Next-Generation Anticoagulants: Precision Strategies for Patient-Centered Thromboprophylaxis
Abstract
1. Introduction
2. Innovations in Anticoagulant Targets and Agents
2.1. Factor XI and XII Pathway Inhibitors
2.2. Small-Molecule FXIa Inhibitors
2.3. Monoclonal Antibodies and Antisense Agents
2.4. Clinical Status
2.5. Precision Anticoagulation Strategies
3. Optimizing Therapy in Special Populations
3.1. Cancer-Associated Thrombosis
3.2. Body Weight Extremes
3.3. Renal and Hepatic Impairment
3.4. Pregnancy
3.5. Perioperative Management
3.6. COVID-19 and Emerging Threats
4. Implementation and System-Level Considerations
4.1. Access, Cost, and Policy
4.2. Guidelines and Education
4.3. Real-World Data and Learning Health Systems
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Data and Statistics on Venous Thromboembolism. 27 January 2025. Available online: https://www.cdc.gov/blood-clots/data-research/facts-stats/index.html?utm_source=chatgpt.com (accessed on 6 August 2025).
- Oleksiuk-Bójko, M.; Lisowska, A. Venous thromboembolism: Why is it still a significant health problem? Adv. Med. Sci. 2023, 68, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; He, H.; Wang, S.; Su, H.; Kang, G. Global burden and health inequality of atrial fibrillation/atrial flutter from 1990 to 2021. Front. Cardiovasc. Med. 2025, 12, 1585980. [Google Scholar] [CrossRef]
- Boroumand, M.; Goodarzynejad, H. Monitoring of anticoagulant therapy in heart disease: Considerations for the current assays. J. Tehran Heart Cent. 2010, 5, 57–68. [Google Scholar] [PubMed] [PubMed Central]
- Dorgalaleh, A.; Favaloro, E.J.; Bahraini, M.; Rad, F. Standardization of Prothrombin Time/International Normalized Ratio (PT/INR). Int. J. Lab. Hematol. 2021, 43, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.T.; Sah, J.; Dhamane, A.D.; Lee, T.; Rosenblatt, L.; Hlavacek, P.; Emir, B.; Delinger, R.; Yuce, H.; Luo, X. Effectiveness and Safety of Apixaban versus Warfarin in Venous Thromboembolism Patients with Chronic Kidney Disease. Thromb. Haemost. 2022, 122, 926–938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weitz, J.I.; Strony, J.; Ageno, W.; Gailani, D.; Hylek, E.M.; Lassen, M.R.; Mahaffey, K.W.; Notani, R.S.; Roberts, R.; Segers, A.; et al. Milvexian for the Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 2161–2172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piccini, J.P.; Caso, V.; Connolly, S.J.; Fox, K.A.A.; Oldgren, J.; Jones, W.S.; Gorog, D.A.; Durdil, V.; Viethen, T.; Neumann, C.; et al. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): A multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 2022, 399, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Piccini, J.P.; Patel, M.R.; Steffel, J.; Ferdinand, K.; Gelder, I.C.V.; Russo, A.M.; Ma, C.-S.; Goodman, S.G.; Oldgren, J.; Hammett, C.; et al. Asundexian versus Apixaban in Patients with Atrial Fibrillation. N. Engl. J. Med. 2025, 392, 23–32. [Google Scholar] [CrossRef]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Büller, H.R.; Raskob, G.E.; Weitz, J.I. Abelacimab for Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Bauersachs, R.; Becker, B.; Berkowitz, S.D.; Freitas, M.C.S.; Lassen, M.R.; Metzig, C.; Raskob, G.E. Effect of Osocimab in Preventing Venous Thromboembolism Among Patients Undergoing Knee Arthroplasty: The FOXTROT Randomized Clinical Trial. Jama 2020, 323, 130–139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Büller, H.R.; Bethune, C.; Bhanot, S.; Gailani, D.; Monia, B.P.; Raskob, G.E.; Segers, A.; Verhamme, P.; Weitz, J.I. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 2015, 372, 232–240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, N.C.; Weitz, J.I. Ciraparantag as a potential universal anticoagulant reversal agent. Eur. Heart J. 2021, 43, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, P.; Chen, L.; Lai, X.; Shi, G.; Li, L.; Dong, J. Impact of CYP2C9, VKORC1, ApoE and ABCB1 polymorphisms on stable warfarin dose requirements in elderly Chinese patients. Pharmacogenomics 2020, 21, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J. Pers. Med. 2021, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Bittar, L.F.; De Paula, E.V.; Barnabé, A.; Mazetto, B.M.; Zapponi, K.C.S.; Montalvão, S.A.L.; Colella, M.P.; Orsi, F.A.; Annichino-Bizzacchi, J.M. Plasma Factor VIII Levels as a Biomarker for Venous Thromboembolism. In Biomarkers in Cardiovascular Disease; Patel, V.B., Preedy, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 703–721. [Google Scholar]
- Chen, R.; Petrazzini, B.O.; Malick, W.A.; Rosenson, R.S.; Do, R. Prediction of Venous Thromboembolism in Diverse Populations Using Machine Learning and Structured Electronic Health Records. Arter. Thromb. Vasc. Biol. 2024, 44, 491–504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muñoz Martín, A.J.; Lecumberri, R.; Souto, J.C.; Obispo, B.; Sanchez, A.; Aparicio, J.; Aguayo, C.; Gutierrez, D.; García Palomo, A.; Benavent, D.; et al. Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing. Clin. Transl. Oncol. 2025, 27, 1816–1825. [Google Scholar] [CrossRef]
- Raja, J.M.; Elsakr, C.; Roman, S.; Cave, B.; Pour-Ghaz, I.; Nanda, A.; Maturana, M.; Khouzam, R.N. Apple Watch, Wearables, and Heart Rhythm: Where do we stand? Ann. Transl. Med. 2019, 7, 417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gibson, C.M.; Steinhubl, S.; Lakkireddy, D.; Turakhia, M.P.; Passman, R.; Jones, W.S.; Bunch, T.J.; Curtis, A.B.; Peterson, E.D.; Ruskin, J.; et al. Does early detection of atrial fibrillation reduce the risk of thromboembolic events? Rationale and design of the Heartline study. Am. Heart J. 2023, 259, 30–41. [Google Scholar] [CrossRef]
- Kılıckesmez, K.; Aras, D.; Degertekin, M.; Ozer, N.; Hacibedel, B.; Helvacioglu, K.; Koc, U.; Ozdengulsun, B.; Dundar Ahi, E.; Ergene, O. Physician and Patient Preferences for Oral Anticoagulation Therapy Decision Making in Atrial Fibrillation: Results From a National Best-Worst Scaling Survey in Türkiye. Clin. Cardiol. 2024, 47, e70038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McBane, R.D., 2nd; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.A.; Beyer-Westendorf, J.; Davidson, B.L.; Huisman, M.V.; Sandset, P.M.; Moll, S. Use of direct oral anticoagulants in patients with obesity for treatment and prevention of venous thromboembolism: Updated communication from the ISTH SSC Subcommittee on Control of Anticoagulation. J. Thromb. Haemost. 2021, 19, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talerico, R.; Pola, R.; Klok, F.A.; Huisman, M.V. Direct-Acting Oral Anticoagulants in patients at extremes of body weight: A review of pharmacological considerations and clinical implications. TH Open 2024, 8, e31–e41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nasiri, A.; AlQahtani, A.; Rayes, N.H.; AlQahtani, R.; Alkharras, R.; Alghethber, H. Direct oral anticoagulant: Review article. J. Fam. Med. Prim. Care 2022, 11, 4180–4183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalaitzopoulos, D.R.; Panagopoulos, A.; Samant, S.; Ghalib, N.; Kadillari, J.; Daniilidis, A.; Samartzis, N.; Makadia, J.; Palaiodimos, L.; Kokkinidis, D.G.; et al. Management of venous thromboembolism in pregnancy. Thromb. Res. 2022, 211, 106–113. [Google Scholar] [CrossRef]
- Lameijer, H.; Aalberts, J.J.J.; van Veldhuisen, D.J.; Meijer, K.; Pieper, P.G. Efficacy and safety of direct oral anticoagulants during pregnancy; a systematic literature review. Thromb. Res. 2018, 169, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Douketis, J.D.; Spyropoulos, A.C.; Kaatz, S.; Becker, R.C.; Caprini, J.A.; Dunn, A.S.; Garcia, D.A.; Jacobson, A.; Jaffer, A.K.; Kong, D.F.; et al. Perioperative Bridging Anticoagulation in Patients with Atrial Fibrillation. N. Engl. J. Med. 2015, 373, 823–833. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Döhler, I.; Röder, D.; Schlesinger, T.; Nassen, C.A.; Germer, C.-T.; Wiegering, A.; Lock, J.F. Risk-adjusted perioperative bridging anticoagulation reduces bleeding complications without increasing thromboembolic events in general and visceral surgery. BMC Anesthesiol. 2023, 23, 56. [Google Scholar] [CrossRef]
- Boccatonda, A.; Campello, E.; Simion, C.; Simioni, P. Long-term hypercoagulability, endotheliopathy and inflammation following acute SARS-CoV-2 infection. Expert Rev. Hematol. 2023, 16, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, Z.; Han, F.; Guo, Q.; Feng, Q.; Shan, T.; Peng, J.; Xu, M. Coagulation Abnormalities in Post-Acute COVID-19 Syndrome: A Cross-Sectional Study. Blood 2024, 144 (Suppl. 1), 1232. [Google Scholar] [CrossRef]
- Neumann, I.; Schünemann, H.J.; Bero, L.; Cooke, G.; Magrini, N.; Moja, L. Global access to affordable direct oral anticoagulants. Bull. World Health Organ. 2021, 99, 653–660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonderman, M.; Wells, Q.S. Closing the Gap in VTE Prophylaxis. JACC Adv. 2023, 2, 100601. [Google Scholar] [CrossRef]
| Condition | Epidemiology/Burden | Key Unmet Needs | Rationale for Innovation |
|---|---|---|---|
| Venous thromboembolism | ~900,000 cases/yr in US; 60,000–100,000 VTE deaths/yr [1] | High rates of recurrence and post-thrombotic complications; bleeding risk with anticoagulants | Safer prophylaxis (e.g., FXI inhibitors); personalized risk scoring; improved adherence to prophylactic measures |
| Atrial fibrillation | ~10.5 million US adults (2024); ~52 million worldwide (GBD 2021) [3] | Stroke risk despite therapy; bleeding risk; undiagnosed cases | Safer stroke prevention (new targets, risk-based dosing); early detection via screening (wearables/EHR) |
| Cancer-associated VTE | ~20% of VTE cases linked to cancer | Balancing thrombosis vs. bleeding (esp. GI cancers); limited trial evidence for many regimens | Novel agents (e.g., DOACs optimized for cancer); precision prophylaxis; biomarkers of thrombosis risk |
| Other (pregnancy, etc.) | Pregnancy increases VTE risk ~5-fold; VTE common after orthopedic surgery | Safe anticoagulation in pregnancy and postpartum; perioperative management; new hypercoagulable states (e.g., COVID-19) | Tailored strategies (e.g., drug timing protocols, multidisciplinary teams); improved diagnostics |
| Agent/Class | Target/Mechanism | Clinical Status (Phase) |
|---|---|---|
| FXIa small molecules | Asundexian, Milvexian—oral FXIa inhibitors | Asundexian: Phase 3 (AF prevention trial); Milvexian: Phase 3 (AF, VTE) |
| Anti-FXI antibodies | Abelacimab, Osocimab—IV monoclonal anti-FXIa/FXI | Abelacimab: Phase 3 (PAION-1 AF/stroke and VTE trials); Osocimab: Phase 3 (arthroplasty) |
| FXI antisense oligo | IONIS-FXIRx—reduces FXI synthesis | Phase 2/3 (trials in AF and VTE prevention) |
| FXII inhibitors | Garadacimab (AB023)—anti-FXIIa antibody | Early trials (dialysis shunt clot prevention, hereditary angioedema) |
| Heparin mimetics/aptamers | Novel peptides/aptamers targeting thrombin, FXa, etc. | Preclinical/early clinical |
| Multi-target agents | e.g., combined anti-inflammatory + anticoagulant | Investigational |
| Reversal agents | Broad-spectrum (ciraparantag) for all anticoagulants [14] | Phase 2 (universal antidote) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiri, A.; Alshammari, M.; Alqahtani, R.; Alshaer, O.; Alsolamy, E.; Alghethber, H.; Alkharras, R. Next-Generation Anticoagulants: Precision Strategies for Patient-Centered Thromboprophylaxis. J. Pers. Med. 2025, 15, 490. https://doi.org/10.3390/jpm15100490
Nasiri A, Alshammari M, Alqahtani R, Alshaer O, Alsolamy E, Alghethber H, Alkharras R. Next-Generation Anticoagulants: Precision Strategies for Patient-Centered Thromboprophylaxis. Journal of Personalized Medicine. 2025; 15(10):490. https://doi.org/10.3390/jpm15100490
Chicago/Turabian StyleNasiri, Abdulrahman, Manal Alshammari, Rawan Alqahtani, Omar Alshaer, Eysa Alsolamy, Hamad Alghethber, and Reem Alkharras. 2025. "Next-Generation Anticoagulants: Precision Strategies for Patient-Centered Thromboprophylaxis" Journal of Personalized Medicine 15, no. 10: 490. https://doi.org/10.3390/jpm15100490
APA StyleNasiri, A., Alshammari, M., Alqahtani, R., Alshaer, O., Alsolamy, E., Alghethber, H., & Alkharras, R. (2025). Next-Generation Anticoagulants: Precision Strategies for Patient-Centered Thromboprophylaxis. Journal of Personalized Medicine, 15(10), 490. https://doi.org/10.3390/jpm15100490

