellino, G.; Patti, A.M.; Chianetta, R.; Castracani, C.C.; et al. Liraglutide Increases Serum Levels of microRNA-27b,-130a and-210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect. Metabolites 2020, 10, 391. [Google Scholar] [CrossRef]
- Gaborit, B.; Julla, J.-B.; Besbes, S.; Proust, M.; Vincentelli, C.; Alos, B.; Ancel, P.; Alzaid, F.; Garcia, R.; Mailly, P.; et al. Glucagon-like Peptide 1 Receptor Agonists, Diabetic Retinopathy and Angiogenesis: The AngioSafe Type 2 Diabetes Study. J. Clin. Endocrinol. Metab. 2020, 105, e1549–e1560. [Google Scholar] [CrossRef]
- Cho, N.-J.; Kim, D.-Y.; Kwon, S.H.; Ha, T.W.; Kim, H.K.; Lee, M.R.; Chun, S.W.; Park, S.; Lee, E.; Gil, H.-W. Urinary Exosomal microRNA Profiling in Type 2 Diabetes Patients Taking Dipeptidyl Peptidase-4 Inhibitor Compared with Sulfonylurea. Kidney Res. Clin. Pract. 2021, 40, 383. [Google Scholar] [CrossRef] [PubMed]
- Formichi, C.; Fignani, D.; Nigi, L.; Grieco, G.E.; Brusco, N.; Licata, G.; Sabato, C.; Ferretti, E.; Sebastiani, G.; Dotta, F. Circulating microRNAs Signature for Predicting Response to GLP1-RA Therapy in Type 2 Diabetic Patients: A Pilot Study. Int. J. Mol. Sci. 2021, 22, 9454. [Google Scholar] [CrossRef] [PubMed]
- Nunez Lopez, Y.O.; Casu, A.; Kovacova, Z.; Petrilli, A.M.; Sideleva, O.; Tharp, W.G.; Pratley, R.E. Coordinated Regulation of Gene Expression and microRNA Changes in Adipose Tissue and Circulating Extracellular Vesicles in Response to Pioglitazone Treatment in Humans with Type 2 Diabetes. Front. Endocrinol. 2022, 13, 955593. [Google Scholar] [CrossRef]
- Mone, P.; Lombardi, A.; Kansakar, U.; Varzideh, F.; Jankauskas, S.S.; Pansini, A.; Marzocco, S.; De Gennaro, S.; Famiglietti, M.; Macina, G.; et al. Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Diabetes. J. Pharmacol. Exp. Ther. 2023, 384, 116–122. [Google Scholar] [CrossRef]
- Tian, F.; Guo, Y.; Zhou, L.; Yao, Q.; Liang, X.; Lu, J.; He, A.; Shen, J. Comparison of Glimepiride and Linagliptin in the Treatment of Non-Alcoholic Hepatic Disease with Type 2 Diabetes Mellitus. Arch. Med. Sci. AMS 2023, 20, 1407. [Google Scholar] [CrossRef]
- Redling, D.; Bialak, S.; El Ghormli, L.; Chernausek, S.D.; Jones, K.; Tryggestad, J.B. Circulating MicroRNAs as Predictors of Beta Cell Function in Youth-Onset Type 2 Diabetes: The TODAY Study. J. Clin. Endocrinol. Metab. 2024, 109, 3027–3035. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, D.; Lou, X. The Cardiovascular Benefits of Glucagon-like Peptide-1 Receptor Agonists as Novel Diabetes Drugs Are Mediated via the Suppression of miR-203a-3p and miR-429 Expression. DNA Cell Biol. 2024, 43, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Al Zamily, A.M. Effect of GLP-1 Receptor Agonists (Liraglutide) on Glycemic Parameters and Circulating miRNA Expression in Type 2 Diabetes Mellitus. Med. Mod. Mod. Med. 2025, 32, 143–150. [Google Scholar] [CrossRef]
- Pehlivan, D.Y.; Yildiz, H.; Kaya, G. Dapagliflozin Modulates MicroRNA Expression in Type 2 Diabetes Patients with Diabetic Nephropathy: A Retrospective Study. Eur. J. Ther. 2025, 31, 1–10. [Google Scholar] [CrossRef]
- Iacobellis, G.; Goldberger, J.J.; Lamelas, J.; Martinez, C.A.; Sterling, C.M.; Bodenstab, M.; Frasca, D. Liraglutide Effects on Epicardial Adipose Tissue Micro-RNAs and Intra-Operative Glucose Control. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103726. [Google Scholar] [CrossRef] [PubMed]
- Top, W.M.; Kooy, A.; Stehouwer, C.D. Metformin: A Narrative Review of Its Potential Benefits for Cardiovascular Disease, Cancer and Dementia. Pharmaceuticals 2022, 15, 312. [Google Scholar] [CrossRef]
- Pillai, A.A.; Melo, L.; Frishman, W.H.; Aronow, W.S. The Effects of Metformin on Weight Loss, Cardiovascular Health, and Longevity. Cardiol. Rev. 2024; online ahead of print. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S181–S206. [Google Scholar] [CrossRef]
- Handgraaf, S.; Dusaulcy, R.; Visentin, F.; Philippe, J.; Gosmain, Y. Let-7e-5p Regulates GLP-1 Content and Basal Release from Enteroendocrine L Cells from DIO Male Mice. Endocrinology 2020, 161, bqz037. [Google Scholar] [CrossRef]
- Shi, R.; Chen, L.; Wang, W.; Deng, Y.; Liu, Y.; Zhou, H.; Lin, R. Plasma miR-26a-5p Is a Biomarker for Retinal Neurodegeneration of Early Diabetic Retinopathy. Eye 2021, 35, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, X.; Jiang, L.; Mo, C.; Luo, M.; Hu, K. circFTO Upregulates Transforming Growth Factor-Alpha through Sponging miR-148a-3p to Regulate High Glucose-Induced ARPE-19 Cells Injury. Bioengineered 2022, 13, 11489–11502. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-Y.; Peng, C.-T.; Wang, H.-J. MicroRNA-146a-5p Mediates High Glucose-Induced Endothelial Inflammation via Targeting Interleukin-1 Receptor-Associated Kinase 1 Expression. Front. Physiol. 2017, 8, 551. [Google Scholar] [CrossRef]
- Fu, D.; Zhao, H.; Huang, Y.; Li, J.; Feng, H.; Li, A.; Liu, Y.; He, L. Metformin Regulates the Effects of IR and IGF-1R Methylation on Mast Cell Activation and Airway Reactivity in Diabetic Rats with Asthma through miR-152-3p/DNMT1 Axis. Cell Biol. Toxicol. 2023, 39, 1851–1872. [Google Scholar] [CrossRef]
- Okamura, T.; Okada, H.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Hamaguchi, M.; Fukui, M. Let-7e-5p Regulates IGF2BP2, and Induces Muscle Atrophy. Front. Endocrinol. 2021, 12, 791363. [Google Scholar] [CrossRef]
- Chen, W.; Lin, G.; Yao, Y.; Chen, J.; Shui, H.; Yang, Q.; Wang, X.; Weng, X.; Sun, L.; Chen, F.; et al. MicroRNA Hsa-Let-7e-5p as a Potential Prognosis Marker for Rectal Carcinoma with Liver Metastases. Oncol. Lett. 2018, 15, 6913–6924. [Google Scholar] [CrossRef]
- Tie, Y.; Chen, C.; Yang, Y.; Qian, Z.; Yuan, H.; Wang, H.; Tang, H.; Peng, Y.; Du, X.; Liu, B. Upregulation of Let-7f-5p Promotes Chemotherapeutic Resistance in Colorectal Cancer by Directly Repressing Several pro-Apoptotic Proteins. Oncol. Lett. 2018, 15, 8695–8702. [Google Scholar] [CrossRef]
- Kerimis, D.; Kontos, C.K.; Christodoulou, S.; Papadopoulos, I.N.; Scorilas, A. Elevated Expression of miR-24-3p Is a Potentially Adverse Prognostic Factor in Colorectal Adenocarcinoma. Clin. Biochem. 2017, 50, 285–292. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Zhang, L.; Jiang, G.; Wang, B.; Jiang, L. Extracellular Vesicle-Derived miR-26b-5p Is up-Regulated in the Serum of Patients with Diabetic Retinopathy. Comb. Chem. High Throughput Screen. 2022, 25, 877–882. [Google Scholar]
- Jung, S.E.; Kim, S.W.; Jeong, S.; Moon, H.; Choi, W.S.; Lim, S.; Lee, S.; Hwang, K.-C.; Choi, J.-W. MicroRNA-26a/b-5p Promotes Myocardial Infarction-Induced Cell Death by Downregulating Cytochrome c Oxidase 5a. Exp. Mol. Med. 2021, 53, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zou, Y.; Zhang, H. MicroRNA-126-5p Facilitates Hypoxia-Induced Vascular Endothelial Cell Injury via HIPK2. Ann. Clin. Lab. Sci. 2022, 52, 918–926. [Google Scholar]
- Wang, Y.; Feng, Y.; Zhang, H.; Niu, Q.; Liang, K.; Bian, C.; Li, H. Clinical value and role of miR-129-5p in non-alcoholic fatty liver disease. Horm. Metab. Res. 2021, 53, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Yang, M.; Li, H.; Xu, R.; Liu, J. miR-130b Regulates PTEN to Activate the PI3K/Akt Signaling Pathway and Attenuate Oxidative Stress-Induced Injury in Diabetic Encephalopathy. Int. J. Mol. Med. 2021, 48, 141. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Rizzo, M.; Haluzík, M.; Janež, A. Efficacy of GLP-1 RA Approved for Weight Management in Patients with or without Diabetes: A Narrative Review. Adv. Ther. 2022, 39, 2452–2467. [Google Scholar] [CrossRef]
- Abhilasha, A.; Mitra, P.; Suri, S.; Saxena, I.; Shukla, R.K.; Shukla, K.K.; Sharma, P. Downregulation of miR-24-3p and miR-198 in Newly Diagnosed Type 2 Diabetes Mellitus. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Sánchez-Ceinos, J.; Rangel-Zuñiga, O.A.; Clemente-Postigo, M.; Podadera-Herreros, A.; Camargo, A.; Alcalá-Diaz, J.F.; Guzmán-Ruiz, R.; López-Miranda, J.; Malagón, M.M. miR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset. Mol. Ther. Nucleic Acids 2021, 23, 1035–1052. [Google Scholar] [CrossRef] [PubMed]
- Sedgeman, L.; Beysen, C.; Ramirez Solano, M.; Michell, D.; Sheng, Q.; Zhao, S.; Turner, S.; Linton, M.F.; Vickers, K.C. Beta Cell Secretion of miR-375 to HDL Is Inversely Associated with Insulin Secretion. Sci. Rep. 2019, 9, 3803. [Google Scholar] [CrossRef]
- Olivieri, F.; Spazzafumo, L.; Bonafè, M.; Recchioni, R.; Prattichizzo, F.; Marcheselli, F.; Micolucci, L.; Mensà, E.; Giuliani, A.; Santini, G.; et al. MiR-21-5p and miR-126a-3p Levels in Plasma and Circulating Angiogenic Cells: Relationship with Type 2 Diabetes Complications. Oncotarget 2015, 6, 35372. [Google Scholar] [CrossRef]
- Shi, C.; Huang, F.; Gu, X.; Zhang, M.; Wen, J.; Wang, X.; You, L.; Cui, X.; Ji, C.; Guo, X. Adipogenic miRNA and Meta-Signature miRNAs Involved in Human Adipocyte Differentiation and Obesity. Oncotarget 2016, 7, 40830. [Google Scholar] [CrossRef]
- Ono, K.; Igata, M.; Kondo, T.; Kitano, S.; Takaki, Y.; Hanatani, S.; Sakaguchi, M.; Goto, R.; Senokuchi, T.; Kawashima, J.; et al. Identification of microRNA That Represses IRS-1 Expression in Liver. PLoS ONE 2018, 13, e0191553. [Google Scholar] [CrossRef]
- Rong, Y.; Bao, W.; Shan, Z.; Liu, J.; Yu, X.; Xia, S.; Gao, H.; Wang, X.; Yao, P.; Hu, F.B.; et al. Increased microRNA-146a Levels in Plasma of Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS ONE 2013, 8, e73272. [Google Scholar] [CrossRef]
- Liu, R.; Liu, C.; He, X.; Sun, P.; Zhang, B.; Yang, H.; Shi, W.; Ruan, Q. MicroRNA-21 Promotes Pancreatic β Cell Function through Modulating Glucose Uptake. Nat. Commun. 2022, 13, 3545. [Google Scholar] [CrossRef]
- Ghanem, Y.M.; Moursy, E.Y.; Elsayed, E.T.; El Sayed, N.Y.; Mahmoud, R.F. Expression of microRNA-27b in Type 2 Diabetic Patients and Relation to Microvascular Complications. Alex. J. Med. 2024, 60, 336–341. [Google Scholar] [CrossRef]
- Ye, M.; Li, D.; Yang, J.; Xie, J.; Yu, F.; Ma, Y.; Zhu, X.; Zhao, J.; Lv, Z. MicroRNA-130a Targets MAP3K12 to Modulate Diabetic Endothelial Progenitor Cell Function. Cell. Physiol. Biochem. 2015, 36, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-Y.; Cu, W.; Sun, Y.-H.; Chen, X. MiRNA-203a-3p Inhibits Inflammatory Response in Preeclampsia through Regulating IL24. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5223–5230. [Google Scholar]
- Ke, Z.; Chen, Y.; Lin, X.; Jiang, J. MicroRNA-429 Inhibits Microglial Inflammation by Targeting IKKβ Through the NF-κB Pathway. Mediators Inflamm. 2025, 2025, 7165782. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Yan, H.; Liang, J.; Du, C.; Zhao, X.; Sun, L.; Chen, Y. MicroRNA-21 Regulates Hepatic Glucose Metabolism by Targeting FOXO1. Gene 2017, 627, 194–201. [Google Scholar] [CrossRef]
- Faheem, A.; Rehman, K.; Jabeen, K.; Akash, M.S.H. Nicotine-Mediated Upregulation of microRNA-141 Expression Determines Adipokine-Intervened Insulin Resistance. Environ. Toxicol. Pharmacol. 2020, 80, 103506. [Google Scholar] [CrossRef]
- Qin, Q.; Cui, L.; Zhou, Z.; Zhang, Z.; Wang, Y.; Zhou, C. Inhibition of microRNA-141-3p Reduces Hypoxia-Induced Apoptosis in H9c2 Rat Cardiomyocytes by Activating the RP105-Dependent PI3K/AKT Signaling Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7016. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Chi, J.-Y.; Liang, H.-H.; Huangfu, L.-T.; Guo, Z.-D.; Zou, H.; Yin, X.-H. MicroRNA-377 Mediates Cardiomyocyte Apoptosis Induced by Cyclosporin A. Can. J. Cardiol. 2016, 32, 1249–1259. [Google Scholar] [CrossRef]
- Yang, G.; Li, X.; Wu, Y.; Zhong, S. MicroRNA-377 Knockdown Suppresses High Glucose-Induced Proliferation and Inflammation in Human Mesangial Cells. Chin. J. Nephrol. 2018, 34, 446–452. [Google Scholar]
- Chen, L.-Y.; Xia, X.-D.; Zhao, Z.-W.; Gong, D.; Ma, X.-F.; Yu, X.-H.; Zhang, Q.; Wang, S.-Q.; Dai, X.-Y.; Zheng, X.-L.; et al. MicroRNA-377 Inhibits Atherosclerosis by Regulating Triglyceride Metabolism through the DNA Methyltransferase 1 in Apolipoprotein E-Knockout Mice. Circ. J. 2018, 82, 2861–2871. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, Y.-F.; Shen, N.-N. The Expression Profiles and Roles of microRNAs in Cardiac Glucose Metabolism. Front. Endocrinol. 2025, 16, 1565385. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-B.; Wu, Q.; Liu, J.; Fan, Y.-Z.; Yu, K.-F.; Cai, Y. miR-199a-3p Is Involved in the Pathogenesis and Progression of Diabetic Neuropathy through Downregulation of SerpinE2. Mol. Med. Rep. 2017, 16, 2417–2424. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Modi, A.; Khokhar, M.; Sankanagoudar, S.; Yadav, D.; Sharma, S.; Purohit, P.; Sharma, P. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Curr. Diabetes Rev. 2021, 17, 122–135. [Google Scholar]
- Wang, W.-Y.; Zheng, Y.-S.; Li, Z.-G.; Cui, Y.-M.; Jiang, J.-C. MiR-92a Contributes to the Cardiovascular Disease Development in Diabetes Mellitus through NF-κB and Downstream Inflammatory Pathways. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3070–3079. [Google Scholar]
- Giglio, R.V.; Papanas, N.; Rizvi, A.A.; Ciaccio, M.; Patti, A.M.; Ilias, I.; Pantea Stoian, A.; Sahebkar, A.; Janez, A.; Rizzo, M. An Update on the Current and Emerging Use of Thiazolidinediones for Type 2 Diabetes. Medicina 2022, 58, 1475. [Google Scholar] [CrossRef]
- Ndakotsu, A.; Vivekanandan, G. The Role of Thiazolidinediones in the Amelioration of Nonalcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022, 14, e25380. [Google Scholar] [CrossRef]
- Saeidi, L.; Shahrokhi, S.Z.; Sadatamini, M.; Jafarzadeh, M.; Kazerouni, F. Can Circulating miR-7-1-5p, and miR-33a-5p Be Used as Markers of T2D Patients? Arch. Physiol. Biochem. 2023, 129, 771–777. [Google Scholar] [CrossRef]
- Katayama, M.; Wiklander, O.P.; Fritz, T.; Caidahl, K.; El-Andaloussi, S.; Zierath, J.R.; Krook, A. Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes 2019, 68, 515–526. [Google Scholar] [CrossRef]
- Wong, L.L.; Saw, E.L.; Lilyanna, S.; Martinez, E.C.; Lam, C.S.; Richards, A.M. Circulating miR-503 and miR-374b-5p Are Associated with Heart Failure. Circulation 2015, 132, A15090. [Google Scholar] [CrossRef]
- Lewis, K.A.; Stroebel, B.M.; Zhang, L.; Aouizerat, B.; Mattis, A.N.; Flowers, E. MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. Int. J. Mol. Sci. 2024, 25, 5684. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, Z.; Wang, H.; Liu, H.; Chen, X. MicroRNA-195-5p Facilitates Endothelial Dysfunction by Inhibiting Vascular Endothelial Growth Factor A in Gestational Diabetes Mellitus. Reprod. Biol. 2022, 22, 100605. [Google Scholar] [CrossRef] [PubMed]
- Rastegar-Moghaddam, S.H.; Bigham, M.; Lombardi, G.; Mohammadipour, A.; Malvandi, A.M. MicroRNA-24 Therapeutic Potentials in Infarction, Stroke, and Diabetic Complications. Mol. Biol. Rep. 2024, 51, 1137. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Sharma, S.; Khan, Y. DPP-4 Inhibitors for Treating T2DM-Hype or Hope? An Analysis Based on the Current Literature. Front. Mol. Biosci. 2023, 10, 1130625. [Google Scholar] [CrossRef]
- Martinez-Arroyo, O.; Ortega, A.; Flores-Chova, A.; Sanchez-Garcia, B.; Garcia-Garcia, A.B.; Chaves, F.J.; Martin-Escudero, J.C.; Forner, M.J.; Redon, J.; Cortes, R. High miR-126-3p Levels Associated with Cardiovascular Events in a General Population. Eur. J. Intern. Med. 2023, 113, 49–56. [Google Scholar] [CrossRef]
- Guo, X.; Huang, M.; Yang, D.; Luo, Z. Expression and Clinical Significance of Plasma miR-223 in Patients with Diabetic Nephropathy. Int. J. Endocrinol. 2023, 2023, 9663320. [Google Scholar] [CrossRef]
- Tang, P.; Xu, Y.; Zhang, J.; Nan, J.; Zhong, R.; Luo, J.; Xu, D.; Shi, S.; Zhang, L. miR-223-3p Mediates the Diabetic Kidney Disease Progression by Targeting IL6ST/STAT3 Pathway. Biochem. Biophys. Res. Commun. 2023, 648, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Shimabukuro, M.; Yagi, S.; Nishimoto, S.; Kozuka, C.; Fukuda, D.; Soeki, T.; Masuzaki, H.; Tsutsui, M.; Sata, M. MicroRNA-378 Regulates Adiponectin Expression in Adipose Tissue: A New Plausible Mechanism. PLoS ONE 2014, 9, e111537. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jia, Z.; Zhao, X.; Xu, M.; Chen, M. Expression of miR-210 in the Peripheral Blood of Patients with Newly Diagnosed Type 2 Diabetes Mellitus and Its Effect on the Number and Function of Endothelial Progenitor Cells. Microvasc. Res. 2020, 131, 104032. [Google Scholar] [CrossRef]
- Altabas, V.; Altabas, K.; Berković-Cigrovski, M.; Maloševac, S.; Vrkljan, M.; Nikolić Heitzler, V. Glucose Metabolism Disorders in Patients with Acute Coronary Syndromes. Acta Clin. Croat. 2012, 51, 71–77. [Google Scholar] [PubMed]
- Collado, A.; Jiao, T.; Kontidou, E.; Carvalho, L.R.R.A.; Chernogubova, E.; Yang, J.; Zaccagnini, G.; Zhao, A.; Tengbom, J.; Zheng, X.; et al. miR-210 as a Therapeutic Target in Diabetes-Associated Endothelial Dysfunction. Br. J. Pharmacol. 2025, 182, 417–431. [Google Scholar] [CrossRef]
- McGill, J.B.; Hirsch, I.B.; Parkin, C.G.; Aleppo, G.; Levy, C.J.; Gavin, J.R. 3rd. The Current and Future Role of Insulin Therapy in the Management of Type 2 Diabetes: A Narrative Review. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2024, 15, 1085–1098. [Google Scholar] [CrossRef]
- Wang, S.; Yi, P.; Wang, N.; Song, M.; Li, W.; Zheng, Y. LncRNA TUG1/miR-29c-3p/SIRT1 Axis Regulates Endoplasmic Reticulum Stress-Mediated Renal Epithelial Cells Injury in Diabetic Nephropathy Model In Vitro. PLoS ONE 2021, 16, e0252761. [Google Scholar] [CrossRef]
- Zahari Sham, S.Y.; Ng, C.T.; Azwar, S.; Yip, W.K.; Abdullah, M.; Thevandran, K.; Osman, M.; Seow, H.F. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press. Res. 2022, 47, 81–93. [Google Scholar] [CrossRef]
- Fan, S.; Li, N. Obesity-Induced Adipocytes Promote Diabetes Mellitus by Regulating β Islet Cell Function through Exosome miR-138-5p. Sci. Rep. 2025, 15, 17275. [Google Scholar] [CrossRef]
- Fu, X.-L.; He, F.-T.; Li, M.-H.; Fu, C.-Y.; Chen, J.-Z. Up-Regulation of miR-192-5p Inhibits the ELAVL1/PI3Kδ Axis and Attenuates Microvascular Endothelial Cell Proliferation, Migration and Angiogenesis in Diabetic Retinopathy. Diabet. Med. 2023, 40, e15077. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yao, J.; Xie, H.; Wang, C.; Chen, J.; Wei, K.; Ji, Y.; Liu, L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front. Physiol. 2021, 12, 709123. [Google Scholar] [CrossRef]
- Zhang, R.; Qin, Y.; Zhu, G.; Li, Y.; Xue, J. Low Serum miR-320b Expression as a Novel Indicator of Carotid Atherosclerosis. J. Clin. Neurosci. 2016, 33, 252–258. [Google Scholar] [CrossRef]
- Xu, W.; Liang, Y.; Zhuang, Y.; Yuan, Z. Identification of miRNA-mRNA Regulatory Networks Associated with Diabetic Retinopathy Using Bioinformatics Analysis. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1628–1636. [Google Scholar] [CrossRef]
- Pushkaryov, V.; Sokolova, L.; Kovzun, O.; Belchina, Y.; Vatseba, T.; Pushkaryov, V.; Tronko, M. The miRNA-126 content in the blood serum of patients with type 2 diabetes after treatment with certain hypoglycemic drugs. Probl. Endocr. Pathol. 2020, 73, 81–88. [Google Scholar] [CrossRef]
- Xing, Q.; Feng, B.; Yong, Z.; Fengqin, X.; Min, C.; Wen, H. Effect of Dapagliflozin on Urinary Exosomal microRNA in Early-Stage Type 2 Diabetes Mellitus Diabetic Kidney Disease. Chin. J. Diabetes Mellit. 2021, 13, 73. [Google Scholar]
- Shi, Y.; Zhu, Y.; Xie, A.; Xiang, W.; Huang, X.; Li, N.; Wu, S. Effect of Metformin on miRNA Expression in Type 2 Diabetic Patients and Potential Targets. Chin. J. Endocrinol. Metab. 2021, 782–788. [Google Scholar] [CrossRef]
- Chen, R.; Liu, F.; Tan, H.; Han, S.; Chen, Y.; Su, C. Effects of Dapagliflozin on the Expression of MicroRNA-423-5p and Cardiac Function in Patients with Type 2 Diabetes Mellitus and Chronic Heart Failure. Chin. Gen. Pract. 2023, 26, 1733. [Google Scholar]

| Reference | Study Population | Sample Type | miRNA Platform/ Method | Normalization/ Hemolysis Control | Intervention/Control Group | Outcome | Guidelines Adherence |
|---|---|---|---|---|---|---|---|
| Hong et al., 2015 [50] | 72 patients with T2DM and CAD Age: 45–75 years HbA1c: no data | serum | RT-qPCR/TaqMan microRNA assay | data not provided/data not provided | randomly assigned to pioglitazone or placebo in a 1:1 ratio follow-up: 9 months | neointimal volume (mm3, measured by optical coherence tomography) was significantly lower in the pioglitazone group increased FMD (mm, color Doppler) in the pioglitazone group significant increases in circulating miRNA-24 in the pioglitazone group | 70% |
| Demirsoy et al., 2018 [51] | 47 patients with drug-naive T2DM Age: males 54 ± 11 years, females: 49 ± 16 years HbA1c: males 7.2 ± 3.6%, females: 7.6 ± 4.2% | plasma | qRT-PCR/Fluidigm BioMark microfluidic array | global mean normalization/data not provided | metformin follow-up: 3 months no control group | let-7e-5p, let-7f-5p, miR21-5p, miR-24-3p, miR-26b-5p, miR-126-5p, miR-129-5p, miR-130b-3p, miR-146a-5p, miR-148a-3p, miR-152-3p, miR-194-5p, miR99a-5p were significantly downregulated | 75% |
| Catanzaro et al., 2018 [52] | 40 T2DM patients treated with metformin age > 65 years HbA1c: 7.5–9.0% | plasma | qRT-PCR/TaqMan Low-Density Array v3.0 | Global mean normalization/visual inspection + expression check of hemolysis-sensitive miRNAs | sitagliptin 100 mg follow up 15 months no placebo group | miR-378 associated with a treatment failure miR-126-3p and miR-223, associated with favorable glycemic responses to sitagliptin (HbA1c < 7.5% or HbA1c reduction >0.5%) | 70% |
| Nunez Lopez et al., 2019 [53] | 24 insulin-naive patients with T2DM Age: responders: 62.8 ± 8.3 years non-responders: 56.0 ± 10.2 years HbA1c: responders: 6.7 ± 0.4% non-responders: 7.6 ± 1.2% | plasma | qRT-PCR/TaqMan Array MicroRNA Cards | Spike-in + quantile normalization/ratio-based molecular control | basal insulin detemir and premeal insulin aspart follow-up: 4 weeks no control group | baseline levels of circulating miR-145-5p, miR-29c-3p, and HbA1c predicted favorable response to insulin treatment (fasting blood glucose < 7 mmol/L) significant longitudinal changes due to insulin treatment in the circulating levels of miR-138-5p, miR-192-5p, miR-195-5p, miR-320b, and let-7a-5p characterized the responder group and correlated with the changes in measures of beta-cell function (ISSI-2, %) and insulin sensitivity (HOMA-IR, %) | 70% |
| Solini et al., 2019 [54] | 40 patients with T2DM and hypertension age: 40–75 years HbA1c: <8.0% | serum | qRTPCR/TaqMan Advanced MicroRNA Assays | multiple endogenous reference miRNAs/data not provided | randomly assigned to dapagliflozin or hydrochlorothiazide in a 1:1 ratio follow-up: 4 weeks no placebo group | dapagliflozin, but not HCT, significantly up-regulated miR30e-5p and down-regulated miR199a-3p no changes in FMD or carotid-femoral pulse-wave velocity (mm, color Doppler) | 60% |
| Giglio et al., 2020 [55] | 25 patients with T2DM on metformin age: 64.6 ± 8.4 years HbA1c: 8.3% (IQR: 0.6%) | serum | qRT-PCR/SYBR Green–based detection | Single endogenous control/data not provided | liraglutide follow-up: 4 months no control group | levels of miRNA-27b, miRNA-130a and miRNA-210a were significantly increased in the liraglutide group, independently of metabolic parameters (blood glucose-mmol/L, HbA1cin %, blood lipids in mmol/L) | 50% |
| Gaborit et al., 2020 [56] | 49 obese T2DM patients treated with metformin and/or insulin secretagogues Age: study group 52 ± 10 years control group: 55 ± 8 years HbA1c: Study group: 7.43% Control group: 7.57 ± 1.56% | Serum | qRT-PCR/ miScript miRNA PCR Array | cel-miR-39 exogenous control/data not provided | liraglutide vs. placebo follow-up: 4 weeks | no effect on circulating miRNAs | 35% |
| Cho et al., 2021 [57] | 57 patients with T2DM age: healthy volunteer: 42.3 ± 11.5 DPP4 inhibitor: 53.2 ± 11.6 sulfonylurea: 53.7 ± 11.9 HbA1c: DPP4 inhibitor: 6.76 ± 0.94% sulfonylurea: 7.21 ± 1.34% | Urine | qRT-PCR/NanoString nCounter Human v3 miRNA Expression Assay and TaqMan Advanced miRNA qPCR | NanoString internal normalization/not applicable | DPP-4 inhibitor group (n = 34) sulfonylurea group (n = 23) healthy volunteers (n = 7) no placebo group follow-up: 3 months | no significant difference in miRNA expression between the DPP-4 inhibitor and sulfonylurea groups. miR-23a-3p was significantly overexpressed in the diabetes group | 60% |
| Formichi et al., 2021 [58] | 26 T2DM patients treated with metformin age: 60.3 ± 10.3 (35–79) years HbA1c: 7.7 ± 0.58 (6–8.8)% | Plasma | qRT-PCR/TaqMan miRNA qRT-PCR | miR-191-5p used as endogenous control/data not provided | GLP-1 RAs: liraglutide (n = 8) or dulaglutide (n = 18) no control group follow-up: 12 months | miR-21-5p, miR-24-3p, miR-223-3p and miR-375-5p at baseline associated with favorable glycaemic outcome (HbA1c < 7%) higher baseline miR-15a-5p expression was associated with weight loss > 5% | 70% |
| Nunez Lopez et al., 2022 [59] | 24 subjects with well controlled T2DM treated with diet and/or metformin age: 62.50 [IQR: 48.50, 65.25] years in the study group 61.50 [IQR 56.00, 66.00] years in the placebo group HbA1c < 7.0% | Circulating extracellular vesicles, Adipose tissue | TaqMan MicroRNA Array (ThermoFisher ViiA-7) and RNeasy Lipid Tissue Mini Kit | miR-126 & miR-30b/data not provided | participants randomized to either placebo or pioglitazone in a 1:1 ratio follow-up: 12 weeks | association of circulating miR-374b-5p changes with changes in HbA1c (%), fasting plasma glucose (mmol/L), and insulin resistance parameters (Si, AIRg, Sg) circulating miR-7-5p, miR-20a-5p, miR-92a-3p, miR-195-5p, and miR-374b-5p significantly downregulated in response to pioglitazone miR-195-5p upregulated in response to pioglitazone in fat tissue | 70% |
| Mone et al., 2023 [60] | 30 frail older adults with T2DM and HFpEF Age > 65 years HbA1c: no data | Plasma | RT-qPCR/RT: miRCURY LNA Universal RT microRNA PCR kit | miR-320a and miR-423-5p/data not provided | participants assigned to empagliflozin, metformin or insulin in a 1:1:1 ratio no placebo group 10 healthy controls follow-up: 3 months | miR-21 and miR-92 were significantly reduced in the empagliflozin group compared to other groups | 55% |
| Tian et al., 2023 [61] | 86 T2DM with NAFLD treated with diet and/or metformin age 40–70 years; body mass index (BMI) of 18.0–25.0 kg/m2 HbA1c: no data | Serum | qRT-PCR, SYBR Green | U6 snRNA as endogenous control/data not provided | linagliptin (5 mg/daily) vs. glimepiride (2 mg/daily) no placebo group follow-up: 6 months | miR-210 positively correlated with fasting blood glucose level and 2 h post-breakfast blood glucose level (mmol/L) miR-220 negatively correlated with fasting insulin level miR-210 ALT/AST ratio positively correlated with miR-210 expression no difference between study groups in miR-210 expression | 50% |
| Redling et al., 2024 [62] | 365 youth with T2DM Age: 10–17 years T2DM duration < 2 years BMI ≥ 85th percentile for age HbA1c: no data | Plasma | NanoString nCounter Human v3 miRNA Panel and TaqMan Advanced miRNA Assays | data not provided/data not provided | participants randomily assigned to: metformin, metformin + rosiglitazone, or metformin + lifestyle intervention no placebo group follow-up 2–10 years | high miRNA-122-5p and low miRNA-431-5p and miRNA-let-7g-5p predicted treatment failure specified as the outcome measure (HbA1c ≥ 8% for at least 6 months or inability to wean from insulin after a metabolic decompensation) | 60% |
| Liu et al., 2024 [63] | 63 patients with T2DM and CAD matched with 63 patients with T2DM without CAD Age: no data HbA1c: 8.64 ± 2.15% | Serum | qRT-PCR using Qiagen miScript system and SYBR Green | Exogenous spike-in control: cel-miR-39/data not provided | liraglutide no placebo group follow-up: 12 months | miR-203a-3p and miR-429 decreased from baseline levels improvements in clinical metabolic parameters (HbA1c-%, blood lipids–mg/dL) | 75% |
| Al Zamily, 2025 [64] | 60 patients recently diagnosed with T2DM Age: 46.04 ± 13.71 years HbA1c: 7.89 ± 0.57% | Blood | qRT-PCR/Two-step qRT-PCR on Rotor-Gene Q thermocycler (Qiagen/Thermo Fisher) | data not provided/data not provided | liraglutide a 1.5 mg daily no control group follow-up: 6 months | miRNA-146a and miRNA-222 levels were upregulated miRNA-21 was downregulated miRNA-146a and miRNA-222 negatively correlated with HbA1c (%) and fasting blood glucose, (mmol/L) while miRNA-21 correlated positively | 50% |
| Pehlivan et al., 2025 [65] | 47 T2DM patients with diabetic nephropathy age: 54.09 ± 8.48 years HbA1c: 9.85 ± 1.83% | Plasma | qRT-PCR/D3EAL miRNA qPCR System kit | data not provided/data not provided | dapagliflozin no control group follow-up: 60 days | reductions in miRNA-21, miRNA-141, and miRNA-377 levels, baseline miRNA-21 levels correlated with HbA1c (%) reductions | 90% |
| Iacobellis et al., 2025 [66] | 38 patients with T2DM and CAD age: study group: 63.7 ± 7.7 years control group: 65 ± 11.6 years HbA1c: 6.9 ± 1.1% vs. 7.2 ± 1.3% | Epicardial and Subcutaneous Adipose Tissue | qRT-PCR, TaqMan primers | U6 (for miRNAs), GAPDH (for mRNA)/data not provided | liraglutide vs. placebo follow-up: 12 weeks | miR16, miR155 and miR181a were significantly higher in epicardial adipose tissue than in subcutaneous adipose tissue no significant changes in the liraglutide group | 75% |
| Design | Tool Used | Domain: 1 | Domain: 2 | Domain: 3 | Domain: 4 | Domain: 5 | Domain: 6 | Domain: 7 | Overall Risk | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Hong et al., 2015 [50] | RCT | RoB2 | some concerns | some concerns | some concerns | low | low | n.a. | n.a. | some concerns | Mainly due to randomization and open-label design |
| Demirsoy et al., 2018 [51] | pre-post intervention study without randomization or a control group | ROBINS-I | serious | moderate | low | moderate | serious | low | serious | serious | Confounding (no control group) Potential selective reporting of significant miRNAs |
| Catanzaro et al., 2018 [52] | non-randomized, uncontrolled intervention study | ROBINS-I | serious | moderate | low | moderate | some concerns | low | serious | serious | Confounding (no control group, baseline differences) Selective outcome reporting (multiple miRNAs tested; only significant ones reported) |
| Nunez Lopez et al., 2019 [53] | non-randomized, single-arm intervention study | ROBINS-I | serious | moderate | low | low | low | low | moderate | serious | Serious risk of bias, mainly due to post hoc classification of responders/nonresponders and potential confounding, despite rigorous lab and statistical methods. |
| Solini et al., 2019 [54] | RCT | RoB2 | low | some concerns | low | low | low | n.a. | n.a. | low | open-label design |
| Giglio et al., 2020 [55] | prospective, single-arm, interventional study | ROBINS-I | serious | moderate | low | low | low | moderate | serious | serious | lack of control group, confounding, and selective outcome reporting |
| Gaborit et al., 2020 [56] | RCT | RoB2 | low to moderate | moderate | low | low | low to moderate | n.a. | n.a. | moderate | short duration, open-label design, and multiple exploratory outcomes |
| Cho et al., 2021 [57] | prospective observational study | ROBINS-I | moderate to serious | moderate | low | low | low to moderate | low | moderate | moderate | potential confounding and the small sample size for primary miRNA profiling. |
| Formichi et al., 2021 [58] | prospective, single-arm, observational pilot study | ROBINS-I | moderate | moderate | low | low | low to moderate | low | moderate | moderate | small sample size, lack of control group, and potential confounding. |
| Nunez Lopez et al., 2022 [59] | RCT | RoB2 | low | low | low | low | low to moderate | n.a. | n.a. | low | small sample size |
| Mone et al., 2023 [60] | prospective, non-randomized, observational interventional study | ROBINS-I | serious | moderate | low | low to moderate | low | low | moderate | serious | confounding due to non-randomized allocation |
| Tian et al., 2023 [61] | RTC | RoB2 | low | low to moderate | low | low | low to moderate | n.a. | n.a. | low to moderate | lack of blinding and selective reporting. |
| Redling et al., 2024 [62] | randomized clinical trial (RCT) in youth-onset T2D, but the microRNA analyses were largely observational within the trial | ROBINS-I | moderate | low | low | low | low to moderate | low | moderate | moderate | confounding, selective reporting, and missing data introduce moderate concerns. |
| Liu et al., 2024 [63] | observational study with pre-post intervention measurements | ROBINS-I | serious | moderate | low | low | low to moderate | low | moderate | serious | confounding due to disease group differences (T2DM with vs. without CAD). |
| Al Zamily, 2025 [64] | single-arm prospective interventional study | ROBINS-I | serious | low to moderate | low | low to moderate | low | low | moderate | serious | lack of a control group, leading to high risk of confounding |
| Pehlivan et al., 2025 [65] | retrospective, single-arm pre/post study | ROBINS-I | serious | moderate | low | low | low | low | moderate | serious | lack of control group and confounding, plus potential selective outcome reporting |
| Iacobellis et al., 2025 [66] | RTC | RoB2 | low | low | low | low | low | n.a. | n.a. | low | none |
| Drug Class | Evidence Base | GRADE Level | Rationale |
|---|---|---|---|
| metformin | mostly small RCTs/observational studies | low | consistent downregulation of multiple miRNAs, mechanistic links to β-cell function and inflammation, but limited sample size and follow-up |
| GLP-1 RAs | small heterogeneous trials | low | mixed directionality of miRNA changes, inconsistent endpoints, indirect evidence for clinical translation |
| SGLT2 inhibitors | small RCTs/observational studies | low | some consistent miRNA changes related to inflammation/vascular protection, limited clinical correlation |
| TZDs | small RCTs/observational studies | low to moderate | miRNA changes linked to HbA1c and endothelial function, but sample sizes limited, some context-dependent results |
| DPP-4 inhibitors | small RTCs/observational studies | low | highly variable miRNA effects, inconsistent correlations with clinical outcomes |
| insulin therapy | small RCT | low | predictive miRNAs identified, dynamic changes observed, but mostly short-term studies |
| Drug Class | Predominant miRNAs | Canonical Functions/Mechanistic Roles | Translational/Clinical Link |
|---|---|---|---|
| Metformin | let-7e-5p, let-7f-5p, miR-21-5p, miR-24-3p, miR-26b-5p, miR-126-5p, miR-129-5p, miR-130b-3p, miR-146a-5p, miR-148a-3p, miR-152-3p, miR-194-5p, miR-99a-5p | Carbohydrate metabolism (let-7e-5p), chronic diabetic complications (miR-26b-5p, miR-148a-3p), inflammation (miR-146a-5p, miR-152-3p), apoptosis, muscle atrophy, vascular and cancer effects | Improved HbA1c, potential cardiovascular and oncologic benefits; neuropathy risk via miR-130b downregulation |
| GLP-1 RAs | miR-21-5p, miR-24-3p, miR-223-3p, miR-375-5p, miR-15a-5p, miR-146a, miR-222, miR-27b, miR-130a, miR-210, miR-203a-3p, miR-429 | Glucose regulation, insulin secretion/resistance (miR-24-3p, miR-223-3p, miR-375-5p), angiogenesis (miR-21-5p), obesity modulation (miR-15a-5p), inflammation (miR-203a-3p, miR-429), vascular health (miR-130a) | Glycemic control, weight reduction, cardiovascular and renal protective effects; mechanistic insights into miRNA modulation of glucose and vascular pathways |
| SGLT2 inhibitors | miR-21, miR-141, miR-377, miR-30e-5p, miR-199a-3p, miR-92 | Inflammation (miR-21, miR-377), vascular protection (miR-377, miR-30e-5p), chronic complications (miR-199a-3p), endothelial function (miR-92) | Improved HbA1c, potential β-cell and cardiovascular protection, nephropathy prevention, limited evidence on vascular functional outcomes |
| Thiazolidinediones (TZDs) | miR-7-5p, miR-20a-5p, miR-374b-5p, miR-92a-3p, miR-195-5p, miR-24, miR-122-5p, miR-431-5p, let-7g-5p | Insulin resistance (miR-20a-5p), endothelial dysfunction (miR-195-5p), vascular protection (miR-24), heart failure (miR-374b-5p), predictive markers of response (miR-122-5p, miR-431-5p, let-7g-5p) | Improved HbA1c, insulin sensitivity, endothelial function; predictive biomarkers for TZD efficacy and vascular protection |
| DPP-4 inhibitors | miR-126-3p, miR-223-3p, miR-378, miR-23a-3p, miR-210 | Glycemic response (miR-126-3p, miR-223-3p), diabetic kidney disease progression (miR-223-3p), insulin resistance (miR-378), endothelial progenitor cell function (miR-210) | HbA1c improvement, albuminuria reduction; miRNA effects variable and less consistent; potential vascular and renal implications |
| Insulin therapy | miR-145-5p, miR-29c-3p, miR-138-5p, miR-192-5p, miR-320b, let-7a-5p, miR-195-5p | β-cell function and insulin sensitivity (miR-138-5p, miR-192-5p), hyperglycemia, renal fibrosis, apoptosis (miR-29c-3p), cardiovascular and microvascular complications (miR-195-5p, let-7a-5p), diabetic complications (miR-145-5p) | Predictive markers of insulin response; dynamic indicators of treatment-driven metabolic, microvascular, and cardiovascular adaptation |
| Other therapies (e.g., sulfonylureas) | Variable; modest changes observed | Limited mechanistic data | No consistent miRNA effects relative to standard comparator treatments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altabas, V.; Marinković Radošević, J. Exploring the Evidence for Personalized Pharmacotherapy in Type 2 Diabetes—A Systematic Review. J. Pers. Med. 2025, 15, 539. https://doi.org/10.3390/jpm15110539
Altabas V, Marinković Radošević J. Exploring the Evidence for Personalized Pharmacotherapy in Type 2 Diabetes—A Systematic Review. Journal of Personalized Medicine. 2025; 15(11):539. https://doi.org/10.3390/jpm15110539
Chicago/Turabian StyleAltabas, Velimir, and Jelena Marinković Radošević. 2025. "Exploring the Evidence for Personalized Pharmacotherapy in Type 2 Diabetes—A Systematic Review" Journal of Personalized Medicine 15, no. 11: 539. https://doi.org/10.3390/jpm15110539
APA StyleAltabas, V., & Marinković Radošević, J. (2025). Exploring the Evidence for Personalized Pharmacotherapy in Type 2 Diabetes—A Systematic Review. Journal of Personalized Medicine, 15(11), 539. https://doi.org/10.3390/jpm15110539

