Impact of Reducing Obesity in PCOS: Methods and Treatment Outcomes
Abstract
1. Introduction
2. Pathophysiology of PCOS
2.1. Role of Vitamin D Deficiency
2.2. Role of Chronic Inflammation and the Gut Microbiome
3. Relationship Between Obesity and PCOS
4. Weight Loss and PCOS
5. Obesity Management and PCOS Outcomes
5.1. Lifestyle Changes
5.1.1. Diet
Low Glycemic Index
Ketogenic Diets
DASH Diet
5.1.2. Dietary Supplementation
Vitamin D Supplementation
Antioxidant Supplementation
Probiotic Supplementation
5.1.3. Physical Activity
5.1.4. Behavioral Interventions
5.2. Pharmacotherapy
5.2.1. Metformin
5.2.2. GLP-1 Receptor Agonists
5.2.3. Thiazolidinediones
5.2.4. Orlistat
5.2.5. Naltrexone-Bupropion
5.2.6. Phentermine-Topiramate
5.3. Surgical Management
6. The Future of Personalized Medicine
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafoor, S. Impact of Obesity and Weight Management on Women with Polycystic Ovary Syndrome and Coexisting Obesity—A Brief Narrative Review. Actual Gyn. 2023, 15, 21–31. [Google Scholar]
- Gautam, R.; Maan, P.; Jyoti, A.; Kumar, A.; Malhotra, N.; Arora, T. The Role of Lifestyle Interventions in PCOS Management: A Systematic Review. Nutrients 2025, 17, 310. [Google Scholar] [CrossRef]
- Mahabamunuge, J.; Sekula, N.M.; Lepore, C.; Kudrimoti, M.; Upadhyay, A.; Alshowaikh, K.; Li, H.J.; Seifer, D.B.; AlAshqar, A. The Molecular Basis of Polycystic Ovary Syndrome and Its Cardiometabolic Correlates: Exploring the Intersection and Its Clinical Implications—A Narrative Review. Biomedicines 2025, 13, 709. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, C.; Zhang, J.; He, B. Comparative efficacy of oral insulin sensitizers metformin, thiazolidinediones, inositol, and berberine in improving endocrine and metabolic profiles in women with PCOS: A network meta-analysis. Reprod. Health 2021, 18, 171. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, M.L.; Boyle, A.J.; et al. Recommendations from the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Fertil. Steril. 2023, 120, 767–793. [Google Scholar] [CrossRef]
- Pal, L.; Seifer, D.B. Polycystic Ovary Syndrome: Current and Emerging Concepts; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Wekker, V.; van Dammen, L.; Koning, A.; Heida, K.Y.; Painter, R.C.; Limpens, J.; Laven, J.S.E.; Roeters van Lennep, J.E.; Roseboom, T.J.; Hoek, A. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Update 2020, 26, 942–960. [Google Scholar] [CrossRef] [PubMed]
- Macut, D.; Bjekić-Macut, J.; Rahelić, D.; Doknić, M. Insulin and the polycystic ovary syndrome. Diabetes Res. Clin. Pract. 2017, 130, 163–170. [Google Scholar] [CrossRef]
- Samarasinghe, S.N.S.; Woods, C.; Miras, A.D. Bariatric Surgery in Women with Polycystic Ovary Syndrome. Metabolism 2024, 151, 155745. [Google Scholar] [CrossRef]
- Kim, J.J. Obesity and Polycystic Ovary Syndrome. J. Obes. Metab. Syndr. 2024, 33, 289–301. [Google Scholar] [CrossRef]
- Wu, X.K.; Zhou, S.Y.; Liu, J.X.; Pöllänen, P.; Sallinen, K.; Mäkinen, M.; Erkkola, R. Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil. Steril. 2003, 80, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Tal, R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod. Biomed. Online 2016, 33, 15–28. [Google Scholar] [CrossRef]
- Das, M.; Gillott, D.J.; Saridogan, E.; Djahanbakhch, O. Anti-Mullerian hormone is increased in follicular fluid from unstimulated ovaries in women with polycystic ovary syndrome. Hum. Reprod. 2008, 23, 2122–2126. [Google Scholar] [CrossRef] [PubMed]
- van der Ham, K.; Laven, J.S.E.; Tay, C.T.; Mousa, A.; Teede, H.; Louwers, Y.V. Anti-müllerian hormone as a diagnostic biomarker for polycystic ovary syndrome and polycystic ovarian morphology: A systematic review and meta-analysis. Fertil. Steril. 2024, 122, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Seifer, D.B. Elevated antimüllerian hormone level is useful in making the diagnosis of polycystic ovarian morphology and likely one day the diagnosis of polycystic ovary syndrome. Fertil. Steril. 2024, 122, 633–634. [Google Scholar] [CrossRef]
- Rafiq, S.; Jeppesen, P.B. Vitamin D Deficiency Is Inversely Associated with Homeostatic Model Assessment of Insulin Resistance. Nutrients 2021, 13, 4358. [Google Scholar] [CrossRef]
- Tal, R.; Seifer, D.B.; Shohat-Tal, A.; Grazi, R.V.; Malter, H.E. Transforming growth factor-β1 and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation. Fertil. Steril. 2013, 100, 538–543. [Google Scholar] [CrossRef]
- Irani, M.; Seifer, D.B.; Grazi, R.V.; Julka, N.; Bhatt, D.; Kalgi, B.; Irani, S.; Tal, O.; Lambert-Messerlian, G.; Tal, R. Vitamin D Supplementation Decreases TGF-β1 Bioavailability in PCOS: A Randomized Placebo-Controlled Trial. J. Clin. Endocrinol. Metab. 2015, 100, 4307–4314. [Google Scholar] [CrossRef]
- Tal, R.; Seifer, D.B.; Arici, A. The Emerging Role of Angiogenic Factor Dysregulation in the Pathogenesis of Polycystic Ovarian Syndrome. Semin. Reprod. Med. 2015, 33, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Luque-Ramírez, M.; González, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058.e2. [Google Scholar] [CrossRef]
- Gonzalez, F.; Thusu, K.; Abdel-Rahman, E.; Prabhala, A.; Tomani, M.; Dandona, P. Elevated serum levels of tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism 1999, 48, 437–441. [Google Scholar] [CrossRef]
- Spaczynski, R.Z.; Arici, A.; Duleba, A.J. Tumor necrosis factor-alpha stimulates proliferation of rat ovarian theca-interstitial cells. Biol. Reprod. 1999, 61, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Sokalska, A.; Piotrowski, P.C.; Rzepczynska, I.J.; Cress, A.; Duleba, A.J. Statins inhibit growth of human theca-interstitial cells in PCOS and non-PCOS tissues independently of cholesterol availability. J. Clin. Endocrinol. Metab. 2010, 95, 5390–5394. [Google Scholar] [CrossRef]
- Banaszewska, B.; Wrotyńska-Barczyńska, J.; Spaczynski, R.Z.; Pawelczyk, L.; Duleba, A.J. Effects of Resveratrol on Polycystic Ovary Syndrome: A Double-blind, Randomized, Placebo-controlled Trial. J. Clin. Endocrinol. Metab. 2016, 101, 4322–4328. [Google Scholar] [CrossRef]
- Wong, D.H.; Villanueva, J.A.; Cress, A.B.; Duleba, A.J. Effects of resveratrol on proliferation and apoptosis in rat ovarian theca-interstitial cells. Mol. Hum. Reprod. 2010, 16, 251–259. [Google Scholar] [CrossRef]
- He, F.; Li, Y. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: A review. J. Ovarian Res. 2020, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.J.; Siakowska, M.; Banaszewska, B.; Pawelczyk, L.; Duleba, A.J.; Kelley, S.T.; Thackray, V.G. Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. J. Clin. Endocrinol. Metab. 2018, 103, 1502–1511. [Google Scholar] [CrossRef]
- Lindheim, L.; Bashir, M.; Münzker, J.; Trummer, C.; Zachhuber, V.; Leber, B.; Horvath, A.; Pieber, T.R.; Gorkiewicz, G.; Stadlbauer, V.; et al. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS ONE 2017, 12, e0168390. [Google Scholar] [CrossRef]
- Li, P.; Shuai, P.; Shen, S.; Zheng, H.; Sun, P.; Zhang, R.; Lan, S.; Lan, Z.; Jayawardana, T.; Yang, Y.; et al. Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: A systematic review and meta-analysis. BMC Med. 2023, 21, 302. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Farzadi, L. Synbiotic Supplementation Improves Metabolic Factors and Obesity Values in Women with Polycystic Ovary Syndrome Independent of Affecting Apelin Levels: A Randomized Double-Blind Placebo—Controlled Clinical Trial. Int. J. Fertil. Steril. 2021, 15, 51–59. [Google Scholar] [CrossRef]
- Emmerich, S.D.; Fryar, C.D.; Stierman, B.; Bryan Stierman, M.D.; Ogden, C.L. Products—Data Briefs—Number 508; National Center for Health Statistics: Hyattsville, MD, USA, 2024. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 21 August 2025).
- Duah, J.; Seifer, D.B. Medical therapy to treat obesity and optimize fertility in women of reproductive age: A narrative review. Reprod. Biol. Endocrinol. RBE 2025, 23, 2. [Google Scholar] [CrossRef]
- Penzias, A.; Azziz, R.; Bendikson, K.; Falcone, T.; Hansen, K.; Hill, M.; Jindal, S.; Kalra, S.; Mersereau, J.; Reindollar, R.; et al. Obesity and reproduction: A committee opinion. Fertil. Steril. 2021, 116, 1266–1285. [Google Scholar] [CrossRef]
- Rogers, J.; Mitchell, G.W. The relation of obesity to menstrual disturbances. N. Engl. J. Med. 1952, 247, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Luzzo, K.M.; Wang, Q.; Purcell, S.H.; Chi, M.; Jimenez, P.T.; Grindler, N.; Schedl, T.; Moley, K.H. High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE 2012, 7, e49217. [Google Scholar] [CrossRef]
- Jungheim, E.S.; Schoeller, E.L.; Marquard, K.L.; Louden, E.D.; Schaffer, J.E.; Moley, K.H. Diet-induced obesity model: Abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 2010, 151, 4039–4046. [Google Scholar] [CrossRef]
- Vale-Fernandes, E.; Moreira, M.V.; Bernardino, R.L.; Sousa, D.; Brandão, R.; Leal, C.; Barreiro, M.; Monteiro, M.P. Polycystic ovary syndrome and excessive body weight impact independently and synergically on fertility treatment outcomes. Reprod. Biol. Endocrinol. 2025, 23, 97. [Google Scholar] [CrossRef]
- Morales, A.J.; Laughlin, G.A.; Bützow, T.; Maheshwari, H.; Baumann, G.; Yen, S.S. Insulin, somatotropic, and luteinizing hormone axes in lean and obese women with polycystic ovary syndrome: Common and distinct features. J. Clin. Endocrinol. Metab. 1996, 81, 2854–2864. [Google Scholar] [CrossRef]
- Ehrmann, D.A.; Liljenquist, D.R.; Kasza, K.; Azziz, R.; Legro, R.S.; Ghazzi, M.N.; PCOS/Troglitazone Study Group. Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Galletly, C.; Clark, A.; Tomlinson, L.; Blaney, F. A group program for obese, infertile women: Weight loss and improved psychological health. J. Psychosom. Obstet. Gynecol. 1996, 17, 125–128. [Google Scholar] [CrossRef]
- Kort, J.D.; Winget, C.; Kim, S.H.; Lathi, R.B. A retrospective cohort study to evaluate the impact of meaningful weight loss on fertility outcomes in an overweight population with infertility. Fertil. Steril. 2014, 101, 1400–1403. [Google Scholar] [CrossRef]
- Legro, R.S.; Dodson, W.C.; Kris-Etherton, P.M.; Kunselman, A.R.; Stetter, C.M.; Williams, N.I.; Gnatuk, C.L.; Estes, S.J.; Fleming, J.; Allison, K.C.; et al. Randomized Controlled Trial of Preconception Interventions in Infertile Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2015, 100, 4048–4058. [Google Scholar] [CrossRef] [PubMed]
- Mutsaerts, M.A.Q.; van Oers, A.M.; Groen, H.; Burggraaff, J.M.; Kuchenbecker, W.K.H.; Perquin, D.A.M.; Koks, C.A.M.; van Golde, R.; Kaaijk, E.M.; Schierbeek, J.M.; et al. Randomized Trial of a Lifestyle Program in Obese Infertile Women. N. Engl. J. Med. 2016, 374, 1942–1953. [Google Scholar] [CrossRef]
- Goldman, R.H.; Farland, L.V.; Thomas, A.M.; Zera, C.A.; Ginsburg, E.S. The combined impact of maternal age and body mass index on cumulative live birth following in vitro fertilization. Am. J. Obstet. Gynecol. 2019, 221, e1–e617. [Google Scholar] [CrossRef]
- Thomson, R.L.; Buckley, J.D.; Moran, L.J.; Noakes, M.; Clifton, P.M.; Norman, R.J.; Brinkworth, G.D. The effect of weight loss on anti-Müllerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment. Hum. Reprod. 2009, 24, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Sordia-Hernández, L.H.; Ancer Rodríguez, P.; Saldivar Rodriguez, D.; Trejo Guzman, S.; Servín Zenteno, E.S.; Guerrero González, G.; Ibarra Patiño, R. Effect of a low glycemic diet in patients with polycystic ovary syndrome and anovulation—A randomized controlled trial. Clin. Exp. Obstet. Gynecol. 2016, 43, 555–559. [Google Scholar]
- Marsh, K.A.; Steinbeck, K.S.; Atkinson, F.S.; Petocz, P.; Brand-Miller, J.C. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. J. Clin. Nutr. 2010, 92, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Ko, H.; Misso, M.; Marsh, K.; Noakes, M.; Talbot, M.; Frearson, M.; Thondan, M.; Stepto, N.; Teede, H.J. Dietary Composition in the Treatment of Polycystic Ovary Syndrome: A Systematic Review to Inform Evidence-Based Guidelines. J. Acad. Nutr. Diet. 2013, 113, 520–545. [Google Scholar] [CrossRef]
- Shang, Y.; Zhou, H.; Hu, M.; Feng, H. Effect of Diet on Insulin Resistance in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 3346–3360. [Google Scholar] [CrossRef]
- Cannarella, R.; Rubulotta, M.; Leonardi, A.; Crafa, A.; Calvo, A.; Barbagallo, F.; La Vignera, S.; Calogero, A.E. Effects of ketogenic diets on polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. RBE 2025, 23, 74. [Google Scholar] [CrossRef]
- Muscogiuri, G.; El Ghoch, M.; Colao, A.; Hassapidou, M.; Yumuk, V.; Busetto, L.; Obesity Management Task Force (OMTF) of the European Association for the Study of Obesity (EASO). European Guidelines for Obesity Management in Adults with a Very Low-Calorie Ketogenic Diet: A Systematic Review and Meta-Analysis. Obes. Facts 2021, 14, 222–245. [Google Scholar] [CrossRef]
- Challa, H.J.; Ameer, M.A.; Uppaluri, K.R. DASH Diet to Stop Hypertension. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482514/ (accessed on 6 July 2025).
- Juhász, A.E.; Stubnya, M.P.; Teutsch, B.; Gede, N.; Hegyi, P.; Nyirády, P.; Bánhidy, F.; Ács, N.; Juhász, R. Ranking the dietary interventions by their effectiveness in the management of polycystic ovary syndrome: A systematic review and network meta-analysis. Reprod. Health 2024, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Dicken, S.J.; Jassil, F.C.; Brown, A.; Kalis, M.; Stanley, C.; Ranson, C.; Ruwona, T.; Qamar, S.; Buck, C.; Mallik, R.; et al. Ultraprocessed or minimally processed diets following healthy dietary guidelines on weight and cardiometabolic health: A randomized, crossover trial. Nat. Med. 2025, 31, 3297–3308. [Google Scholar] [CrossRef]
- Pal, L.; Berry, A.; Coraluzzi, L.; Kustan, E.; Danton, C.; Shaw, J.; Taylor, H. Therapeutic Implications of Vitamin D and Calcium in Overweight Women with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2012, 28, 965–968. [Google Scholar] [CrossRef]
- Zhao, J.-F.; Li, B.-X.; Zhang, Q. Vitamin D improves levels of hormonal, oxidative stress and inflammatory parameters in polycystic ovary syndrome: A meta-analysis study. Ann. Palliat. Med. 2021, 10, 169–183. [Google Scholar] [CrossRef]
- Mohammadi, E.; Rafraf, M.; Farzadi, L.; Asghari-Jafarabadi, M.; Sabour, S. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac. J. Clin. Nutr. 2012, 21, 511–518. [Google Scholar] [PubMed]
- Nadjarzadeh, A.; Dehghani-Firouzabadi, R.; Daneshbodi, H.; Lotfi, M.H.; Vaziri, N.; Mozaffari-Khosravi, H. Effect of Omega-3 Supplementation on Visfatin, Adiponectin, and Anthropometric Indices in Women with Polycystic Ovarian Syndrome. J. Reprod. Infertil. 2015, 16, 212–220. [Google Scholar]
- Khani, B.; Mardanian, F.; Fesharaki, S.J. Omega-3 supplementation effects on polycystic ovary syndrome symptoms and metabolic syndrome. J. Res. Med. Sci. 2017, 22, 64. [Google Scholar] [CrossRef]
- Karamali, M.; Gholizadeh, M. The effects of coenzyme Q10 supplementation on metabolic profiles and parameters of mental health in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2022, 38, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Yalle-Vásquez, S.; Osco-Rosales, K.; Nieto-Gutierrez, W.; Benites-Zapata, V.; Pérez-López, F.R.; Alarcon-Ruiz, C.A. Vitamin E supplementation improves testosterone, glucose- and lipid-related metabolism in women with polycystic ovary syndrome: A meta-analysis of randomized clinical trials. Gynecol. Endocrinol. 2022, 38, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Shojaei-Zarghani, S.; Rafraf, M. Resveratrol and Markers of Polycystic Ovary Syndrome: A Systematic Review of Animal and Clinical Studies. Reprod. Sci. 2022, 29, 2477–2487. [Google Scholar] [CrossRef] [PubMed]
- Larik, M.O.; Ahmed, A.; Khan, L.; Iftekhar, M.A. Effects of resveratrol on polycystic ovarian syndrome: A systematic review and meta-analysis of randomized controlled trials. Endocrine 2024, 83, 51–59. [Google Scholar] [CrossRef]
- Heshmati, J.; Farsi, F.; Yosaee, S.; Razavi, M.; Rezaeinejad, M.; Karimie, E.; Sepidarkish, M. The Effects of Probiotics or Synbiotics Supplementation in Women with Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Probiotics Antimicrob. Proteins 2019, 11, 1236–1247. [Google Scholar] [CrossRef]
- Hadi, A.; Moradi, S.; Ghavami, A.; Khalesi, S.; Kafeshani, M. Effect of probiotics and synbiotics on selected anthropometric and biochemical measures in women with polycystic ovary syndrome: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2020, 74, 543–547. [Google Scholar] [CrossRef]
- Martinez Guevara, D.; Vidal Cañas, S.; Palacios, I.; Gómez, A.; Estrada, M.; Gallego, J.; Liscano, Y. Effectiveness of Probiotics, Prebiotics, and Synbiotics in Managing Insulin Resistance and Hormonal Imbalance in Women with Polycystic Ovary Syndrome (PCOS): A Systematic Review of Randomized Clinical Trials. Nutrients 2024, 16, 3916. [Google Scholar] [CrossRef]
- Razmpoosh, E.; Sivanandy, M.S.; Ehrlich, A.M. The Effect of Prebiotics, Alone or as Part of Synbiotics, on Cardiometabolic Parameters in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biomedicines 2025, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- Chudzicka-Strugała, I.; Kubiak, A.; Banaszewska, B.; Wysocka, E.; Zwozdziak, B.; Siakowska, M.; Pawelczyk, L.; Duleba, A.J. Six-month randomized, placebo controlled trial of synbiotic supplementation in women with polycystic ovary syndrome undergoing lifestyle modifications. Arch. Gynecol. Obstet. 2025, 311, 499–506. [Google Scholar] [CrossRef]
- Vigorito, C.; Giallauria, F.; Palomba, S.; Cascella, T.; Manguso, F.; Lucci, R.; De Lorenzo, A.; Tafuri, D.; Lombardi, G.; Colao, A.; et al. Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Shele, G.; Genkil, J.; Speelman, D. A Systematic Review of the Effects of Exercise on Hormones in Women with Polycystic Ovary Syndrome. J. Funct. Morphol. Kinesiol. 2020, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Nidhi, R.; Padmalatha, V.; Nagarathna, R.; Ram, A. Effect of a yoga program on glucose metabolism and blood lipid levels in adolescent girls with polycystic ovary syndrome. Int. J. Gynaecol. Obs. 2012, 118, 37–41. [Google Scholar] [CrossRef]
- Patel, V.; Menezes, H.; Menezes, C.; Bouwer, S.; Bostick-Smith, C.A.; Speelman, D.L. Regular Mindful Yoga Practice as a Method to Improve Androgen Levels in Women with Polycystic Ovary Syndrome: A Randomized, Controlled Trial. J. Am. Osteopath. Assoc. 2020, 120, 323–335. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, I.K.; Ashe, M.C.; Cobucci, R.N.; Soares, G.M.; de Oliveira Maranhão, T.M.; Dantas, P.M.S. The effect of exercise as an intervention for women with polycystic ovary syndrome. Medicine 2020, 99, e19644. [Google Scholar] [CrossRef] [PubMed]
- Alur-Gupta, S.; Dokras, A.; Cooney, L.G. Management of polycystic ovary syndrome must include assessment and treatment of mental health symptoms. Fertil. Steril. 2024, 121, 384–399. [Google Scholar] [CrossRef]
- Cinar, N.; Kizilarslanoglu, M.C.; Harmanci, A.; Aksoy, D.Y.; Bozdag, G.; Demir, B.; Yildiz, B.O. Depression, anxiety and cardiometabolic risk in polycystic ovary syndrome. Hum. Reprod. 2011, 26, 3339–3345. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Yang, J.; Yu, Y.; Fang, Y. The effects of cognitive behavioral therapy in women with polycystic ovary syndrome: A meta-analysis. Front. Psychol. 2022, 13, 796594. [Google Scholar] [CrossRef]
- Jiskoot, G.; Timman, R.; Beerthuizen, A.; Dietz de Loos, A.; Busschbach, J.; Laven, J. Weight Reduction Through a Cognitive Behavioral Therapy Lifestyle Intervention in PCOS: The Primary Outcome of a Randomized Controlled Trial. Obesity 2020, 28, 2134–2141. [Google Scholar] [CrossRef]
- Dietz de Loos, A.L.P.; Jiskoot, G.; Timman, R.; Beerthuizen, A.; Busschbach, J.J.V.; Laven, J.S.E. Improvements in PCOS characteristics and phenotype severity during a randomized controlled lifestyle intervention. Reprod. Biomed. Online 2021, 43, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Jiskoot, G.; de Loos, A.D.; Timman, R.; Beerthuizen, A.; Laven, J.; Busschbach, J. Changes in eating behavior through lifestyle treatment in women with polycystic ovary syndrome (PCOS): A randomized controlled trial. J. Eat. Disord. 2022, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Jiskoot, G.; Dietz de Loos, A.; Beerthuizen, A.; Timman, R.; Busschbach, J.; Laven, J. Long-term effects of a three-component lifestyle intervention on emotional well-being in women with Polycystic Ovary Syndrome (PCOS): A secondary analysis of a randomized controlled trial. PLoS ONE 2020, 15, e0233876. [Google Scholar] [CrossRef]
- Stefanaki, C.; Bacopoulou, F.; Livadas, S.; Kandaraki, A.; Karachalios, A.; Chrousos, G.P.; Diamanti-Kandarakis, E. Impact of a mindfulness stress management program on stress, anxiety, depression and quality of life in women with polycystic ovary syndrome: A randomized controlled trial. Stress Amst. Neth. 2015, 18, 57–66. [Google Scholar] [CrossRef]
- Fleming, R.; Harborne, L.; MacLaughlin, D.T.; Ling, D.; Norman, J.; Sattar, N.; Seifer, D.B. Metformin reduces serum mullerian-inhibiting substance levels in women with polycystic ovary syndrome after protracted treatment. Fertil. Steril. 2005, 83, 130–136. [Google Scholar] [CrossRef]
- Melin, J.; Forslund, M.; Alesi, S.; Piltonen, T.; Romualdi, D.; Spritzer, P.M.; Tay, C.T.; Pena, A.; Witchel, S.F.; Mousa, A.; et al. The impact of metformin with or without lifestyle modification versus placebo on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Endocrinol. 2023, 189, S37–S63. [Google Scholar] [CrossRef]
- Morley, L.C.; Tang, T.; Yasmin, E.; Norman, R.J.; Balen, A.H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 2017, 11, CD003053. [Google Scholar] [CrossRef]
- Gleason, E.; Levine, L.; Lee, I.T.; Koelper, N.; Amaro, A.; Dokras, A. Effect of glucagon-like peptide 1 receptor agonist medications on weight loss in patients with and without polycystic ovary syndrome. Fertil. Steril. 2025, 124, 562–564. [Google Scholar] [CrossRef]
- Szczesnowicz, A.; Szeliga, A.; Niwczyk, O.; Bala, G.; Meczekalski, B. Do GLP-1 Analogs Have a Place in the Treatment of PCOS? New Insights and Promising Therapies. J. Clin. Med. 2023, 12, 5915. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Ghusn, W.; De la Rosa, A.; Sacoto, D.; Cifuentes, L.; Campos, A.; Feris, F.; Hurtado, M.D.; Acosta, A. Weight Loss Outcomes Associated with Semaglutide Treatment for Patients with Overweight or Obesity. JAMA Netw. Open 2022, 5, e2231982. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rubio, M.A.; et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults with Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA 2021, 325, 1414–1425. [Google Scholar] [CrossRef]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O’Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults with Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Carmina, E.; Longo, R.A. Semaglutide Treatment of Excessive Body Weight in Obese PCOS Patients Unresponsive to Lifestyle Programs. J. Clin. Med. 2023, 12, 5921. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, P.; Wang, W.; Guo, L.; Pan, Q. The Antidepressant Effects of GLP-1 Receptor Agonists: A Systematic Review and Meta-Analysis. Am. J. Geriatr. Psychiatry 2024, 32, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Kilpatrick, E.; Rigby, A.; Coady, A.; Atkin, S. The effects of treatment with liraglutide on quality of life and depression in young obese women with PCOS and controls. Gynecol. Endocrinol. 2019, 35, 142–145. [Google Scholar] [CrossRef]
- Elkind-Hirsch, K.; Marrioneaux, O.; Bhushan, M.; Vernor, D.; Bhushan, R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 2670–2678. [Google Scholar] [CrossRef]
- Chen, H.; Lei, X.; Yang, Z.; Xu, Y.; Liu, D.; Wang, C.; Du, H. Effects of combined metformin and semaglutide therapy on body weight, metabolic parameters, and reproductive outcomes in overweight/obese women with polycystic ovary syndrome: A prospective, randomized, controlled, open-label clinical trial. Reprod. Biol. Endocrinol. 2025, 23, 108. [Google Scholar] [CrossRef]
- Salamun, V.; Jensterle, M.; Janez, A.; Vrtacnik Bokal, E. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: A pilot randomized study. Eur. J. Endocrinol. 2018, 179, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, Y.; He, B. GLP-1 receptor agonists versus metformin in PCOS: A systematic review and meta-analysis. Reprod. Biomed. Online 2019, 39, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Laiteerapong, N.; Huang, E.S.; Mozaffarian, D.; Fendrick, A.M.; Kim, D.D. Fiscal Impact of Expanded Medicare Coverage for GLP-1 Receptor Agonists to Treat Obesity. JAMA Health Forum 2025, 6, e250905. [Google Scholar] [CrossRef]
- Kffcarenec. Employer Health Benefits Survey. KFF. 2024. Available online: https://www.kff.org/health-costs/2024-employer-health-benefits-survey/ (accessed on 22 August 2025).
- Cesta, C.E.; Rotem, R.; Bateman, B.T.; Chodick, G.; Cohen, J.M.; Furu, K.; Gissler, M.; Huybrechts, K.F.; Kjerpeseth, L.J.; Leinonen, M.K.; et al. Safety of GLP-1 Receptor Agonists and Other Second-Line Antidiabetics in Early Pregnancy. JAMA Intern. Med. 2024, 184, 144–152. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wolski, K. Rosiglitazone revisited: An updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch. Intern. Med. 2010, 170, 1191–1201. [Google Scholar] [CrossRef]
- Graff, S.K.; Mario, F.M.; Ziegelmann, P.; Spritzer, P.M. Effects of orlistat vs. metformin on weight loss-related clinical variables in women with PCOS: Systematic review and meta-analysis. Int. J. Clin. Pract. 2016, 70, 450–461. [Google Scholar] [CrossRef]
- Obesity in Pregnancy. ACOG Practice Bulletin No. 230. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2021, 137, e128–e144. [Google Scholar] [CrossRef]
- Apovian, C.M.; Aronne, L.; Rubino, D.; Still, C.; Wyatt, H.; Burns, C.; Kim, D.; Dunayevich, E.; For the COR-II Study Group. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity 2013, 21, 935–943. [Google Scholar] [CrossRef]
- Stefanaki, K.; Karagiannakis, D.S.; Peppa, M.; Vryonidou, A.; Kalantaridou, S.; Goulis, D.G.; Psaltopoulou, T.; Paschou, S.A. Food Cravings and Obesity in Women with Polycystic Ovary Syndrome: Pathophysiological and Therapeutic Considerations. Nutrients 2024, 16, 1049. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.M.; Ungureanu, S.; Rey, J.A. Naltrexone/Bupropion ER (Contrave). Pharm. Ther. 2016, 41, 164–172. [Google Scholar]
- Gadde, K.M.; Allison, D.B.; Ryan, D.H.; Peterson, C.A.; Troupin, B.; Schwiers, M.L.; Day, W.W. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Elkind-Hirsch, K.E.; Chappell, N.; Seidemann, E.; Storment, J.; Bellanger, D. Exenatide, Dapagliflozin, or Phentermine/Topiramate Differentially Affect Metabolic Profiles in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 3019–3033. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Lathi, R.B.; Kim, S.H. A Retrospective Study Examining Phentermine on Preconception Weight Loss and Pregnancy Outcomes. Endocr. Pract. 2020, 26, 990–996. [Google Scholar] [CrossRef]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; Luca, M.D.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Botella-Carretero, J.I.; Alvarez-Blasco, F.; Sancho, J.; San Millán, J.L. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 2005, 90, 6364–6369. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, N.M.; Sadegh, G.H.M.; Farsi, Y.; Besharat, S.; Hajimirzaie, S.H.; Abbasi, M. The impact of sleeve gastrectomy on polycystic ovarian syndrome: A single-center 1-year cohort study. Ir. J. Med. Sci. 2024, 193, 721–724. [Google Scholar] [CrossRef]
- Wang, X.-T.; Hou, Y.-S.; Zhao, H.-L.; Wang, J.; Guo, C.-H.; Guan, J.; Lv, Z.-G.; Ma, P.; Han, J.-L. Effect of laparoscopic sleeve gastrectomy on related variables of obesity complicated with polycystic ovary syndrome. World J. Gastrointest. Surg. 2023, 15, 2423–2429. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Santacruz, E.; Luque-Ramírez, M.; Botella Carretero, J.I. Prevalence of “obesity-associated gonadal dysfunction” in severely obese men and women and its resolution after bariatric surgery: A systematic review and meta-analysis. Hum. Reprod. Update 2017, 23, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Tatarchuk, T.; Todurov, I.; Anagnostis, P.; Tutchenko, T.; Pedachenko, N.; Glamazda, M.; Koseii, N.; Regeda, S. The Effect of Gastric Sleeve Resection on Menstrual Pattern and Ovulation in Premenopausal Women with Classes III–IV Obesity. Obes. Surg. 2022, 32, 599–606. [Google Scholar] [CrossRef]
- Benito, E.; Gómez-Martin, J.M.; Vega-Piñero, B.; Priego, P.; Galindo, J.; Escobar-Morreale, H.F.; Botella-Carretero, J.I. Fertility and Pregnancy Outcomes in Women with Polycystic Ovary Syndrome Following Bariatric Surgery. J. Clin. Endocrinol. Metab. 2020, 105, dgaa439. [Google Scholar] [CrossRef]
- Zemer-Tov, B.; Ziv-Baran, T.; Igawa, M.; Lieberman, G.; Orvieto, R.; Machtinger, R. Weight Regain following Bariatric Surgery and in vitro Fertilization Outcomes. Obes. Facts 2024, 17, 593–601. [Google Scholar] [CrossRef]
- Maggard, M.A.; Yermilov, I.; Li, Z.; Maglione, M.; Newberry, S.; Suttorp, M.; Hilton, L.; Santry, H.P.; Morton, J.M.; Livingston, E.H.; et al. Pregnancy and Fertility Following Bariatric Surgery: A Systematic Review. JAMA 2008, 300, 2286–2296. [Google Scholar] [CrossRef]
- Guelinckx, I.; Devlieger, R.; Vansant, G. Reproductive outcome after bariatric surgery: A critical review. Hum. Reprod. Update 2009, 15, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Shawe, J.; Ceulemans, D.; Akhter, Z.; Neff, K.; Hart, K.; Heslehurst, N.; Štotl, I.; Agrawal, S.; Steegers-Theunissen, R.; Taheri, S.; et al. Pregnancy after bariatric surgery: Consensus recommendations for periconception, antenatal and postnatal care. Obes. Rev. 2019, 20, 1507–1522. [Google Scholar] [CrossRef]
- Parent, B.; Martopullo, I.; Weiss, N.S.; Khandelwal, S.; Fay, E.E.; Rowhani-Rahbar, A. Bariatric Surgery in Women of Childbearing Age, Timing Between an Operation and Birth, and Associated Perinatal Complications. JAMA Surg. 2017, 152, 128–135. [Google Scholar] [CrossRef]
- Butts, S.F.; Seifer, D.B.; Koelper, N.; Senapati, S.; Sammel, M.D.; Hoofnagle, A.N.; Kelly, A.; Krawetz, S.A.; Santoro, N.; Zhang, H.; et al. Vitamin D Deficiency Is Associated with Poor Ovarian Stimulation Outcome in PCOS but Not Unexplained Infertility. J. Clin. Endocrinol. Metab. 2018, 104, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Schon, S.; Spizman, J.; Stelmak, D.; Chames, M.; Pilarz, S.; Abdur-Rahman, J.; Jiang, C.; Othman, A.; Menke, M. A multidisciplinary approach to weight management and reproductive care: A retrospective cohort study on weight loss through personalized and patient-centered care. Reprod. Biol. Endocrinol. 2025, 23, 89. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.E.; Hatley, K.E.; Polzien, K.; Diamond, M.; Tate, D.F. Testing a Personalized Behavioral Weight Loss Approach Using Multifactor Prescriptions and Self-Experimentation: 12-Week mHealth Pilot Randomized Controlled Trial Results. Obes. Sci. Pract. 2025, 11, e70051. [Google Scholar] [CrossRef] [PubMed]

| Intervention | Description | Anthropomorphic Parameters | Metabolic Parameters | Androgenic and Reproductive Parameters | Adverse Effects/Risks |
|---|---|---|---|---|---|
| Diet | |||||
| Low glycemic index [49,50,51] | Foods with a low, steady rise in blood sugar levels (i.e., whole grains, vegetables, fruits) |
|
|
| None |
| Ketogenic [2,3,52,53] | Low in carbohydrate, adequate protein, high in fat (regular ketogenic diet) or low-fat content (very low-calorie ketogenic diet or very low-energy ketogenic therapy) |
|
|
| Electrolyte imbalances, dehydration, nutritional deficiencies |
| DASH [51,54,55] | Balanced diet with lean meats, vegetables and fruits, low glycemic index carbohydrates, micronutrients, sodium restriction |
|
|
| None |
| Supplementation | |||||
| Vitamin D [3,6,12,17,18,19,57,58,127] | Vitamin D supplementation |
|
| None | |
| Anti-inflammatory [2] | Rich in fruits, vegetables, omega-3 fatty acids, whole grains |
|
| None | |
| Antioxidant [3,62,63,64,65] | Coenzyme Q10, vitamin E, resveratrol |
|
|
| None |
| Microbiome [66,67,68,69,70] | Probiotic or synbiotic supplementation, micro-biome rich foods include high fiber fermented foods, grains, and seeds |
|
|
| None |
| Exercise | |||||
| Aerobic [2,72,75] | Continuous use of large muscle groups, with increased heart rate |
|
|
| Risk of injury, caution in certain cardiac populations, orthopedic restrictions |
| High-Intensity Interval Training [72] | High-intensity intervals with low-intensity rest intervals in between |
|
| Risk of injury, caution in certain cardiac populations, orthopedic restrictions | |
| Yoga [72] | Controlled breathing exercises with a sequence of held positions |
| Risk of injury, caution in certain cardiac populations, orthopedic restrictions | ||
| Pharmacotherapy | |||||
| Metformin [5,6,12,49,85] | Activates the APMK pathway, inhibits the hepatic production of glucose, and increases peripheral tissue uptake of glucose |
|
|
| Bloating, abdominal pain, nausea/vomiting, diarrhea, abnormal liver function tests |
| GLP-1 receptor agonist [6,33,76,87,88,96,101,102,113] | Stimulates pancreatic insulin secretion, inhibits glucagon release, slow stomach emptying |
|
|
| Nausea, diarrhea, constipation, abdominal pain, potential teratogenicity |
| Thiazolidinediones [3,4,106] | PPAR-ᵧ agonist increases uptake of insulin-dependent glucose and decreases hepatic glucose production |
|
| Weight gain, increased risk of cardiovascular events, peripheral edema | |
| Orlistat [9,33,107] | Inhibits gastric and pancreatic lipases |
|
|
| Oily stools, flatulence, fat-absorbed vitamin deficiencies; contraindicated with underlying risk factors for malabsorption and cholestasis |
| Naltrexone-bupropion [33,110] | Naltrexone blocks µ-opioid receptors, bupropion inhibits reuptake of dopamine and norepinephrine |
|
| Headache, constipation, vomiting, dry mouth, dizziness, transient increase in blood pressure, potential teratogenicity. Contraindicated with chronic opioid use disorder or withdrawal, hypertension, seizure disorder, bulimia or anorexia, medications that lower the seizure threshold | |
| Phentermine-topiramate [33,34,112,113,114] | Phentermine stimulates the release of norepinephrine, topiramate modulates GABA and AMPA receptors |
|
|
| Dry mouth, paresthesia, constipation, insomnia, dizziness, dysgeusia, anxiety, and depression |
| Surgery | |||||
| Gastric sleeve, Roux-en-Y gastric bypass, adjustable gastric banding [6,9,33,34,115,116,117,118,119,121,122,125,126] | Reduces gastric capacity and calorie intake, increases satiety via central signaling |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzienny, A.C.; Seifer, D.B. Impact of Reducing Obesity in PCOS: Methods and Treatment Outcomes. J. Pers. Med. 2025, 15, 518. https://doi.org/10.3390/jpm15110518
Dzienny AC, Seifer DB. Impact of Reducing Obesity in PCOS: Methods and Treatment Outcomes. Journal of Personalized Medicine. 2025; 15(11):518. https://doi.org/10.3390/jpm15110518
Chicago/Turabian StyleDzienny, Alexa C., and David B. Seifer. 2025. "Impact of Reducing Obesity in PCOS: Methods and Treatment Outcomes" Journal of Personalized Medicine 15, no. 11: 518. https://doi.org/10.3390/jpm15110518
APA StyleDzienny, A. C., & Seifer, D. B. (2025). Impact of Reducing Obesity in PCOS: Methods and Treatment Outcomes. Journal of Personalized Medicine, 15(11), 518. https://doi.org/10.3390/jpm15110518

