Real-World Outcomes of Robotic Total Knee Arthroplasty: Five Years’ Experience in a Non-Academic Center
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Consistency of Planning and Execution
3.3. Gap Adjustment
3.4. Postoperative Functional Reconstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gordon, A.M.; Nian, P.; Baidya, J.; Mont, M.A. Trends of robotic total joint arthroplasty utilization in the United States from 2010 to 2022: A nationwide assessment. J. Robot. Surg. 2025, 19, 155. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, Q.; Tian, R.; Wang, K.; Yang, P. Associations of postoperative outcomes with geriatric nutritional risk index after conventional and robotic-assisted total knee arthroplasty: A randomized controlled trial. Int. J. Surg. 2024, 110, 2115–2121. [Google Scholar] [PubMed]
- Zhang, H.; Jiang, X.-A.; Jin, B.-C.; Zhang, H.-H.; Liang, J.-B. Current developments in robotic assistance technology for total knee arthroplasty: A comprehensive overview. J. Orthop. Surg. Res. 2025, 20, 80. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, M.T.; Avram, G.; Graichen, H.; Tandogan, R.N.; Mengis, N.; Zaffagnini, S. Same same but different-Image-based versus imageless robotic-assisted total knee arthroplasty! J. Exp. Orthop. 2024, 11, e70062. [Google Scholar] [CrossRef]
- Tone, S.; Hasegawa, M.; Naito, Y.; Wakabayashi, H.; Sudo, A. Two- and three-dimensional evaluations following handheld robot-assisted total knee arthroplasty. J. Robot. Surg. 2024, 18, 70. [Google Scholar]
- Yu, M.; Yang, X.; Xu, Y.; Zhu, W.; Peng, H.; Lin, J.; Weng, X.; Feng, B. Comparison between ligament balancing and measured resection in robot-assisted total knee arthroplasty: A 2-year follow up cohort study. BMC Musculoskelet. Disord. 2025, 26, 152. [Google Scholar] [CrossRef]
- Henry, J.P.; Paradis, B.; Qilleri, A.; Baichoo, N.; Reinhardt, K.R.; Slover, J.D.; Danoff, J.R.; Germano, J.A. Size-Up, Size-Down: Accuracy of Component Sizing with Computerized Tomography and Robotic-Assisted Total Knee Arthroplasty. J. Knee Surg. 2025, 38, 217–223. [Google Scholar]
- Pacchiarotti, G.; Todesca, A.; Avram, G.M.; Longo, G.; Paolicelli, D.; Gumina, S. Image-based robotic total knee arthroplasty preserves the knee joint line level even in advanced fixed flexion deformities when combined with functional alignment principles: A retrospective comparative cohort study. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 2545–2554. [Google Scholar] [CrossRef]
- Sires, J.D.; Craik, J.D.; Wilson, C.J. Accuracy of Bone Resection in MAKO Total Knee Robotic-Assisted Surgery. J. Knee Surg. 2021, 34, 745–748. [Google Scholar] [CrossRef]
- Manara, J.R.; Goonatillake, M.; Marley, M.; Pretty, W.; Collopy, D.; Clark, G. Virtual assessment of coronal balance prior to bone resection with the MAKO robotic-assisted system accurately predicts final balance in TKA. J. Robot. Surg. 2023, 17, 2849–2854. [Google Scholar] [CrossRef]
- Marcus, H.J.; Ramirez, P.T.; Khan, D.Z.; Horsfall, H.L.; Hanrahan, J.G.; Williams, S.C.; Beard, D.J.; Bhat, R.; Catchpole, K.; Cook, A.; et al. The IDEAL framework for surgical robotics: Development, comparative evaluation and long-term monitoring. Nat. Med. 2024, 30, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Khatri, C.; Metcalfe, A.; Wall, P.; Underwood, M.; Haddad, F.S.; Davis, E.T. Robotic trials in arthroplasty surgery. Bone Jt. J. 2024, 106-B, 114–120. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Wang, X.; Zhang, B.; Wang, W.; Fan, Y.; Yan, J.; Zhang, X.; Zhao, Y.; Lin, Y.; et al. HURWA robotic-assisted total knee arthroplasty improves component positioning and alignment—A prospective randomized and multicenter study. J. Orthop. Translat. 2022, 33, 31–40. [Google Scholar] [CrossRef]
- Lawson, K.A.; Chen, A.F.; Springer, B.D.; Illgen, R.L.; Lewallen, D.G.; Huddleston, J.I.; Amanatullah, D.F. Migration Patterns for Revision Total Knee Arthroplasty in the United States as Reported in the American Joint Replacement Registry. J. Arthroplast. 2021, 36, 3538–3542. [Google Scholar] [CrossRef]
- Hummel, A.; Matsumoto, M.; Shimoda, B.; Au, D.L.M.T.; Andrews, S.N.; Nakasone, C.K. Complications following single-stage bilateral total knee arthroplasty and unilateral procedures: Experience of a high-volume community hospital. Arch. Orthop. Trauma. Surg. 2024, 144, 315–322. [Google Scholar] [CrossRef]
- Adams, C.T.; O’cOnnor, C.M.; Young, J.R.; Anoushiravani, A.A.; Doherty, B.S.; Congiusta, F. Outcomes of a Total Joint Arthroplasty Enhanced Recovery Program in a Community Hospital Setting. J. Arthroplast. 2021, 36, S173–S178. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Weitzel, N.; Hogan, C.; Kacmar, R.M.; Williamson, K.M.; Pattee, J.; Jevtovic-Todorovic, V.; Simmons, C.G.; Faruki, A.A. Comparing Anesthesia and Surgery Controlled Time for Primary Total Knee and Hip Arthroplasty Between an Academic Medical Center and a Community Hospital: Retrospective Cohort Study. JMIR Perioper. Med. 2024, 7, e45126. [Google Scholar] [CrossRef]
- Catchpole, K.; Bisantz, A.; Hallbeck, M.S.; Weigl, M.; Randell, R.; Kossack, M.; Anger, J.T. Human factors in robotic assisted surgery: Lessons from studies ‘in the Wild’. Appl. Ergon. 2019, 78, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Fuller, P.; Kennedy, S.; Ball, M.; Duffie, H.; Gainey, M.; Luo, Q.; Joseph, A.; Carbonell, A.; Cha, J.S. Understanding the challenges of robotic-assisted surgery adoption: Perspectives from stakeholders and the general population on human-interaction, built environment, and training. Appl. Ergon. 2025, 122, 104403. [Google Scholar] [CrossRef]
- Peng, Y.; Ding, R.; Li, M.; Wang, G.; Zhong, Z.; Wei, L.; Huang, C.; Zhang, N.; Hernigou, P.; Wang, W. Preoperative evaluation of femoral and tibial sagittal alignment in robotic-assisted and conventional total knee arthroplasty and consequences for practice. Int. Orthop. 2024, 48, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Sun, P.; Xin, P.; Zhong, S.; Xie, J.; Xiao, L. Comparison of the efficacy and safety of MAKO robot-assisted total knee arthroplasty versus conventional manual total knee arthroplasty in uncomplicated unilateral total knee arthroplasty a single-centre retrospective analysis. Int. Orthop. 2024, 48, 2351–2358. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Wang, G.; Rong, C.; Zhu, W.; Lu, X.; Liu, Y.; Zhang, H. Accuracies of bone resection, implant position, and limb alignment in robotic-arm-assisted total knee arthroplasty: A prospective single-centre study. J. Orthop. Surg. Res. 2022, 17, 61. [Google Scholar] [CrossRef]
- Gu, Y.; Howell, S.M.; Hull, M.L. Simulation of total knee arthroplasty in 5 degrees or 7 degrees valgus: A study of gap imbalances and changes in limb and knee alignments from native. J. Orthop. Res. 2017, 35, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Song, E.-K.; Seon, J.-K.; Yim, J.-H.; Netravali, N.A.; Bargar, W.L. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin. Orthop. Relat. Res. 2013, 471, 118–126. [Google Scholar] [CrossRef]
- Vermue, H.; Luyckx, T.; de Grave, P.W.; Ryckaert, A.; Cools, A.; Himpe, N.; Victor, J. Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 593–602. [Google Scholar] [CrossRef]
- Rizzi, A.; Bradley, A.T.; O’dAniel, J.A.; Eldib, A.M.; Puri, L. Reverse coronal deformity: Use of robotic total knee arthroplasty for identification and correction. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 3671–3676. [Google Scholar] [CrossRef]
- Hampp, E.L.; Chughtai, M.; Scholl, L.Y.; Sodhi, N.; Bhowmik-Stoker, M.; Jacofsky, D.J.; Mont, M.A. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J. Knee Surg. 2019, 32, 239–250. [Google Scholar] [CrossRef]
- Loomans, L.; Leirs, G.; Vandenneucker, H. Operating room efficiency after the implementation of MAKO robotic-assisted total knee arthroplasty. Arch. Orthop. Trauma. Surg. 2023, 143, 5501–5506. [Google Scholar] [CrossRef]
- Pietrzak, J.R.T.; Rowan, F.E.; Kayani, B.; Donaldson, M.J.; Huq, S.S.; Haddad, F.S. Preoperative CT-Based Three-Dimensional Templating in Robot-Assisted Total Knee Arthroplasty More Accurately Predicts Implant Sizes than Two-Dimensional Templating. J. Knee Surg. 2019, 32, 642–648. [Google Scholar] [CrossRef]
- Mason, J.B.; Fehring, T.K.; Estok, R.; Banel, D.; Fahrbach, K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J. Arthroplast. 2007, 22, 1097–1106. [Google Scholar] [CrossRef]
- Deckey, D.G.; Rosenow, C.S.; Verhey, J.T.; Brinkman, J.C.; Mayfield, C.K.; Clarke, H.D.; Bingham, J.S. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques. Bone Jt. J. 2021, 103-B (Suppl. A6), 74–80. [Google Scholar]
- Riantho, A.; Butarbutar, J.C.P.; Fidiasrianto, K.; Elson, E.; Irvan, I.; Haryono, H.; Prasetio, J.N. Radiographic Outcomes of Robot-Assisted Versus Conventional Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JB JS Open Access 2023, 8, e23.00010. [Google Scholar] [CrossRef]
- Bensa, A.; Sangiorgio, A.; Deabate, L.; Illuminati, A.; Pompa, B.; Filardo, G. Robotic-assisted mechanically aligned total knee arthroplasty does not lead to better clinical and radiological outcomes when compared to conventional TKA: A systematic review and meta-analysis of randomized controlled trials. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4680–4691. [Google Scholar] [CrossRef]
- Parratte, S.; Van Overschelde, P.; Bandi, M.; Ozturk, B.Y.; Batailler, C. An anatomo-functional implant positioning technique with robotic assistance for primary TKA allows the restoration of the native knee alignment and a natural functional ligament pattern, with a faster recovery at 6 months compared to an adjusted mechanical technique. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1334–1346. [Google Scholar]
- Yang, H.Y.; Cheon, J.H.; Kang, S.J.; Seon, J.K. Effect of tibia-first, restricted functional alignment technique on gap width changes, and component positioning in robotic arm-assisted total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 987–996. [Google Scholar] [CrossRef]
- Held, M.B.; Grosso, M.J.; Gazgalis, A.; Sarpong, N.O.; Boddapati, V.; Neuwirth, A.; Geller, J.A. Improved Compartment Balancing Using a Robot-Assisted Total Knee Arthroplasty. Arthroplast. Today 2021, 7, 130–134. [Google Scholar] [CrossRef]
- Selvanathan, N.; Ayeni, F.E.; Sorial, R. Incidence of soft tissue releases in robotic assisted cementless TKA with mechanical alignment and flexion gap balancing. Arthroplasty 2023, 5, 28. [Google Scholar] [CrossRef]
- Graichen, H.; Avram, G.M.; Zambianchi, F.; Graichen, N.M.; Catani, F.; Lustig, S.; Hirschmann, M.T. Bony alignment decisions affect patient-specific laxity phenotype patterns significantly, independent of the deformity. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 3637–3645. [Google Scholar] [CrossRef]
- Meijer, M.F.; Reininga, I.H.F.; Boerboom, A.L.; Bulstra, S.K.; Stevens, M. Does imageless computer-assisted TKA lead to improved rotational alignment or fewer outliers? A systematic review. Clin. Orthop. Relat. Res. 2014, 472, 3124–3133. [Google Scholar] [CrossRef]
- Ritter, M.A.; Davis, K.E.; Meding, J.B.; Pierson, J.L.; Berend, M.E.; Malinzak, R.A. The effect of alignment and BMI on failure of total knee replacement. J. Bone Jt. Surg. Am. 2011, 93, 1588–1596. [Google Scholar]
- Hickey, M.D.; Kaptein, B.L.; Anglin, C.; Masri, B.A.; Hodgson, A.J. Aseptic loosening is associated with medial tilting and anterior translational migration of the tibial implant in mechanically aligned total knee arthroplasty. Clin. Biomech. 2025, 124, 106474. [Google Scholar] [CrossRef]
- Valtanen, R.S.; Seligson, M.; Huddleston, H.G.; Angibaud, L.; Huddleston, J.I. Improved Clinical Outcomes With Dynamic, Force-Controlled, Gap-Balancing in Posterior-Stabilized Total Knee Arthroplasty. J. Arthroplast. 2024, 39, S218–S223. [Google Scholar] [CrossRef] [PubMed]
- Bourgeault-Gagnon, Y.; Salmon, L.J.; Lyons, M.C. Robotic-Assisted Total Knee Arthroplasty Improves Accuracy and Reproducibility of the Polyethylene Insert Thickness Compared to Manual Instrumentation or Navigation: A Retrospective Cohort Study. Arthroplast. Today 2024, 30, 101489. [Google Scholar] [CrossRef]
Parameter | Preoperative Median (IQR) | Intraoperative Median (IQR) | Δ Median (IQR) | p Value |
---|---|---|---|---|
Femoral rotation (°) | 0.0 (0.0–0.0) | 0.0 (0.0–1.0) | 0.5 (0.0–1.5) | <0.01 |
Femoral coronal alignment (°) | 0.0 (0.0–0.0) | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | <0.01 |
Femoral sagittal alignment (°) | 3.0 (1.5–4.0) | 2.5 (1.0–4.0) | 0.0 (0.0–1.0) | <0.01 |
Tibial rotation (°) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.05 |
Tibial coronal alignment (°) | 0.0 (0.0–0.0) | 0.5 (0.0–2.0) | 0.5 (0.0–1.5) | <0.01 |
Tibial sagittal alignment (°) | 3.0 (3.0–3.0) | 3.0 (3.0–3.0) | 0.0 (0.0–0.0) | 0.39 |
Posterior condylar axis (°) | 2.6 (1.5–3.7) | 3.0 (1.8–4.3) | 0.5 (0.0–1.4) | <0.01 |
Distal medial femoral resection (mm) | 8.0 (7.5–8.0) | 7.0 (5.5–8.0) | 1.0 (0.5–2.0) | <0.01 |
Distal lateral femoral resection (mm) | 5.5 (4.5–7.0) | 4.0 (3.5–5.5) | 1.0 (0.5–2.0) | <0.01 |
Posterior medial femoral resection (mm) | 8.0 (7.0–8.0) | 8.5 (7.5–9.0) | 1.0 (0.0–1.5) | <0.01 |
Posterior lateral femoral resection (mm) | 5.5 (4.5–6.5) | 6.0 (5.5–6.5) | 0.5 (0.0–1.0) | 0.02 |
Medial tibial resection (mm) | 4.5 (3.0–5.5) | 4.5 (3.5–5.5) | 1.0 (0.5–1.5) | 0.05 |
Lateral tibial resection (mm) | 7.0 (7.0–7.0) | 6.5 (5.0–7.0) | 1.0 (0.0–1.9) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burger, J.; Fan, W.; Gansiniec, S.; Reinders, C.; Kienzle, S.; Gwinner, C.; Hertog, A.d.; Kienzle, A. Real-World Outcomes of Robotic Total Knee Arthroplasty: Five Years’ Experience in a Non-Academic Center. J. Pers. Med. 2025, 15, 482. https://doi.org/10.3390/jpm15100482
Burger J, Fan W, Gansiniec S, Reinders C, Kienzle S, Gwinner C, Hertog Ad, Kienzle A. Real-World Outcomes of Robotic Total Knee Arthroplasty: Five Years’ Experience in a Non-Academic Center. Journal of Personalized Medicine. 2025; 15(10):482. https://doi.org/10.3390/jpm15100482
Chicago/Turabian StyleBurger, Joost, Wei Fan, Sandy Gansiniec, Casper Reinders, Scarlette Kienzle, Clemens Gwinner, Adrianus den Hertog, and Arne Kienzle. 2025. "Real-World Outcomes of Robotic Total Knee Arthroplasty: Five Years’ Experience in a Non-Academic Center" Journal of Personalized Medicine 15, no. 10: 482. https://doi.org/10.3390/jpm15100482
APA StyleBurger, J., Fan, W., Gansiniec, S., Reinders, C., Kienzle, S., Gwinner, C., Hertog, A. d., & Kienzle, A. (2025). Real-World Outcomes of Robotic Total Knee Arthroplasty: Five Years’ Experience in a Non-Academic Center. Journal of Personalized Medicine, 15(10), 482. https://doi.org/10.3390/jpm15100482