Artificial Intelligence in Cardiac Electrophysiology: A Comprehensive Review
Abstract
1. Overview of Artificial Intelligence
1.1. Defining Artificial Intelligence
1.2. Machine Learning
1.2.1. Supervised Learning
1.2.2. Unsupervised Learning
1.2.3. Reinforcement Learning
1.3. Deep Learning
- Convolutional Neural Networks (CNNs): Particularly well-suited for image processing but also increasingly applied to time series data (like ECG waveforms), CNNs have been employed for automated segmentation of cardiac structures in imaging, detection of ischemic regions, and classification of arrhythmias from ECGs signals [9].
- Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) Networks: These networks handle sequential data, making them ideally suited for analyzing ECG signals, which are inherently temporal. LSTM networks address the vanishing gradient problem that plagued early RNNs, allowing them to capture longer dependencies across a time series.
1.4. Computational Model and AI
| Architecture | Full Name | Best For | Core Components | Strengths | Limitations |
|---|---|---|---|---|---|
| ANN | Artificial Neural Network | General classification and regression tasks | Fully connected layers | Simple and general-purpose | Poor at capturing spatial/temporal patterns |
| CNN | Convolutional Neural Network | Image processing, computer vision | Convolutional and pooling layers | Captures spatial features, fewer parameters | Struggles with sequential data |
| RNN | Recurrent Neural Network | Sequential data (e.g., time series, text) | Recurrent connections | Good for time-dependent patterns | Short memory, vanishing gradient problem |
| LSTM | Long Short-Term Memory | Long-term sequence modeling | Memory cells with gates | Handles long dependencies, avoids vanishing gradients | More complex, slower training |
| GAN | Generative Adversarial Network | Image synthesis, data augmentation | Generator and discriminator networks | Generates realistic data, creative tasks | Training instability, mode collapse |
| Autoencoder | Autoencoder | Dimensionality reduction, denoising | Encoder and decoder networks | Efficient data compression and reconstruction | May underfit, hard to interpret results |
2. Artificial Intelligence in Electrophysiology
2.1. Artificial Intelligence in In Vitro and Cellular Studies
2.2. Artificial Intelligence and ECG Interpretation
2.3. Artificial Intelligence and Arrhythmias Detection
2.4. Artificial Intelligence and Atrial Fibrillation Detection
2.5. Artificial Intelligence and Ventricular Tachycardia Detection
2.6. Artificial Intelligence and Long QT Detection
2.7. AI and Sudden Cardiac Death
2.8. Artificial Intelligence and Catheter Ablation
3. Challenges and Limitations
3.1. Data Quality and Generalizability of Analyses
3.2. Transparency and Data Privacy
3.3. Accessibility
3.4. Human Oversight
4. Future Perspectives
4.1. Precision Medicine
4.2. Virtual Reality and the Multiverse
5. Conclusions
6. Key Messages
- AI is rapidly emerging as a transformative tool in cardiac electrophysiology, improving diagnostic accuracy in arrhythmia detection, streamlining ECG interpretation, and optimizing catheter ablation procedures through real-time data analysis.
- Deep learning algorithms, particularly CNNs, have demonstrated expert-level or superior performance in identifying complex arrhythmias and stratifying patient risk, even in asymptomatic individuals.
- While the clinical potential of AI is substantial, successful implementation depends on addressing key challenges, including data quality, algorithm transparency, ethical considerations, and ensuring appropriate human oversight in decision-making processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ. Arrhythm. Electrophysiol. 2020, 13, e007952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sutanto, H. Transforming clinical cardiology through neural networks and deep learning: A guide for clinicians. Curr. Probl. Cardiol. 2024, 49, 102454. [Google Scholar] [CrossRef] [PubMed]
- Ng Ben Nayyar, S.; Chauhan, V.S. The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology. Can. J. Cardiol. 2022, 38, 246–258. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhao, L.; Liu, Z.; Wu, X.; Chen, J.; Long, E.; Lin, D.; Zhu, Y.; Chen, C.; Lin, Z.; et al. Implementation of artificial intelligence in medicine: Status analysis and development suggestions. Artif. Intell. Med. 2020, 102, 101780. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Harmon, D.M.; Behr, E.R.; Friedman, P.A. Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 2021, 42, 4717–4730. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romm, E.L.; Tsigelny, I.F. Artificial Intelligence in Drug Treatment. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.D.; Lee, S.L.; Robertus, J.L.; Nienaber, C.A.; Trayanova, N.A.; Ernst, S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur. Heart J. 2021, 42, 3904–3916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Somani, S.; Russak, A.J.; Richter, F.; Zhao, S.; Vaid, A.; Chaudhry, F.; De Freitas, J.K.; Naik, N.; Miotto, R.; Nadkarni, G.N.; et al. Deep learning and the electrocardiogram: Review of the current state-of-the-art. Europace 2021, 23, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trayanova, N.A.; Lyon, A.; Shade, J.; Heijman, J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: Toward clinical translation. Physiol. Rev. 2024, 104, 1265–1333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heijman, J.; Sutanto, H.; Crijns, H.J.G.M.; Nattel, S.; Trayanova, N.A. Computational models of atrial fibrillation: Achievements, challenges, and perspectives for improving clinical care. Cardiovasc. Res. 2021, 117, 1682–1699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeong, D.U.; Lim, K.M. Artificial neural network model for predicting changes in ion channel conductance based on cardiac action potential shapes generated via simulation. Sci. Rep. 2021, 11, 7831. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sánchez, J.; Luongo, G.; Nothstein, M.; Unger, L.A.; Saiz, J.; Trenor, B.; Luik, A.; Dössel, O.; Loewe, A. Using Machine Learning to Characterize Atrial Fibrotic Substrate From Intracardiac Signals With a Hybrid in silico and in vivo Dataset. Front. Physiol. 2021, 12, 699291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69, Erratum in Nat. Med. 2019, 25, 530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Duffy, G.; Dhruva, S.S.; Oesterle, A.; Pellegrini, C.N.; Theurer, J.; Vali, M.; Heidenreich, P.A.; Keyhani, S.; Ouyang, D. Deep Learning of Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial Fibrillation. JAMA Cardiol. 2023, 8, 1131–1139. [Google Scholar] [CrossRef]
- Baek, Y.S.; Lee, S.C.; Choi, W.; Kim, D.H. A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm. Sci. Rep. 2021, 11, 12818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khurshid, S.; Friedman, S.; Reeder, C.; Di Achille, P.; Diamant, N.; Singh, P.; Harrington, L.X.; Wang, X.; Al-Alusi, M.A.; Sarma, G.; et al. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation. Circulation 2022, 145, 122–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hygrell, T.; Viberg, F.; Dahlberg, E.; Charlton, P.H.; Kemp Gudmundsdottir, K.; Mant, J.; Hörnlund, J.L.; Svennberg, E. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace 2023, 25, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mittal, S.; Oliveros, S.; Li, J.; Barroyer, T.; Henry, C.; Gardella, C. AI Filter Improves Positive Predictive Value of Atrial Fibrillation Detection by an Implantable Loop Recorder. JACC Clin. Electrophysiol. 2021, 7, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Majumder, S.; Koehler, J.L.; Landman, S.R. An ensemble of features based deep learning neural network for reduction of inappropriate atrial fibrillation detection in implantable cardiac monitors. Heart Rhythm O2 2022, 4, 51–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J.; et al. Artificial intelligence-28 guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-29 randomised interventional trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef]
- Dupulthys, S.; Dujardin, K.; Anné, W.; Pollet, P.; Vanhaverbeke, M.; McAuliffe, D.; Lammertyn, P.J.; Berteloot, L.; Mertens, N.; De Jaeger, P. Single-lead 23 electrocardiogram Artificial Intelligence model with risk factors detects atrial fibrillation during sinus 24 rhythm. Europace 2024, 26, euad354. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Chen, X.; Guo, J. Automatic Premature Ventricular Contraction Detection Using Deep Metric Learning and KNN. Biosensors 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Missel, R.; Gyawali, P.K.; Murkute, J.V.; Li, Z.; Zhou, S.; AbdelWahab, A.; Davis, J.; Warren, J.; Sapp, J.L.; Wang, L. A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms. Comput. Biol. Med. 2020, 126, 104013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bos, J.M.; Attia, Z.I.; Albert, D.E.; Noseworthy, P.A.; Friedman, P.A.; Ackerman, M.J. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12Lead Electrocardiogram. JAMA Cardiol. 2021, 6, 532–538. [Google Scholar] [CrossRef]
- Jiang, R.; Cheung, C.C.; Garcia-Montero, M.; Davies, B.; Cao, J.; Redfearn, D.; Laksman, Z.M.; Grondin, S.; Atallah, J.; Escudero, C.A.; et al. Deep LearningAugmented ECG Analysis for Screening and Genotype Prediction of Congenital Long QT Syndrome. JAMA Cardiol. 2024, 9, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Giudicessi, J.R.; Schram, M.; Bos, J.M.; Galloway, C.D.; Shreibati, J.B.; Johnson, P.W.; Carter, R.E.; Disrud, L.W.; Kleiman, R.; Attia, Z.I.; et al. Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device. Circulation 2021, 143, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.M.; Shade, J.K.; Lai, C.; Aronis, K.N.; Ouyang, D.; Moorthy, M.V.; Cook, N.R.; Lee, D.C.; Kadish, A.; Albert, C.M.; et al. Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart. Nat. Cardiovasc. Res. 2022, 1, 334–343, Erratum in Nat. Cardiovasc. Res. 2022, 1, 532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seitz, J.; Durdez, T.M.; Albenque, J.P.; Pisapia, A.; Gitenay, E.; Durand, C.; Monteau, J.; Moubarak, G.; Théodore, G.; Lepillier, A.; et al. Artificial intelligence software standardizes electrogram-based ablation outcome for persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 2022, 33, 2250–2260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Biase, L.; Zou, F.; Lin, A.N.; Grupposo, V.; Marazzato, J.; Tarantino, N.; Della Rocca, D.; Mohanty, S.; Natale, A.; Alhuarrat, M.A.D.; et al. Feasibility of three-dimensional artificial intelligence algorithm integration with intracardiac echocardiography for left atrial imaging during atrial fibrillation catheter ablation. Europace 2023, 25, euad211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razeghi, O.; Kapoor, R.; Alhusseini, M.I.; Fazal, M.; Tang, S.; Roney, C.H.; Rogers, A.J.; Lee, A.; Wang, P.J.; Clopton, P.; et al. Atrial fibrillation ablation outcome prediction with a machine learning fusion framework incorporating cardiac computed tomography. J. Cardiovasc. Electrophysiol. 2023, 34, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Brahier, M.S.; Zou, F.; Abdulkareem, M.; Kochi, S.; Migliarese, F.; Thomaides, A.; Ma, X.; Wu, C.; Sandfort, V.; Bergquist, P.J.; et al. Using machine learning to enhance prediction of atrial fibrillation recurrence after catheter ablation. J. Arrhythm. 2023, 39, 868–875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shade, J.K.; Ali, R.L.; Basile, D.; Popescu, D.; Akhtar, T.; Marine, J.E.; Spragg, D.D.; Calkins, H.; Trayanova, N.A. Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation. Circ. Arrhythm. Electrophysiol. 2020, 13, e008213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantwell, C.D.; Mohamied, Y.; Tzortzis, K.N.; Garasto, S.; Houston, C.; Chowdhury, R.A.; Ng, F.S.; Bharath, A.A.; Peters, N.S. Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling. Comput. Biol. Med. 2019, 104, 339–351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Varma, N.; Cygankiewicz, I.; Turakhia, M.P.; Heidbuchel, H.; Hu, Y.F.; Chen, L.Y.; Couderc, J.P.; Cronin, E.M.; Estep, J.D.; Grieten, L.; et al. 2021 ISHNE/HRS/EHRA/APHRS Expert Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society. Circ. Arrhythm. Electrophysiol. 2021, 14, e009204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galloway, C.D.; Valys, A.V.; Shreibati, J.B.; Treiman, D.L.; Petterson, F.L.; Gundotra, V.P.; Albert, D.E.; Attia, Z.I.; Carter, R.E.; Asirvatham, S.J.; et al. Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiol. 2019, 4, 428–436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.S.; Liu, W.T.; Tsai, D.J.; Lou, Y.S.; Chang, C.H.; Lee, C.C.; Fang, W.H.; Wang, C.C.; Chen, Y.Y.; Lin, W.S.; et al. AI-enabled electrocardiography alert intervention and all-cause mortality: A pragmatic randomized clinical trial. Nat. Med. 2024, 30, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.M.; Bos, J.M.; Rohatgi, R.K.; Ackerman, M.J. Beyond the length and look of repolarization: Defining the non-QTc electrocardiographic profiles of patients with congenital long QT syndrome. Heart Rhythm 2018, 15, 1413–1419. [Google Scholar] [CrossRef]
- Barker, J.; Li, X.; Khavandi, S.; Koeckerling, D.; Mavilakandy, A.; Pepper, C.; Bountziouka, V.; Chen, L.; Kotb, A.; Antoun, I.; et al. Machine learning in sudden cardiac death risk prediction: A systematic review. Europace 2022, 24, 1777–1787. [Google Scholar] [CrossRef]
- Fox, S.R.; Toomu, A.; Gu, K.; Kang, J.; Sung, K.; Han, F.T.; Hoffmayer, K.S.; Hsu, J.C.; Raissi, F.; Feld, G.K.; et al. Impact of artificial intelligence arrhythmia mapping on time to first ablation, procedure duration, and fluoroscopy use. J. Cardiovasc. Electrophysiol. 2024, 35, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Castelvecchi, D. Can we open the black box of AI? Nature 2016, 538, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Weng, Y.; Lund, J. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics 2022, 12, 237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prakosa, A.; Southworth, M.K.; Avari Silva, J.N.; Silva, J.R.; Trayanova, N.A. Impact of augmented-reality improvement in ablation catheter navigation as assessed by virtual-heart simulations of ventricular tachycardia ablation. Comput. Biol. Med. 2021, 133, 104366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tran, H.H.; Thu, A.; Twayana, A.R.; Fuertes, A.; Gonzalez, M.; Harrison, J.L.; Mehta, K.A.; James, M.; Basta, M.; Frishman, W.H.; et al. Artificial Intelligence in Cardiac Electrophysiology: Enhancing Mapping and Ablation Precision. Cardiol. Rev. 2025; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Gorbaty, B.; Arango, S.; Buyck, D.; James, R.C.; Porter, S.T.; Iaizzo, P.; Perry, T.E.; Seslar, S. Virtual Reality-based Methods for Training Novice Electrophysiology Trainees-A Pilot Study. J. Innov. Card. Rhythm Manag. 2023, 14, 5583–5599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Triedman, J. Virtual reality in interventional electrophysiology. Circulation 2005, 112, 3677–3679. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Pierucci, N.; Forleo, G.B.; Schiavone, M.; Bernardini, A.; Gasperetti, A.; Mitacchione, G.; Mei, M.; Giunta, G.; Piro, A.; et al. The Feasibility, Effectiveness and Acceptance of Virtual Visits as Compared to In-Person Visits among Clinical Electrophysiology Patients during the COVID-19 Pandemic. J. Clin. Med. 2023, 12, 620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Article | Type of AI | Objectives | Results |
|---|---|---|---|
| IN VITRO/CELLULAR | |||
| Jeong et al. [12] | ANN | To predict changes in cardiac ion channel conductance by analyzing the morphology of simulated action potentials | A mean F1-score of 0.985 and an accuracy of 98.3%, demonstrating strong predictive performance. |
| Sanchez et al. [13] | ML | To distinguish and characterize non-fibrotic from fibrotic atrial tissue | Strong performance in distinguishing and characterizing atrial tissue |
| SOPRAVENTRICULAR ARRYTHMIAS | |||
| Hannun et al. [14] | DL | Automated detection and classification of cardiac arrhythmias using single-lead ambulatory electrocardiogram data | AUC of 0.97 and F1 score of 0.837 |
| Attia et al. [15] | CNN | To identify the electrocardiographic signature of AF on standard 10 s, 12-lead ECGs | AUC of 0.87, a sensitivity of 79.0%, a specificity of 79.5%, and an accuracy of 79.4% |
| Yuan et al. [16] | CNN | To predict the presence of AF within 31 days from outpatient 12-lead ECGs in sinus rhythm | AUC values range from 0.88 to 0.89 and an accuracy of approximately 81–82% |
| Beak et al. [17] | DL | To detect subtle differences in paroxysmal AF during SR | AUC 0.79 and 0.75 and F1 score of 75% and 74% |
| Khurshid et al. [18] | CNN | To calculate 5-year AF risk using 12-lead ECGs and compare it to CHARGE-AF score | Similar predictive usefulness of a clinical risk score |
| Hygrell et al. [19] | CNN | To predict paroxysmal AF from single-lead sinus rhythm electrocardiograms | Mean AUC of 0.71 |
| Mittal et al. [20] | DNN | To evaluate an AI-based solution designed to reduce false-positive atrial fibrillation detections in patients monitored by implantable loop recorders | The PPV of ILR-detected AF episodes increased to 74.5% following use of the AI filter |
| Sarkar et al. [21] | DL | To reduce inappropriate AF detection by implantable cardiac monitors | Superior specificity compared to existing algorithms |
| Noseworthy et al. [22] | DL | AI-guided ECG screening during sinus rhythm to detect atrial fibrillation in a real-world population | AI-guided screening was associated with increased detection of atrial fibrillation (high-risk group: 3.6% with usual care vs. 10.6% with AI-guided screening, p < 0.0001; low-risk group: 0.9% vs. 2.4%, p = 0.12) |
| Dupulthys et al. [23] | DL | To evaluate a single-lead AI-based ECG model, integrated with clinical risk factors, for detecting atrial fibrillation during sinus rhythm | AUC of 0.74, which increased to 0.76 by adding six risk factors |
| VENTRICULATARRYTHMIAS | |||
| Yu et al. [24] | DL | Automatic detection of PVCs | Accuracy of 99.7%, sensitivity of 97.45%, and specificity of 99.87% |
| Missel et al. [25] | Hybrid ML | To localize the origin of ventricular tachycardia using 12-lead ECGs | The model successfully predicted the VT origin with high spatial resolution and outperformed conventional algorithms |
| Bos et al. [26] | CNN | To identify genetically confirmed patients with LQTS | Maximum AUC of 0.944 |
| Jiang et al. [27] | CNN | Screening and differentiating congenital LQTS | AUC of 0.93 for LQTS detection and an AUC of 0.91 for genotype differentiation |
| Giudicessi et al. [28] | DNN | To determine QTc in single-lead ECGs | Sensitivity of 80% and specificity of 94.4% |
| Popescu et al. [29] | DL | To predict the risk of SCD in patients with ischemic heart disease | Concordance index of 0.83 and 0.74 and 10-year integrated Brier score of 0.12 and 0.14 |
| TRANSCATHETER ABLATION | |||
| Seitz et al. [30] | ML | To evaluate VX1 that automatically generate real-time dispersion maps to guide transcatheter ablation | Acute AF termination in 88%. Follow-up showed freedom from AF in 86% after a single procedure, 89% after an average of 1.3 procedures, freedom from any atrial arrhythmia from 54% after one procedure to 73% after repeat procedures (p < 0.001) |
| Di Biase et al. [31] | DL | Anatomical reconstruction of the left atrium from intracardiac echocardiography images | Average anatomical reconstruction time was approximately 65 s |
| Razeghi et al. [32] | ML | To predict outcomes of AF ablation | High predictive accuracy for AF recurrence post-ablation |
| Brahier et al. [33] | ML | To identify predisposing factors for AF recurrence | 5 covariates were identified as independent predictors of late recurrence |
| Shade et al. [34] | ML | To predict AF recurrence | Predicted probability of AF recurrence with an average validation sensitivity and specificity of 82% and 89%, respectively, and a validation area under the curve of 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipollone, P.; Pierucci, N.; Matteucci, A.; Palombi, M.; Laviola, D.; Bruti, R.; Vinciullo, S.; Bernardi, M.; Spadafora, L.; Cersosimo, A.; et al. Artificial Intelligence in Cardiac Electrophysiology: A Comprehensive Review. J. Pers. Med. 2025, 15, 532. https://doi.org/10.3390/jpm15110532
Cipollone P, Pierucci N, Matteucci A, Palombi M, Laviola D, Bruti R, Vinciullo S, Bernardi M, Spadafora L, Cersosimo A, et al. Artificial Intelligence in Cardiac Electrophysiology: A Comprehensive Review. Journal of Personalized Medicine. 2025; 15(11):532. https://doi.org/10.3390/jpm15110532
Chicago/Turabian StyleCipollone, Pietro, Nicola Pierucci, Andrea Matteucci, Marta Palombi, Domenico Laviola, Raffaele Bruti, Sara Vinciullo, Marco Bernardi, Luigi Spadafora, Angelica Cersosimo, and et al. 2025. "Artificial Intelligence in Cardiac Electrophysiology: A Comprehensive Review" Journal of Personalized Medicine 15, no. 11: 532. https://doi.org/10.3390/jpm15110532
APA StyleCipollone, P., Pierucci, N., Matteucci, A., Palombi, M., Laviola, D., Bruti, R., Vinciullo, S., Bernardi, M., Spadafora, L., Cersosimo, A., Trivigno, S., Recchioni, T., Piro, A., Chimenti, C., Pandozi, C., Vizza, C. D., Lavalle, C., & Mariani, M. V. (2025). Artificial Intelligence in Cardiac Electrophysiology: A Comprehensive Review. Journal of Personalized Medicine, 15(11), 532. https://doi.org/10.3390/jpm15110532

