Current Applications and Future Directions of Technologies Used in Adult Deformity Surgery for Personalized Alignment: A Narrative Review
Abstract
1. Introduction
2. Alignment Predictions
3. Pedicle Screw Placement
3.1. Robotic Surgery
3.2. 3D-Printed Patient-Specific Technologies
4. Patient-Specific Implants
4.1. Patient-Specific Cages
4.2. Pre-Contoured Rods
4.3. Personalized Interbody Devices
5. Future Directions
5.1. Augmented Reality
5.2. Biodegradable Implants
5.3. SMART Implants
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Adult Spinal Deformity |
HRQOL | Health-related quality of life |
AI | Artificial intelligence |
PJK | Proximal junction kyphosis |
S2AI | S2 Alar-Iliac |
TLIF | Transforaminal lumbar interbody fusion |
PEEK | Polyetheretherketone |
ALIF | Anterior lumbar interbody fusion |
LLIF | Lateral lumbar interbody fusion |
ASI | Adaptive Spinal Intelligence |
ARAI | Augmented reality and artificial intelligence |
ARSN | Augmented reality surgical navigation |
PLA | Polylactic acid |
PCL | Polycaprolactone |
PCL-TCP | Polycaprolactone tricalcium phosphate |
PLIF | Posterior lumbar interbody fusion |
References
- Kim, H.J.; Yang, J.H.; Chang, D.G.; Suk, S.I.; Suh, S.W.; Song, K.S.; Park, J.B.; Cho, W. Adult Spinal Deformity: Current Concepts and Decision-Making Strategies for Management. Asian Spine J. 2020, 14, 886–897. [Google Scholar] [CrossRef]
- Metkar, U.S.; Lavelle, W.J.; Larsen, K.; Haddas, R.; Lavelle, W.F. Spinal alignment and surgical correction in the aging spine and osteoporotic patient. N. Am. Spine Soc. J. 2024, 19, 100531. [Google Scholar] [CrossRef]
- Diebo, B.G.; Varghese, J.J.; Lafage, R.; Schwab, F.J.; Lafage, V. Sagittal alignment of the spine: What do you need to know? Clin. Neurol. Neurosurg. 2015, 139, 295–301. [Google Scholar] [CrossRef]
- Terran, J.; Schwab, F.; Shaffrey, C.I.; Smith, J.S.; Devos, P.; Ames, C.P.; Fu, K.M.; Burton, D.; Hostin, R.; Klineberg, E.; et al. The SRS-Schwab adult spinal deformity classification: Assessment and clinical correlations based on a prospective operative and nonoperative cohort. Neurosurgery 2013, 73, 559–568. [Google Scholar] [CrossRef]
- Safaee, M.M.; Ames, C.P.; Smith, J.S. Epidemiology and Socioeconomic Trends in Adult Spinal Deformity Care. Neurosurgery 2020, 87, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Passias, P.G.; Poorman, G.W.; Jalai, C.M.; Neuman, B.; de la Garza-Ramos, R.; Miller, E.; Jain, A.; Sciubba, D.; McClelland, S.; Day, L.; et al. Morbidity of Adult Spinal Deformity Surgery in Elderly Has Declined Over Time. Spine 2017, 42, E978–E982. [Google Scholar] [CrossRef] [PubMed]
- Puffer, R.C.; Planchard, R.; Mallory, G.W.; Clarke, M.J. Patient-specific factors affecting hospital costs in lumbar spine surgery. J. Neurosurg. Spine 2016, 24, 1–6. [Google Scholar] [CrossRef]
- Lubelski, D.; Feghali, J.; Nowacki, A.S.; Alentado, V.J.; Planchard, R.; Abdullah, K.G.; Sciubba, D.M.; Steinmetz, M.P.; Benzel, E.C.; Mroz, T.E. Patient-specific prediction model for clinical and quality-of-life outcomes after lumbar spine surgery. J. Neurosurg. Spine 2021, 34, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.P.; Lafage, V. Adult spinal deformity-postoperative standing imbalance: How much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef]
- Passias, P.G.; Bortz, C.; Pierce, K.E.; Kummer, N.A.; Lafage, R.; Diebo, B.G.; Line, B.G.; Lafage, V.; Burton, D.C.; Klineberg, E.O.; et al. Appropriate Risk Stratification and Accounting for Age-Adjusted Reciprocal Changes in the Thoracolumbar Spine Reduces the Incidence and Magnitude of Distal Junctional Kyphosis in Cervical Deformity Surgery. Spine 2021, 46, 1437–1447. [Google Scholar] [CrossRef]
- Smith, J.S.; Elias, E.; Sursal, T.; Line, B.; Lafage, V.; Lafage, R.; Klineberg, E.; Kim, H.J.; Passias, P.; Nasser, Z.; et al. How Good Are Surgeons at Achieving Their Preoperative Goal Sagittal Alignment Following Adult Deformity Surgery? Glob. Spine J. 2024, 14, 1924–1936. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Schwab, F.; Challier, V.; Henry, J.K.; Gum, J.; Smith, J.; Hostin, R.; Shaffrey, C.; Kim, H.J.; Ames, C.; et al. Defining Spino-Pelvic Alignment Thresholds: Should Operative Goals in Adult Spinal Deformity Surgery Account for Age? Spine 2016, 41, 62–68. [Google Scholar] [CrossRef]
- Patel, R.V.; Yearley, A.G.; Isaac, H.; Chalif, E.J.; Chalif, J.I.; Zaidi, H.A. Advances and Evolving Challenges in Spinal Deformity Surgery. J. Clin. Med. 2023, 12, 6386. [Google Scholar] [CrossRef]
- Abelin-Genevois, K. Sagittal balance of the spine. Orthop. Traumatol. Surg. Res. 2021, 107, 102769. [Google Scholar] [CrossRef]
- Sardi, J.P.; Ames, C.P.; Coffey, S.; Good, C.; Dahl, B.; Kraemer, P.; Gum, J.; Devito, D.; Brayda-Bruno, M.; Lee, R.; et al. Accuracy of Rod Contouring to Desired Angles with and Without a Template: Implications for Achieving Desired Spinal Alignment and Outcomes. Glob. Spine J. 2023, 13, 425–431. [Google Scholar] [CrossRef]
- Smith, J.S.; Mundis, G.M.; Osorio, J.A.; Nicolau, R.J.; Temple-Wong, M.; Lafage, R.; Bess, S.; Ames, C.P. Analysis of Personalized Interbody Implants in the Surgical Treatment of Adult Spinal Deformity. Glob. Spine J. 2025, 15, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Laynes, R.A.; Kleck, C.J. Patient-specific implants and spinal alignment outcomes. N. Am. Spine Soc. J. 2024, 20, 100559. [Google Scholar] [CrossRef]
- Patel, A.V.; White, C.A.; Schwartz, J.T.; Pitaro, N.L.; Shah, K.C.; Singh, S.; Arvind, V.; Kim, J.S.; Cho, S.K. Emerging Technologies in the Treatment of Adult Spinal Deformity. Neurospine 2021, 18, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Lebovic, J.; Galetta, M.S.; Sardar, Z.M.; Goytan, M.; Daniels, A.H.; Miyanji, F.; Smith, J.S.; Burton, D.C.; Protopsaltis, T.S.; S. R. S. Safety, Value Committee. Enabling technology in adult spinal deformity. Spine Deform. 2025, 13, 1547–1561. [Google Scholar] [CrossRef]
- Weng, C.H.; Huang, Y.J.; Fu, C.J.; Yeh, Y.C.; Yeh, C.Y.; Tsai, T.T. Automatic recognition of whole-spine sagittal alignment and curvature analysis through a deep learning technique. Eur. Spine J. 2022, 31, 2092–2103. [Google Scholar] [CrossRef]
- Caprara, S.; Moschini, G.; Snedeker, J.G.; Farshad, M.; Senteler, M. Spinal sagittal alignment goals based on statistical modelling and musculoskeletal simulations. J. Biomech. 2020, 102, 109621. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yang, Z.; Duan, C.; Feng, X.; Tan, L.; Wei, Y.; Jiang, L.; Wu, T. Prediction formulae of sagittal alignment in thoracolumbar kyphosis secondary to ankylosing spondylitis after osteotomy. Sci. Rep. 2023, 13, 7747. [Google Scholar] [CrossRef]
- Furrer, P.R.; Caprara, S.; Wanivenhaus, F.; Burkhard, M.D.; Senteler, M.; Farshad, M. Patient-specific statistical shape modeling for optimal spinal sagittal alignment in lumbar spinal fusion. Eur. Spine J. 2021, 30, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Bess, S.; Glassman, S.; Ames, C.; Burton, D.; Hart, R.; Kim, H.J.; Klineberg, E.; Henry, J.; Line, B.; et al. Virtual Modeling of Postoperative Alignment After Adult Spinal Deformity Surgery Helps Predict Associations Between Compensatory Spinopelvic Alignment Changes, Overcorrection, and Proximal Junctional Kyphosis. Spine 2017, 42, E1119–E1125. [Google Scholar] [CrossRef]
- Zerouali, M.; Parpaleix, A.; Benbakoura, M.; Rigault, C.; Champsaur, P.; Guenoun, D. Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment. Diagn. Interv. Imaging 2023, 104, 343–350. [Google Scholar] [CrossRef]
- Vogt, S.; Scholl, C.; Grover, P.; Marks, J.; Dreischarf, M.; Braumann, U.D.; Strube, P.; Holzl, A.; Bohle, S. Novel AI-Based Algorithm for the Automated Measurement of Cervical Sagittal Balance Parameters. A Validation Study on Pre- and Postoperative Radiographs of 129 Patients. Glob. Spine J. 2025, 15, 1155–1165. [Google Scholar] [CrossRef]
- Fujimori, T.; Suzuki, Y.; Takenaka, S.; Kita, K.; Kanie, Y.; Kaito, T.; Ukon, Y.; Watabe, T.; Nakajima, N.; Kido, S.; et al. Development of artificial intelligence for automated measurement of cervical lordosis on lateral radiographs. Sci. Rep. 2022, 12, 15732. [Google Scholar] [CrossRef]
- Landriel, F.; Franchi, B.C.; Mosquera, C.; Lichtenberger, F.P.; Benitez, S.; Aineseder, M.; Guiroy, A.; Hem, S. Artificial Intelligence Assistance for the Measurement of Full Alignment Parameters in Whole-Spine Lateral Radiographs. World Neurosurg. 2024, 187, e363–e382. [Google Scholar] [CrossRef] [PubMed]
- Harake, E.S.; Linzey, J.R.; Jiang, C.; Joshi, R.S.; Zaki, M.M.; Jones, J.C.; Khalsa, S.S.S.; Lee, J.H.; Wilseck, Z.; Joseph, J.R.; et al. Development and validation of an artificial intelligence model to accurately predict spinopelvic parameters. J. Neurosurg. Spine 2024, 41, 88–96. [Google Scholar] [CrossRef]
- Joshi, R.S.; Harake, E.S.; Jiang, C.; Haselhuhn, J.J.; Linzey, J.R.; Jones, J.C.; Zaki, M.M.; Odland, K.; Wilseck, Z.; Joseph, J.R.; et al. Validation of a novel artificial intelligence model (SpinePose) to automatically and accurately predict spinopelvic parameters using scoliosis radiographs in an external cohort. Neurosurg. Focus 2025, 58, E10. [Google Scholar] [CrossRef]
- Brigato, P.; Vadala, G.; De Salvatore, S.; Oggiano, L.; Papalia, G.F.; Russo, F.; Papalia, R.; Costici, P.F.; Denaro, V. Harnessing machine learning to predict and prevent proximal junctional kyphosis and failure in adult spinal deformity surgery: A systematic review. Brain Spine 2025, 5, 104273. [Google Scholar] [CrossRef]
- Akbar, M.; Terran, J.; Ames, C.P.; Lafage, V.; Schwab, F. Use of Surgimap Spine in sagittal plane analysis, osteotomy planning, and correction calculation. Neurosurg. Clin. N. Am. 2013, 24, 163–172. [Google Scholar] [CrossRef]
- Langella, F.; Villafane, J.H.; Damilano, M.; Cecchinato, R.; Pejrona, M.; Ismael, M.; Berjano, P. Predictive Accuracy of Surgimap Surgical Planning for Sagittal Imbalance: A Cohort Study. Spine 2017, 42, E1297–E1304. [Google Scholar] [CrossRef] [PubMed]
- Merrill, R.K.; Kim, J.S.; Leven, D.M.; Meaike, J.J.; Kim, J.H.; Cho, S.K. A Preliminary Algorithm Using Spine Measurement Software to Predict Sagittal Alignment Following Pedicle Subtraction Osteotomy. Glob. Spine J. 2017, 7, 543–551. [Google Scholar] [CrossRef] [PubMed]
- van Royen, B.J.; Scheerder, F.J.; Jansen, E.; Smit, T.H. ASKyphoplan: A program for deformity planning in ankylosing spondylitis. Eur. Spine J. 2007, 16, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- van Royen, B.J. Preoperative Planning and the Use of Free Available Software for Sagittal Plane Corrective Osteotomies of the Lumbar Spine in Ankylosing Spondylitis. Orthop. Res. Rev. 2020, 12, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Sarlak, A.Y.; Tosun, B.; Atmaca, H.; Sarisoy, H.T.; Buluc, L. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur. Spine J. 2009, 18, 1892–1897. [Google Scholar] [CrossRef]
- Lu, Z.; Tischer, T.; Lutter, C.; Schnake, K.J. Robotic-assisted surgery for adult spinal deformity. A systematic review. Brain Spine 2024, 4, 102904. [Google Scholar] [CrossRef]
- Fan, Y.; Peng Du, J.; Liu, J.J.; Zhang, J.N.; Liu, S.C.; Hao, D.J. Radiological and clinical differences among three assisted technologies in pedicle screw fixation of adult degenerative scoliosis. Sci. Rep. 2018, 8, 890. [Google Scholar] [CrossRef]
- Chen, X.; Feng, F.; Yu, X.; Wang, S.; Tu, Z.; Han, Y.; Li, Q.; Chen, H.; Chen, Z.; Lao, L.; et al. Robot-assisted orthopedic surgery in the treatment of adult degenerative scoliosis: A preliminary clinical report. J. Orthop. Surg. Res. 2020, 15, 282. [Google Scholar] [CrossRef]
- Karamian, B.A.; DiMaria, S.L.; Sawires, A.N.; Canseco, J.A.; Basques, B.A.; Toci, G.R.; Radcliff, K.E.; Rihn, J.A.; Kaye, I.D.; Hilibrand, A.S.; et al. Clinical Outcomes of Robotic Versus Freehand Pedicle Screw Placement After One-to Three-Level Lumbar Fusion. Glob. Spine J. 2023, 13, 1871–1877. [Google Scholar] [CrossRef]
- Heath, D.C.; Chang, H.K.; Chang, C.C.; Yang, H.C.; Tu, T.H.; Hsu, B.H.; Lin, M.C.; Wu, J.C.; Lin, C.M.; Huang, W.C.; et al. Comparison between robot-assisted and navigation-guided minimally invasive transforaminal lumbar interbody fusion: A multicenter study. Neurosurg. Focus 2024, 57, E12. [Google Scholar] [CrossRef]
- Bederman, S.S.; Hahn, P.; Colin, V.; Kiester, P.D.; Bhatia, N.N. Robotic Guidance for S2-Alar-Iliac Screws in Spinal Deformity Correction. Clin. Spine Surg. 2017, 30, E49–E53. [Google Scholar] [CrossRef]
- Lee, N.J.; Boddapati, B.; Mathew, J.; Marciano, G.; Fields, M.; Buchana, I.A.; Zuckerman, S.L.; Park, P.J.; Leung, E.; Lombardi, J.M.; et al. Does robot-assisted spine surgery for multi-level lumbar fusion achieve better patient-reported outcomes than free-hand techniques? Interdiscip. Neurosurg. 2021, 25, 101214. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Ma, X.; Ma, J.; Dong, B.; Yang, P.; Sun, Y.; Zhou, L.; Shen, J. Comparison of short-term clinical outcomes between robot-assisted and freehand pedicle screw placement in spine surgery: A meta-analysis and systematic review. J. Orthop. Surg. Res. 2023, 18, 359. [Google Scholar] [CrossRef]
- Khalifeh, K.; Brown, N.J.; Pennington, Z.; Pham, M.H. Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review. Neurospine 2024, 21, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Matur, A.V.; Palmisciano, P.; Duah, H.O.; Chilakapati, S.S.; Cheng, J.S.; Adogwa, O. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: A systematic review and meta-analysis. Spine J. 2023, 23, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Ezeokoli, E.U.; Pfennig, M.; John, J.; Gupta, R.; Khalil, J.G.; Park, D.K. Index Surgery Cost of Fluoroscopic Freehand Versus Robotic-Assisted Pedicle Screw Placement in Lumbar Instrumentation: An Age, Sex, and Approach-Matched Cohort Comparison. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2022, 6, e22. [Google Scholar] [CrossRef]
- Kramer, P.; Jiang, K.; Weber-Levine, C.; Jillala, R.; Jennings, M.R.; Fuleihan, A.A.; Hersh, A.M.; Bhimreddy, M.; Menta, A.K.; Davidar, A.D.; et al. Predictors of cost of admission for robot-assisted pedicle screw placement. Neurosurg. Focus 2024, 57, E15. [Google Scholar] [CrossRef] [PubMed]
- Chumnanvej, S.; Ariyaprakai, K.; Pillai, B.M.; Suthakorn, J.; Gurusamy, S.; Chumnanvej, S. Cost-effectiveness of robotic-assisted spinal surgery: A single-center retrospective study. Laparosc. Endosc. Robot. Surg. 2023, 6, 147–153. [Google Scholar] [CrossRef]
- Menger, R.P.; Savardekar, A.R.; Farokhi, F.; Sin, A. A Cost-Effectiveness Analysis of the Integration of Robotic Spine Technology in Spine Surgery. Neurospine 2018, 15, 216–224. [Google Scholar] [CrossRef]
- Marengo, N.; Matsukawa, K.; Monticelli, M.; Ajello, M.; Pacca, P.; Cofano, F.; Penner, F.; Zenga, F.; Ducati, A.; Garbossa, D. Cortical Bone Trajectory Screw Placement Accuracy with a Patient-Matched 3-Dimensional Printed Guide in Lumbar Spinal Surgery: A Clinical Study. World Neurosurg. 2019, 130, e98–e104. [Google Scholar] [CrossRef]
- Lamartina, C.; Cecchinato, R.; Fekete, Z.; Lipari, A.; Fiechter, M.; Berjano, P. Pedicle screw placement accuracy in thoracic and lumbar spinal surgery with a patient-matched targeting guide: A cadaveric study. Eur. Spine J. 2015, 24 (Suppl. 7), 937–941. [Google Scholar] [CrossRef]
- Jarvers, J.S.; Schleifenbaum, S.; Pfeifle, C.; Oefner, C.; Edel, M.; von der Hoh, N.; Heyde, C.E. Comparison of three different screw trajectories in osteoporotic vertebrae: A biomechanical investigation. BMC Musculoskelet. Disord. 2021, 22, 418. [Google Scholar] [CrossRef]
- Hirao, Y.; Takahashi, H.; Koda, M.; Funayama, T.; Yamazaki, M. Cervical Posterior Instrumentation Surgery Using a Patient-Specific Screw Guide Templating System: A Case Report. Cureus 2023, 15, e47538. [Google Scholar] [CrossRef]
- Kim, J.; Rajadurai, J.; Choy, W.J.; Cassar, L.; Phan, K.; Harris, L.; Fiechter, M.; Mobbs, R.J. Three-Dimensional Patient-Specific Guides for Intraoperative Navigation for Cortical Screw Trajectory Pedicle Fixation. World Neurosurg. 2019, 122, 674–679. [Google Scholar] [CrossRef]
- Cecchinato, R.; Berjano, P.; Zerbi, A.; Damilano, M.; Redaelli, A.; Lamartina, C. Pedicle screw insertion with patient-specific 3D-printed guides based on low-dose CT scan is more accurate than free-hand technique in spine deformity patients: A prospective, randomized clinical trial. Eur. Spine J. 2019, 28, 1712–1723. [Google Scholar] [CrossRef]
- Maruo, K.; Arizumi, F.; Kusuyama, K.; Kishima, K.; Tachibana, T. Accuracy and safety of cortical bone trajectory screw placement by an inexperienced surgeon using 3D patient-specific guides for transforaminal lumbar interbody fusion. J. Clin. Neurosci. 2020, 78, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cool, J.; van Schuppen, J.; de Boer, M.A.; van Royen, B.J. Accuracy assessment of pedicle screw insertion with patient specific 3D-printed guides through superimpose CT-analysis in thoracolumbar spinal deformity surgery. Eur. Spine J. 2021, 30, 3216–3224. [Google Scholar] [CrossRef] [PubMed]
- Garg, B.; Gupta, M.; Singh, M.; Kalyanasundaram, D. Outcome and safety analysis of 3D-printed patient-specific pedicle screw jigs for complex spinal deformities: A comparative study. Spine J. 2019, 19, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.D.; Boddapati, V.; Lee, N.J.; Dyrszka, M.D.; Sardar, Z.M.; Lehman, R.A.; Lenke, L.G. Three-Dimensional Printing for Preoperative Planning and Pedicle Screw Placement in Adult Spinal Deformity: A Systematic Review. Glob. Spine J. 2021, 11, 936–949. [Google Scholar] [CrossRef]
- Maruo, K.; Arizumi, F.; Kusuyama, K.; Yoshie, N.; Tomoyuki, K.; Tachibana, T. Comparison of Clinical Outcomes After Transforaminal Interbody Fusion Using Cortical Bone Trajectory versus Percutaneous Pedicle Screw Fixation. World Neurosurg. 2021, 151, e821–e827. [Google Scholar] [CrossRef]
- Faldini, C.; Barile, F.; Cerasoli, T.; Ialuna, M.; Viroli, G.; Manzetti, M.; Traversari, M.; Mazzotti, A.; Ruffilli, A. Accuracy of Patient-Specific 3D-Printed Guides for Pedicle Screw Insertion in Spine Revision Surgery: Results of a Retrospective Study. Surg. Technol. Int. 2022, 41, 395–401. [Google Scholar] [CrossRef]
- Fan, Y.; Du, J.; Zhang, J.; Liu, S.; Xue, X.; Huang, Y.; Zhang, J.; Hao, D. Comparison of Accuracy of Pedicle Screw Insertion Among 4 Guided Technologies in Spine Surgery. Med. Sci. Monit. 2017, 23, 5960–5968. [Google Scholar] [CrossRef]
- Asada, T.; Subramanian, T.; Simon, C.Z.; Singh, N.; Hirase, T.; Araghi, K.; Lu, A.Z.; Mai, E.; Kim, Y.E.; Tuma, O.; et al. Level-specific comparison of 3D navigated and robotic arm-guided screw placement: An accuracy assessment of 1210 pedicle screws in lumbar surgery. Spine J. 2024, 24, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Ribera-Navarro, A.; Gibson, A.; Shenoy, R.; Cunningham, G.; Vekharia, V.; Moazen, M.; Kalaskar, D.M. Critical analysis for a safe design of 3D printed Patient-Specific Surgical Guides (PSSG) for pedicle screw insertion in spinal deformities. Ann. 3D Print. Med. 2021, 3, 100022. [Google Scholar] [CrossRef]
- Yang, W.; Guo, W.; Wu, W.J.; Ma, R.; Wang, Z.; Zhang, H.; Yang, W.; Ge, Z. Accuracy and cost comparison of 3D-printed guides in complex spinal deformity correction: Direct vs indirect design. Front. Bioeng. Biotechnol. 2025, 13, 1611998. [Google Scholar] [CrossRef] [PubMed]
- Farshad, M.; Zindel, C.; Safa, N.A.; Spirig, J.M.; Winkler, E. Instrumentation of hypoplastic pedicles with patient-specific guides. Spine Deform. 2024, 12, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.J.E.; Nurmukhametov, R.; Bernard, E.; Peralta, I.; Efe, I.E. A Low-Cost Three-Dimensional Printed Retractor for Transforaminal Lumbar Interbody Fusion. Cureus 2022, 14, e24185. [Google Scholar] [CrossRef]
- Chang, S.Y.; Kang, D.H.; Cho, S.K. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J. 2024, 18, 444–457. [Google Scholar] [CrossRef]
- Fogel, G.; Martin, N.; Williams, G.M.; Unger, J.; Yee-Yanagishita, C.; Pelletier, M.; Walsh, W.; Peng, Y.; Jekir, M. Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance. World Neurosurg. 2022, 162, e626–e634. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kwon, O.H.; Park, J.Y. Comparison Between 3-Dimensional-Printed Titanium and Polyetheretherketone Cages: 1-Year Outcome After Minimally Invasive Transforaminal Interbody Fusion. Neurospine 2022, 19, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.X.; Kim, J.S.; Kotheeranurak, V.; Chen, C.M.; Hu, B.S.; Rui, G. Does the application of expandable cages in TLIF provide improved clinical and radiological results compared to static cages? A meta-analysis. Front. Surg. 2022, 9, 949938. [Google Scholar] [CrossRef] [PubMed]
- Sattari, S.A.; Xia, Y.; Azad, T.D.; Caraway, C.A.; Chang, L. Advances in Implant Technologies for Spine Surgery. Neurosurg. Clin. N. Am. 2024, 35, 217–227. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Parr, W.C.H.; Choy, W.J.; McEvoy, A.; Walsh, W.R.; Phan, K. Anterior Lumbar Interbody Fusion Using a Personalized Approach: Is Custom the Future of Implants for Anterior Lumbar Interbody Fusion Surgery? World Neurosurg. 2019, 124, 452–458.e1. [Google Scholar] [CrossRef]
- McGilvray, K.C.; Easley, J.; Seim, H.B.; Regan, D.; Berven, S.H.; Hsu, W.K.; Mroz, T.E.; Puttlitz, C.M. Bony ingrowth potential of 3D-printed porous titanium alloy: A direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018, 18, 1250–1260. [Google Scholar] [CrossRef]
- Weinberg, J.H.; Ritchey, N.; Kwok, W.; Khisti, S.; Ladd, B.; Viljoen, S.; Khalsa, S.S.; Xu, D.S.; Grossbach, A.J. Lumbar Fusion with Micro- & Nano-Textured, 3D Printed Porous Titanium Versus PEEK Interbody Cages in TLIF: A Single-Blinded, Randomized Controlled Trial. Glob. Spine J. 2025, 21925682251347528. [Google Scholar] [CrossRef]
- Corso, K.A.; Kothari, P.; Corrado, K.; Michielli, A.; Ruppenkamp, J.; Bowden, D. Early revision events among patients with a three dimensional (3D) printed cellular titanium or PEEK (polyetheretherketone) spinal cage for single-level lumbar spinal fusion. Expert Rev. Med. Devices 2022, 19, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Burnard, J.L.; Parr, W.C.H.; Choy, W.J.; Walsh, W.R.; Mobbs, R.J. 3D-printed spine surgery implants: A systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur. Spine J. 2020, 29, 1248–1260. [Google Scholar] [CrossRef]
- Calek, A.K.; Hochreiter, B.; Buckland, A.J. 3D-Printed Titanium Cages for Anterior and Lateral Lumbar Interbody Fusion Result in Excellent Fusion Rates One Year After Surgery. Glob. Spine J. 2025, 21925682251344557. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Vira, S.; Elfar, J.C.; Lorio, M.P. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J. Pers. Med. 2024, 14, 809. [Google Scholar] [CrossRef]
- Willemsen, K.; Nizak, R.; Noordmans, H.J.; Castelein, R.M.; Weinans, H.; Kruyt, M.C. Challenges in the design and regulatory approval of 3D-printed surgical implants: A two-case series. Lancet Digit. Health 2019, 1, e163–e171. [Google Scholar] [CrossRef]
- Chang, C.C.; Chou, D.; Pennicooke, B.; Rivera, J.; Tan, L.A.; Berven, S.; Mummaneni, P.V. Long-term radiographic outcomes of expandable versus static cages in transforaminal lumbar interbody fusion. J. Neurosurg. Spine 2021, 34, 471–480. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Ferrara, L.; Cheng, B. Expandable Interbody Fusion Cages: An Editorial on the Surgeon’s Perspective on Recent Technological Advances and Their Biomechanical Implications. Int. J. Spine Surg. 2020, 14, S56–S62. [Google Scholar] [CrossRef]
- Lee, S.B.; Yoon, J.; Park, S.J.; Chae, D.S. Expandable Cages for Lumbar Interbody Fusion: A Narrative Review. J. Clin. Med. 2024, 13, 2889. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.T.; Le, H.; Hoang, T.T.; Trinh, G.M.; Shao, H.C.; Tsai, P.I.; Chen, K.J.; Hsieh, K.L.; Huang, E.W.; Hsu, C.C.; et al. Development of End-to-End Artificial Intelligence Models for Surgical Planning in Transforaminal Lumbar Interbody Fusion. Bioengineering 2024, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.; Noshchenko, A.; Patel, V.; Kleck, C.; Burger, E. Early Experience and Initial Outcomes with Patient-Specific Spine Rods for Adult Spinal Deformity. Orthopedics 2016, 39, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sadrameli, S.S.; Boghani, Z.; Steele Iii, W.J.; Holman, P.J. Utility of Patient-Specific Rod Instrumentation in Deformity Correction: Single Institution Experience. Spine Surg. Relat. Res. 2020, 4, 256–260. [Google Scholar] [CrossRef]
- Ou-Yang, D.; Burger, E.L.; Kleck, C.J. Pre-Operative Planning in Complex Deformities and Use of Patient-Specific UNiD™ Instrumentation. Glob. Spine J. 2022, 12 (Suppl. 2), 40S–44S. [Google Scholar] [CrossRef]
- Drexelius, K.; Kuris, E.O.; Sater, A.; Burger, E.L.; Ou-Yang, D.C.; Patel, V.V.; Kleck, C.J. The impact of patient-specific spine rods on spinopelvic parameters after short segment degenerative lumbar fusions. J. Spine Surg. 2025, 11, 65–73. [Google Scholar] [CrossRef]
- Nasto, L.A.; Paolicelli, C.; Sieczak, A.; Ulisse, P.; Cattolico, A.; Pola, E. Patient-Specific Rods vs Traditional Rods in Surgical Correction of Adult Spinal Deformities: A Case-Matched Study. Ann. Ital. Chir. 2025, 96, 116–123. [Google Scholar] [CrossRef]
- Faulks, C.R.; Biddau, D.T.; Munday, N.R.; McKenzie, D.P.; Malham, G.M. Patient-specific spinal rods in adult spinal deformity surgery reduce proximal junctional failure: A review of patient outcomes and surgical technique in a prospective observational cohort. J. Spine Surg. 2023, 9, 409–421. [Google Scholar] [CrossRef]
- Shaw, K.A.; Devito, D.P.; Schmitz, M.L.; Murphy, J.S. Are precontoured cobalt-chromium spinal rods mechanically superior to manually contoured rods? Spine Deform. 2020, 8, 871–877. [Google Scholar] [CrossRef]
- Hsieh, M.K.; Lee, D.M.; Chen, W.P.; Li, Y.D.; Kao, F.C.; Lin, Y.C.; Tsai, T.T.; Lai, P.L.; Tai, C.L. Forcefully engaging rods into tulips with gap discrepancy leading to pedicle screw loosening-a biomechanical analysis using long porcine spine segments. Spine J. 2024, 24, 1773–1780. [Google Scholar] [CrossRef]
- Kent, R.S.; Ames, C.P.; Asghar, J.; Blaskiewicz, D.J.; Osorio, J.A.; Yen, C.P.; Mullin, J.; Smith, J.S.; Small, J.M.; Temple-Wong, M.; et al. Radiographic Alignment in Deformity Patients Treated with Personalized Interbody Devices: Early Experience from the COMPASS Registry. Int. J. Spine Surg. 2024, 18, S6–S15. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Encarnacion Ramirez, M.; Chmutin, G.; Nurmukhametov, R.; Soto, G.R.; Kannan, S.; Piavchenko, G.; Nikolenko, V.; Efe, I.E.; Romero, A.R.; Mukengeshay, J.N.; et al. Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies. Brain Sci. 2024, 14, 645. [Google Scholar] [CrossRef]
- Mozaffari, K.; Foster, C.H.; Rosner, M.K. Practical Use of Augmented Reality Modeling to Guide Revision Spine Surgery: An Illustrative Case of Hardware Failure and Overriding Spondyloptosis. Oper. Neurosurg. 2022, 23, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Pojskic, M.; Bopp, M.; Sass, B.; Nimsky, C. Single-Center Experience of Resection of 120 Cases of Intradural Spinal Tumors. World Neurosurg. 2024, 187, e233–e256. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, K.B.; Katchko, K.M.; Lewicki, P.; Luciano, C.J. Augmented reality and artificial intelligence-assisted surgical navigation: Technique and cadaveric feasibility study. J. Craniovertebr. Junction Spine 2020, 11, 81–85. [Google Scholar] [CrossRef]
- Molina, C.A.; Sciubba, D.M.; Greenberg, J.K.; Khan, M.; Witham, T. Clinical Accuracy, Technical Precision, and Workflow of the First in Human Use of an Augmented-Reality Head-Mounted Display Stereotactic Navigation System for Spine Surgery. Oper. Neurosurg. 2021, 20, 300–309. [Google Scholar] [CrossRef]
- Edstrom, E.; Burstrom, G.; Persson, O.; Charalampidis, A.; Nachabe, R.; Gerdhem, P.; Elmi-Terander, A. Does Augmented Reality Navigation Increase Pedicle Screw Density Compared to Free-Hand Technique in Deformity Surgery? Single Surgeon Case Series of 44 Patients. Spine 2020, 45, E1085–E1090. [Google Scholar] [CrossRef]
- Azad, T.D.; Alfonzo Horowitz, M.; Tracz, J.A.; Khalifeh, J.M.; Liu, C.J.; Hughes, L.P.; Judy, B.F.; Khan, M.; Bydon, A.; Witham, T.F. Augmented Reality Versus Freehand Spinopelvic Fixation in Spinal Deformity: A Case-Control Study. Surg. Innov. 2025, 32, 36–45. [Google Scholar] [CrossRef]
- Chang, C.N.; Li, C.R.; Liao, S.S.; Shen, C.C.; Chen, K.Y.; Lee, C.H.; Yang, M.Y. Augmented Reality in Scoliosis Correction Surgery: Efficiency and Accuracy in Pedicle Screw Instrumentation. Medicina 2025, 61, 576. [Google Scholar] [CrossRef]
- Laubach, M.; Kobbe, P.; Hutmacher, D.W. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022, 288, 121699. [Google Scholar] [CrossRef]
- Koutserimpas, C.; Alpantaki, K.; Chatzinikolaidou, M.; Chlouverakis, G.; Dohm, M.; Hadjipavlou, A.G. The effectiveness of biodegradable instrumentation in the treatment of spinal fractures. Injury 2018, 49, 2111–2120. [Google Scholar] [CrossRef]
- Jiya, T.; Smit, T.; Deddens, J.; Mullender, M. Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices: A prospective, randomized study to assess fusion and clinical outcome. Spine 2009, 34, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Z.G.; Li, X.K.; Guo, Z.; Wu, S.H.; Zhang, Y.Q.; Shi, L.; Teoh, S.H.; Liu, Y.C.; Zhang, Z.Y. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. Biomaterials 2014, 35, 5647–5659. [Google Scholar] [CrossRef]
- Duarte, R.M.; Correia-Pinto, J.; Reis, R.L.; Duarte, A.R.C. Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. J. Tissue Eng. Regen. Med. 2020, 14, 1465–1475. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Bao, S.; Huang, H.; Tang, Z.; Dong, H.; Liu, J.; Chen, S.; Wang, N.; Wu, Z.; et al. Clinical application of 3D-printed biodegradable lumbar interbody cage (polycaprolactone/beta-tricalcium phosphate) for posterior lumbar interbody fusion. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Barri, K.; Zhuang, Q.; Swink, I.; Aucie, Y.; Holmberg, K.; Sauber, R.; Altman, D.T.; Cheng, B.C.; Wang, Z.L.; Alavi, A.H. Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress. Adv. Funct. Mater. 2022, 32, 2203533. [Google Scholar] [CrossRef]
- Murphy, R.K.J. Smart Spine Implants. Neurosurg. Clin. N. Am. 2024, 35, 229–234. [Google Scholar] [CrossRef]
- Thayaparan, G.K.; Owbridge, M.G.; Thompson, R.G.; D’Urso, P.S. Designing patient-specific solutions using biomodelling and 3D-printing for revision lumbar spine surgery. Eur. Spine J. 2019, 28 (Suppl. 2), 18–24. [Google Scholar] [CrossRef]
- Mensah, E.O.; Chalif, J.I.; Baker, J.G.; Chalif, E.; Biundo, J.; Groff, M.W. Challenges in Contemporary Spine Surgery: A Comprehensive Review of Surgical, Technological, and Patient-Specific Issues. J. Clin. Med. 2024, 13, 5460. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Huang, X.; Wang, X.; Chen, Y.F.; Lu, C.; Li, S.; Lu, L.; Zhang, D.W. Artificial Intelligence in Orthopedic Surgery: Current Applications, Challenges, and Future Directions. MedComm 2025, 6, e70260. [Google Scholar] [CrossRef] [PubMed]
- Liawrungrueang, W. Artificial Intelligence (AI) Agents Versus Agentic AI: What’s the Effect in Spine Surgery? Neurospine 2025, 22, 473–477. [Google Scholar] [CrossRef]
- Bottini, M.; Ryu, S.J.; Terander, A.E.; Voglis, S.; Maldaner, N.; Bellut, D.; Regli, L.; Serra, C.; Staartjes, V.E. The Ever-Evolving Regulatory Landscape Concerning Development and Clinical Application of Machine Intelligence: Practical Consequences for Spine Artificial Intelligence Research. Neurospine 2025, 22, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Divi, S.N.; Goyal, D.K.C.; Bowles, D.R.; Mujica, V.E.; Guzek, R.; Kaye, I.D.; Kurd, M.F.; Woods, B.I.; Radcliff, K.E.; Rihn, J.A.; et al. How do spinopelvic parameters influence patient-reported outcome measurements after lumbar decompression? Spine J. 2020, 20, 1610–1617. [Google Scholar] [CrossRef]
- Angevine, P.D.; Bray, D.; Cloney, M.; Malone, H. Uncertainty in the Relationship Between Sagittal Alignment and Patient-Reported Outcomes. Neurosurgery 2020, 86, 485–491. [Google Scholar] [CrossRef]
- Karim, S.M.; Fisher, C.; Glennie, A.; Rampersaud, R.; Street, J.; Dvorak, M.; Paquette, S.; Kwon, B.K.; Charest-Morin, R.; Ailon, T.; et al. Preoperative Patient-reported Outcomes are not Associated with Sagittal and Spinopelvic Alignment in Degenerative Lumbar Spondylolisthesis. Spine 2022, 47, 1128–1136. [Google Scholar] [CrossRef]
Technology | Description | Advantages | Future Directions and Areas of Improvement |
---|---|---|---|
Artificial Intelligence Models | Artificial intelligence that can measure spinal alignment parameters [25] | Quick speed (under 1 second) in detecting abnormal measurements [28] | Continual improvement in accuracy of measurements |
Osteotomy simulation | Used for surgical planning. Can measure alignment from pre-operative radiographs and predict post-operative spinal alignment parameters [32,36] | Simulate osteotomies and provide measurements for amount of resection [34] | Increased accuracy of pelvic tilt and sagittal vertical axis [34] |
Robotic Surgery | Used for pedicle screw and S2AI screw placement [38] | Comparable outcomes to freehand and increased accuracy compared to CT intra-operative navigation [40] | Continual improvement in accuracy of screw placement; high cost of index surgery [48] |
MySpineTM | 3D-printed patient-specific guides generated from patient’s CT images [52] | High accuracy cortical screw placement compared to freehand. Decreased perioperative pain and faster recovery after TLIF [63] | Continual training on how to use MySpineTM for more experience, more long-term outcome studies [65] |
3D-printed Titanium Cages | Titanium cages 3D-printed based on the patient’s pre-operative images [75] | Tailored to the patient’s complex anatomy, high fusion rates, increased rate of achieving ideal alignment [75] | High cost, time, and manufacturing capacity needed [81] |
Pre-Contoured Spinal Rods | Applies AI to patient’s pre-operative radiographs to use alignment measurements and generate pre-contoured rods [89] | Personalized ASD correction [89] | Measurement of coronal alignment, achievement of pelvic tilt alignment [92] |
aprevo® | Uses AI and patient’s pre-operative CT scans to 3D-print personalized interbody devices [95] | Sagittal alignment improvement [95] | Very new technology that needs more studies to validate alignment improvement and comparison to other devices [95] |
Augmented Reality | Augmented reality and artificial intelligence used in combination for navigation during surgery [99] | Accurate screw placement, increased confidence in identification of anatomical landmarks, use in education [99,100] | Needs more studies for safety and how it compares to freehand techniques [102] |
Biodegradable Implants | PCL-TCP hybrid implants and other combination of materials that can biodegrade, promoting natural bone remodeling to take place [107] | Properties of the implant may be similar to trabecular bone and allow for osseointegration [105] | Optimization of the combination of materials and testing of safety and efficacy of materials, testing of the strength of materials [106] |
SMART Implants | Device can be placed in an interbody fusion to sense compression forces [110] | Can alert to potential complications before indicated on radiographs [110] | Needs more testing for safety and efficacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, J.; Dahodwala, T.M.; Akioyamen, N.O.; Mostafa, E.; AbuQubo, R.Z.; Yang, X.A.; Singh, P.K.; Berman, D.C.; De la Garza Ramos, R.; Gelfand, Y.; et al. Current Applications and Future Directions of Technologies Used in Adult Deformity Surgery for Personalized Alignment: A Narrative Review. J. Pers. Med. 2025, 15, 480. https://doi.org/10.3390/jpm15100480
Hsu J, Dahodwala TM, Akioyamen NO, Mostafa E, AbuQubo RZ, Yang XA, Singh PK, Berman DC, De la Garza Ramos R, Gelfand Y, et al. Current Applications and Future Directions of Technologies Used in Adult Deformity Surgery for Personalized Alignment: A Narrative Review. Journal of Personalized Medicine. 2025; 15(10):480. https://doi.org/10.3390/jpm15100480
Chicago/Turabian StyleHsu, Janet, Taikhoom M. Dahodwala, Noel O. Akioyamen, Evan Mostafa, Rami Z. AbuQubo, Xiuyi Alexander Yang, Priya K. Singh, Daniel C. Berman, Rafael De la Garza Ramos, Yaroslav Gelfand, and et al. 2025. "Current Applications and Future Directions of Technologies Used in Adult Deformity Surgery for Personalized Alignment: A Narrative Review" Journal of Personalized Medicine 15, no. 10: 480. https://doi.org/10.3390/jpm15100480
APA StyleHsu, J., Dahodwala, T. M., Akioyamen, N. O., Mostafa, E., AbuQubo, R. Z., Yang, X. A., Singh, P. K., Berman, D. C., De la Garza Ramos, R., Gelfand, Y., Murthy, S. G., Krystal, J. D., Eleswarapu, A. S., & Fourman, M. S. (2025). Current Applications and Future Directions of Technologies Used in Adult Deformity Surgery for Personalized Alignment: A Narrative Review. Journal of Personalized Medicine, 15(10), 480. https://doi.org/10.3390/jpm15100480