Prediction of Mortality in Hemodialysis Patients Using Inflammation- and Nutrition-Based Indices
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection Criteria and Study Design
2.2. Data Collection and Laboratory Assessment
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Kadatane, S.P.; Satariano, M.; Massey, M.; Mongan, K.; Raina, R. The Role of Inflammation in CKD. Cells 2023, 12, 1581. [Google Scholar] [CrossRef]
- Kooman, J.P.; Dekker, M.J.; Usvyat, L.A.; Kotanko, P.; van der Sande, F.M.; Schalkwijk, C.G.; Shiels, P.G.; Stenvinkel, P. Inflammation and premature aging in advanced chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2017, 313, F938–F950. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Herselman, M.; Esau, N.; Kruger, J.M.; Labadarios, D.; Moosa, M.R. Relationship between serum protein and mortality in adults on long-term hemodialysis: Exhaustive review and meta-analysis. Nutrition 2010, 26, 10–32. [Google Scholar] [CrossRef]
- den Hoedt, C.H.; Bots, M.L.; Grooteman, M.P.; van der Weerd, N.C.; Penne, E.L.; Mazairac, A.H.; Levesque, R.; Blankestijn, P.J.; Nubé, M.J.; ter Wee, P.M.; et al. Clinical predictors of decline in nutritional parameters over time in ESRD. Clin. J. Am. Soc. Nephrol. 2014, 9, 318–325. [Google Scholar] [CrossRef]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938–1946. [Google Scholar] [CrossRef]
- Kistler, B.M.; Moore, L.W.; Benner, D.; Biruete, A.; Boaz, M.; Brunori, G.; Chen, J.; Drechsler, C.; Guebre-Egziabher, F.; Hensley, M.K.; et al. The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. J. Ren. Nutr. 2021, 31, 116–120.e111. [Google Scholar] [CrossRef] [PubMed]
- Matz, A.J.; Qu, L.; Karlinsey, K.; Zhou, B. MicroRNA-regulated B cells in obesity. Immunometabolism 2022, 4, e00005. [Google Scholar] [CrossRef]
- Basso, P.J.; Andrade-Oliveira, V.; Câmara, N.O.S. Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 2021, 17, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Wei, D.; Sun, C.; Yang, Y.; Wei, Y.; Liu, X. Prognostic value of the combination of neutrophil-to-lymhocyte ratio, monocyte-to-lymphocyte ratio and platelet-to-lymphocyte ratio on mortality in patients on maintenance hemodialysis. BMC Nephrol. 2022, 8, 393. [Google Scholar] [CrossRef]
- Iida, H.; Tani, M.; Komeda, K.; Nomi, T.; Matsushima, H.; Tanaka, S.; Ueno, M.; Nakai, T.; Maehira, H.; Mori, H.; et al. Superiority of CRP-albumin-lymphocyte index (CALLY index) as a non-invasive prognostic biomarker after hepatectomy for hepatocellular carcinoma. HPB 2022, 24, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Hahr, A.J.; Molitch, M.E. Management of Diabetes Mellitus in Patients With CKD: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 79, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hao, J.; Luo, H.; Chen, L.; Luo, H.; Liu, H.; Xu, Y.; Wang, P. Construction of a C-reactive protein-albumin-lymphocyte index-based prediction model for all-cause mortality in patients on maintenance hemodialysis. Ren. Fail. 2025, 47, 2444396. [Google Scholar] [CrossRef] [PubMed]
- Selen, T.; Ulusal Okyay, G.; Ayerden Ebinç, F.; Merhametsiz, Ö.; Şahin, H.; Aylı, M.D. Does Control Nutritional Status (CONUT) Score Predict Early and Long-Term Mortality at the Initiation of Maintenance Hemodialysis? Int. J. Gen. Med. 2025, 18, 3775–3786. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, R.; Ye, P.; Luo, Y. Frailty in Older Patients Undergoing Hemodialysis and Its Association with All-Cause Mortality: A Prospective Cohort Study. Clin. Interv. Aging 2022, 17, 265–275. [Google Scholar] [CrossRef]
- Chan, G.C.; Kalantar-Zadeh, K.; Ng, J.K.; Tian, N.; Burns, A.; Chow, K.M.; Szeto, C.C.; Li, P.K. Frailty in patients on dialysis. Kidney Int. 2024, 106, 35–49. [Google Scholar] [CrossRef]
- Rahman, T.; Khor, B.H.; Sahathevan, S.; Kaur, D.; Latifi, E.; Afroz, M.; Mitali, E.J.; Tashkandi, B.; Begum, N.A.S.; Kashem, T.S.; et al. Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh. Nutrients 2022, 14, 1469. [Google Scholar] [CrossRef]
- Graterol Torres, F.; Molina, M.; Soler-Majoral, J.; Romero-González, G.; Rodríguez Chitiva, N.; Troya-Saborido, M.; Socias Rullan, G.; Burgos, E.; Paúl Martínez, J.; Urrutia Jou, M.; et al. Evolving Concepts on Inflammatory Biomarkers and Malnutrition in Chronic Kidney Disease. Nutrients 2022, 14, 4297. [Google Scholar] [CrossRef]
- Huang, C.Y.; Liou, S.Y.; Kuo, W.W.; Wu, H.C.; Chang, Y.L.; Chen, T.S. Chemiluminescence analysis of antioxidant capacity for serum albumin isolated from healthy or uremic volunteers. Luminescence 2016, 31, 1474–1478. [Google Scholar] [CrossRef]
- Sabatino, A.; Regolisti, G.; Karupaiah, T.; Sahathevan, S.; Sadu Singh, B.K.; Khor, B.H.; Salhab, N.; Karavetian, M.; Cupisti, A.; Fiaccadori, E. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis. Clin. Nutr. 2017, 36, 663–671. [Google Scholar] [CrossRef]
- Lai, K.J.; Hsieh, Y.P.; Chiu, P.F.; Lin, P.R. Association of Albumin and Globulin with Mortality Risk in Incident Peritoneal Dialysis Patients. Nutrients 2022, 14, 2850. [Google Scholar] [CrossRef]
- Sant’Ana, M.; Gameiro, J.; Costa, C.; Branco, C.; Marques da Silva, B.; Peres, N.; Cardoso, A.; Abrantes, A.M.; Fonseca, J.A.; Outerelo, C.; et al. C-reactive protein-to-albumin ratio and six-month mortality in incident hemodialysis patients. Ren. Fail. 2023, 45, 2182615. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, G.; Yin, X.; Liu, W.; Huang, H.; Li, D. Inflammatory and nutritional indices for overall survival in Hemodialysis patients: A multicenter cohort study. BMC Nephrol. 2025, 26, 228. [Google Scholar] [CrossRef] [PubMed]
- Lodebo, B.T.; Shah, A.; Kopple, J.D. Is it Important to Prevent and Treat Protein-Energy Wasting in Chronic Kidney Disease and Chronic Dialysis Patients? J. Ren. Nutr. 2018, 28, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.L. Insulin resistance and muscle metabolism in chronic kidney disease. ISRN Endocrinol. 2013, 2013, 329606. [Google Scholar] [CrossRef]
- Nusair, M.B.; Rajpurohit, N.; Alpert, M.A. Chronic Inflammation and Coronary Atherosclerosis in Patients with End-Stage Renal Disease. Cardiorenal Med. 2012, 2, 117–124. [Google Scholar] [CrossRef]
- Parhi, K.K.; Vijayasamundeeswari, C.K.; Kanchan, R.K.; Ghosh, S.; Ronald, P.J.; Periasamy, P. Association of Serum Albumin and C-Reactive Protein with Outcomes in ESRD Patients Undergoing Hemodialysis at a Tertiary Care Center in Salem, Tamil Nadu. J. Pharm. Bioallied Sci. 2024, 16, S4540–S4543. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Yang, F.; Xu, Y.; Feng, C.; Zhao, Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun. Signal. 2019, 17, 147. [Google Scholar] [CrossRef]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef]
- Song, M.; Graubard, B.I.; Rabkin, C.S.; Engels, E.A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Ge, J.; Li, Z.; Cao, L.; Fan, W.; Peng, Y.; Li, Q. Serum ferritin and neutrophil-to-lymphocyte ratio predict all-cause mortality in patients receiving maintenance hemodialysis: A prospective study. Front. Mol. Biosci. 2024, 11, 1366753. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, F. Association of monocyte to lymphocyte ratio with length of stay in intensive care unit in neonatal apnea modified by treatment. Transl. Pediatr. 2025, 14, 1073–1086. [Google Scholar] [CrossRef]
- Xiang, F.; Chen, R.; Cao, X.; Shen, B.; Liu, Z.; Tan, X.; Ding, X.; Zou, J. Monocyte/lymphocyte ratio as a better predictor of cardiovascular and all-cause mortality in hemodialysis patients: A prospective cohort study. Hemodial. Int. 2018, 22, 82–92. [Google Scholar] [CrossRef]
- Wen, Y.; Zhan, X.; Wang, N.; Peng, F.; Feng, X.; Wu, X. Monocyte/Lymphocyte Ratio and Cardiovascular Disease Mortality in Peritoneal Dialysis Patients. Mediat. Inflamm. 2020, 2020, 9852507. [Google Scholar] [CrossRef]
- Furukawa, K.; Tsunematsu, M.; Tanji, Y.; Ishizaki, S.; Akaoka, M.; Haruki, K.; Uwagawa, T.; Onda, S.; Matsumoto, M.; Ikegami, T. Impact of C-reactive protein-albumin-lymphocyte (CALLY) index on prognosis after hepatectomy for colorectal liver metastasis. Surg. Oncol. 2023, 47, 101911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, J.; Xie, H.; Liu, X.; Ruan, G.; Lin, S.; Ge, Y.; Liu, C.; Chen, Y.; Zheng, X.; et al. Superiority of CRP-albumin-lymphocyte index as a prognostic biomarker for patients with gastric cancer. Nutrition 2023, 116, 112191. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 106) | Survivors (n = 77) | Non-Survivors (n = 29) | p | |
---|---|---|---|---|
Age | 58 (18–91) | 52.5 ± 16.7 | 65.3 ± 14.7 | <0.001 a |
Gender | 0.501 b | |||
Female | 42 (39.6%) | 29 (37.7%) | 13 (44.8%) | |
Male | 64 (60.4%) | 48 (62.3%) | 16 (55.2%) | |
CKD etiology | 0.210 b | |||
DM | 45 (42.5%) a | 28 (36.4%) | 17 (58.6%) | |
HT | 36 (34%) a | 31 (40.3%) | 5 (17.2%) | |
ADPCD | 3 (2.8%) a | 3 (3.9%) | 0 (0%) | |
Obstructive diseases | 3 (2.8%) a | 2 (2.6%) | 1 (3.4%) | |
Glomerulonephritis | 2 (1.9%) a | 2 (2.6%) | 0 (0%) | |
Hereditary | 1 (0.6%) a | 1 (1.3%) | 0 (0%) | |
MGUS | 1 (0.9%) a | 1 (1.3%) | 0 (0%) | |
Unknown | 15 (14.2%) a | 9 (11.7%) | 6 (20.7%) | |
DM, y/n (y%) | 49/57 (46.2%) | 45/32 (41.6%) | 12/17 (58.6%) | 0.116 b |
HT, y/n (y%) | 72/34 (67.9%) | 25/52 (67.5%) | 9/20 (69%) | 0.888 b |
CAD, y/n (y%) | 11/95 (10.4%) | 75/2 (2.6%) | 20/9 (31%) | <0.001 c |
Dialysis duration, months | 24.5 (4–67) | 27 (8–65) | 14 (4–67) | <0.001 d |
Neutrophil count, µL | 4930 (760–17,750) | 4950 (1620–10,120) | 4840 (760–17,750) | 0.697 d |
Hemoglobin, g/dL | 9.9 ± 1.6 | 10.1 ± 1.5 | 9.2 ± 1.7 | 0.007 a |
Lymphocyte count, µL | 1560 (250–4500) | 1610 (610–4500) | 1450 (250–3930) | 0.082 d |
Monocyte count, µL | 469 ± 190 | 455 ± 190 | 506 ± 189 | 0.222 a |
Platelet, 103/µL | 210 (75–662) | 217 (75–447) | 181 (88–662) | 0.294 d |
Glucose, mg/dL | 121 (50–626) | 115 (50–626) | 132 (78–613) | 0.573 d |
BUN, mg/dL | 115 ± 41 | 113 ± 40 | 120 ± 43 | 0.544 a |
Creatinine, mg/dL | 6.12 (1.1–14.5) | 6.3 (1.1–14.5) | 5.3 (2.3–9.3) | 0.048 d |
Uric acid, mg/dL | 6.1 (2.1–11.5) | 6.3 ± 1.6 | 5.8 ± 1.4 | 0.142 a |
CRP, mg/L | 6.2 (2–237.2) | 6.3 (2–73.6) | 5.2 (2–237.2) | 0.732 d |
Albumin, g/L | 33 (7–45) | 34 ± 4.4 | 28 ± 8.3 | 0.001 a |
CRP/albumin ratio | 0.203 (0.05–33.89) | 0.205(0.05–2.63) | 0.179 (0.05–33.89) | 0.410 d |
NLR | 2.94 (0.74–71) | 2.81 (0.74–10.8) | 3.59 (0.92–71) | 0.230 d |
MLR | 0.271 (0.06–2.08) | 0.254 (0.06–0.66) | 0.329 (0.14–2.08) | 0.014 d |
PLR | 0.129 (0.04–0.60) | 0.122 (0.04–0.36) | 0.157 (0.05–0.60) | 0.107 d |
Sodium, mmol/L | 138 (128–164) | 138 (128–164) | 137 (128–147) | 0.316 d |
Potassium, mmol/L | 4.6 ± 0.8 | 4.5 ± 0.8 | 4.6 ± 1 | 0.634 a |
Calcium, mmol/L | 8.2 ± 0.7 | 8.3 ± 0.6 | 8.1 ± 0.8 | 0.369 a |
Phosphorus, mmol/L | 4.6 (1.5–9.6) | 4.5 (1.5–9.6) | 4.9 (2–9.2) | 0.845 d |
CALLY index | 0.804 (0.004–6.46) | 0.803 (0.064–6.46) | 0.898 (0.004–4.258) | 0.231 d |
Cox Proportional Hazards Regression | Univariate | ||
---|---|---|---|
CI (95%) | HR | p | |
Age | 1.013–1.069 | 1.041 | 0.004 |
DM, y/n (y%) | 0.698–3.120 | 1.475 | 0.309 |
HT, y/n (y%) | 0.381–1.866 | 0.844 | 0.675 |
CAD, y/n (y%) | 1.840–9.595 | 4.201 | 0.001 |
Neutrophil count, µL | 1.00–1.00 | 1.00 | 0.063 |
Monocyte count, µL | 0.999–1.003 | 1.001 | 0.529 |
Hemoglobin, g/dL | 0.501–0.844 | 0.651 | 0.001 |
Lymphocyte count, µL | 0.999–1.000 | 0.999 | 0.074 |
NLR | 1.021–1.081 | 1.051 | 0.001 |
MLR | 2.411–18.117 | 6.609 | <0.001 |
PLR | 2.607–5201.1 | 116.440 | 0.014 |
BUN, mg/dL | 0.995–1.013 | 1.004 | 0.416 |
Creatinine, mg/dL | 0.748–1.024 | 0.875 | 0.095 |
Uric acid, mg/dL | 0.691–1.113 | 0.877 | 0.281 |
CRP, mg/L | 1.009–1.020 | 1.014 | <0.001 |
Albumin, g/L | 0.157–0.459 | 0.268 | <0.001 |
CRP/albumin ratio | 1.103–1.265 | 1.181 | <0.001 |
Calcium, mmol/L | 0.505–1.498 | 0.870 | 0.616 |
Phosphorus, mmol/L | 0.835–1.533 | 1.131 | 0.427 |
CALLY index | 0.670–1.226 | 0.907 | 0.525 |
Model | R2 | Age | CAD | CRP/Albumin Ratio (CAR) | NLR | MLR | PLR |
---|---|---|---|---|---|---|---|
p HR CI 95% | p HR CI 95% | p HR CI 95% | p HR CI 95% | p HR CI 95% | p HR CI 95% | ||
1 | 58.7% | 0.039 1.030 (1.001–1.059) | |||||
2 | 76.8% | 0.039 1.030 (1.002–1.059) | <0.001 1.139 (1.060–1.224) | ||||
3 | 65.4% | 0.028 1.033 (1.003–1.063) | 0.013 1.042 (1.009–1.076) | ||||
4 | 83.75% | 0.026 1.033 (1.004–1.064) | 0.003 1.114 (1.038–1.195) | 0.004 1.049 (1.015–1.083) | |||
5 | 61.2% | 0.033 1.033 (1.003–1.064) | 0.014 4.154 (1.327–13.002) | ||||
6 | 80.2% | 0.034 1.032 (1.002–1.063) | 0.001 1.127 (1.052–1.207) | 0.009 5.078 (1.495–17.225) | |||
7 | 56.3% | 0.035 1.031 (1.002–1.061) | |||||
8 | 74.8% | 0.029 1.032 (1.003–1.062) | 0.002 1.122 (1.042–1.206) |
AUC | CI 95% | Sensitivity | Specificity | PPV | NPV | Cut off Value | p | |
---|---|---|---|---|---|---|---|---|
Age | 0.712 | 0.605–0.820 | 62.1% | 64.9% | 39.5% | 80.9% | 61.5 | 0.001 |
CRP/Albumin Ratio (CAR) | 0.552 | 0.415–0.690 | ̶ | ̶ | ̶ | ̶ | ̶ | 0.410 |
NLR | 0.576 | 0.439–0.713 | ̶ | ̶ | ̶ | ̶ | ̶ | 0.230 |
MLR | 0.656 | 0.542–0.769 | 69% | 61% | 40% | 83.9% | 0.2866 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakmak, U.; Sevimli, N.; Akkaya, S.; Merhametsiz, O. Prediction of Mortality in Hemodialysis Patients Using Inflammation- and Nutrition-Based Indices. J. Pers. Med. 2025, 15, 489. https://doi.org/10.3390/jpm15100489
Cakmak U, Sevimli N, Akkaya S, Merhametsiz O. Prediction of Mortality in Hemodialysis Patients Using Inflammation- and Nutrition-Based Indices. Journal of Personalized Medicine. 2025; 15(10):489. https://doi.org/10.3390/jpm15100489
Chicago/Turabian StyleCakmak, Umit, Nurgul Sevimli, Suleyman Akkaya, and Ozgur Merhametsiz. 2025. "Prediction of Mortality in Hemodialysis Patients Using Inflammation- and Nutrition-Based Indices" Journal of Personalized Medicine 15, no. 10: 489. https://doi.org/10.3390/jpm15100489
APA StyleCakmak, U., Sevimli, N., Akkaya, S., & Merhametsiz, O. (2025). Prediction of Mortality in Hemodialysis Patients Using Inflammation- and Nutrition-Based Indices. Journal of Personalized Medicine, 15(10), 489. https://doi.org/10.3390/jpm15100489