Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Plan Contouring and Treatment Criteria
2.3. Treatment Planning Setting
2.4. Dosimetric Evaluation
2.5. Treatment
2.6. Endpoints
3. Results
4. Discussion
- The immune system is activated, inducing a modest inflammatory response at the tumor site. This process subsequently results in the activation and recruitment of immune cells, including T cells, natural killer (NK) cells, and dendritic cells, and in the decrease of immune-suppressing cells (e.g., regulatory T-cells, myeloid-derived suppressor cells, and TAM M2).
- Furthermore, LDRT has been demonstrated to stimulate the release of tumor-associated antigens, thereby rendering tumor cells more recognizable to the immune system.
- LDRT has been demonstrated to promote a form of immunogenic cell death through selective induction of apoptosis or senescence in aberrant cells, thereby helping to “train” the immune system against the cancer cells. The TME encompasses three principal components: cellular elements (fibroblasts, stromal, immune, and endothelial cells), extracellular matrix proteins, and soluble factors. Within this complex niche, both innate immune cells (macrophages, mast cells, neutrophils, dendritic cells, myeloid-derived suppressor cells, and NK cells) and adaptive immune cells (T and B lymphocytes) are present. Their interactions with tumor cells regulate growth, immune evasion, angiogenesis, and metastasis. Based on these assumptions, it is possible to resume some critical points, which are fundamental to understand the immunogenic effect caused (also) by radiation therapy: (A) The presence of tumor antigens (initiation of disease) is retained in memory by T and B lymphocytes; (B) Progression and the formation of metastases are caused by the immune system escaping the tumor; (C) The tumor’s microenvironment and the area ‘around’ GTV contains T lymphocytes (cytotoxic CD8, CD4 Helper, and FOXP3 regulators) activating or inhibiting the immune system [19].
4.1. Limits
4.2. Future Development and Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SBRT | Stereotactic body radiation therapy. |
GTV | Gross tumor volume |
SFRT | Spatially fractionated radiation therapy |
Vs | Vertices |
Dmin | Minimum dose |
Dmax | Maximum dose |
Dmean | Mean dose |
IMRT | Intensity Modulated Radiation Therapy |
VMAT | Volumetric Modulated Arc Therapy |
FFF | Flattening Filter-Free |
ICRU | International Commission on Radiation Units & Measurements |
TGF-β | Transforming growth factor beta |
MHC | Major histocompatibility complex |
IL-2 | Interleukin-2 |
LDRT | Low-dose radiotherapy |
TME | Tumor microenvironment |
NK | Natural Killers |
References
- Tubin, S.; Popper, H.H.; Brcic, L. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): Improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiat. Oncol. 2019, 14, 21. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Wu, X.; Mohiuddin, M.; Perez, N.C.; Zhang, H.; Amendola, B.E.; Malachowska, B.; Mohiuddin, M.; Guha, C. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin. Radiat. Oncol. 2024, 34, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Parisi, S.; Lillo, S.; Viola, A.; Minutoli, F.; Critelli, P.; Valenti, V.; Illari, S.I.; Brogna, A.; Umana, G.E.; et al. Impressive Results after “Metabolism-Guided” Lattice Irradiation in Patients Submitted to Palliative Radiation Therapy: Preliminary Results of LATTICE_01 Multicenter Study. Cancers 2022, 14, 3909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, J.; Li, Q.; Lin, Y.; Zheng, X.; Huang, C.; Hong, J.; Chen, C.; Fei, Z. Baseline SUVmax is correlated with tumor hypoxia and patient outcomes in nasopharyngeal carcinoma. Sci. Rep. 2024, 14, 20157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vito, A.; El-Sayes, N.; Mossman, K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020, 9, 992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrera, F.G.; Ronet, C.; de Olza, M.O.; Barras, D.; Crespo, I.; Andreatta, M.; Corria-Osorio, J.; Spill, A.; Benedetti, F.; Genolet, R.; et al. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discov. 2021, 12, 108–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, X.; Yang, J.; Deng, S.; Xu, H.; Wu, D.; Zeng, Q.; Wang, S.; Hu, T.; Wu, F.; Zhou, H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J. Hematol. Oncol. 2022, 15, 135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mellman, I.; Chen, D.S.; Powles, T.; Turley, S.J. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023, 56, 2188–2205. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazzone, M.; Bergers, G. Regulation of Blood and Lymphatic Vessels by Immune Cells in Tumors and Metastasis. Annu. Rev. Physiol. 2019, 81, 535–560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, A.; Yadab, M.K.; Ali, M.M. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells 2024, 13, 1924. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Yi, M.; Li, T.; Niu, M.; Zhang, H.; Wu, Y.; Wu, K.; Dai, Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology 2016, 5(6), e1163462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galluzzi, L.; Aryankalayil, M.J.; Coleman, C.N.; Formenti, S.C. Emerging evidence for adapting radiotherapy to immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, A. Low-dose radiotherapy effects the progression of anti-tumor response. Transl. Oncol. 2023, 35, 101710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, H.d.A.; Villar, R.C. Radiotherapy and immune response: The systemic effects of a local treatment. Clinics 2018, 73 (Suppl. S1), e557s. [Google Scholar] [CrossRef] [PubMed]
- de Olza, M.O.; Bourhis, J.; Irving, M.; Coukos, G.; Herrera, F.G. High versus low dose irradiation for tumor immune reprogramming. Curr. Opin. Biotechnol. 2020, 65, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Motz, G.T.; Santoro, S.P.; Wang, L.-P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 2014, 20, 607–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jayaprakash, P.; Ai, M.; Liu, A.; Budhani, P.; Bartkowiak, T.; Sheng, J.; Ager, C.; Nicholas, C.; Jaiswal, A.R.; Sun, Y.; et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Investig. 2018, 128, 5137–5149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Movahedi, K.; Laoui, D.; Gysemans, C.; Baeten, M.; Stangé, G.; Van den Bossche, J.; Mack, M.; Pipeleers, D.; Veld, P.I.; De Baetselier, P.; et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010, 70, 5728–5739. [Google Scholar] [CrossRef] [PubMed]
- Wenes, M.; Shang, M.; Di Matteo, M.; Goveia, J.; Martín-Pérez, R.; Serneels, J.; Prenen, H.; Ghesquière, B.; Carmeliet, P.; Mazzone, M. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab. 2016, 24, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Scharping, N.E.; Rivadeneira, D.B.; Menk, A.V.; Vignali, P.D.A.; Ford, B.R.; Rittenhouse, N.L.; Peralta, R.; Wang, Y.; Wang, Y.; DePeaux, K.; et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 2021, 22, 205–215. [Google Scholar] [CrossRef]
- Vignali, P.D.A.; DePeaux, K.; Watson, M.J.; Ye, C.; Ford, B.R.; Lontos, K.; McGaa, N.K.; Scharping, N.E.; Menk, A.V.; Robson, S.C.; et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 2022, 24, 267–279. [Google Scholar] [CrossRef]
- Suthen, S.; Lim, C.J.; Nguyen, P.H.D.; Dutertre, C.A.; Lai, H.L.H.; Wasser, M.; Chua, C.; Lim, T.K.H.; Leow, W.Q.; Loh, T.J.; et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 2022, 76, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, H.J.; Kim, C.W.; Kim, H.C.; Jung, Y.; Lee, H.S.; Lee, Y.; Ju, Y.S.; Oh, J.E.; Park, S.H.; et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 2021, 22, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Monjazeb, A.M.; Giobbie-Hurder, A.; Lako, A.; Thrash, E.M.; Brennick, R.C.; Kao, K.Z.; Manuszak, C.; Gentzler, R.D.; Tesfaye, A.; Jabbour, S.K.; et al. A randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer. Clin. Cancer Res. 2021, 27, 2470–2480. [Google Scholar] [CrossRef] [PubMed]
- Venkatesulu, B.P.; Mallick, S.; Lin, S.H.; Krishnan, S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. 2018, 123, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Parisi, S.; Napoli, I.; Lillo, S.; Cacciola, A.; Ferini, G.; Iatì, G.; Pontoriero, A.; Tamburella, C.; Davì, V.; Pergolizzi, S. Spine eburnation in a metastatic lung cancer patient treated with immunotherapy and radiotherapy. The first case report of bystander effect on bone. J. Oncol. Pharm. Pract. 2022, 28, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xue, J.; Li, R.; Zhou, L.; Deng, L.; Chen, L.; Zhang, Y.; Li, Y.; Zhang, X.; Xiu, W.; et al. Effect of low-dose radiation therapy on abscopal responses to hypofractionated radiation therapy and anti-PD1 in mice and patients with non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 212–224. [Google Scholar] [CrossRef]
- McMillan, M.T.; Khan, A.J.; Powell, S.N.; Humm, J.; Deasy, J.O.; Haimovitz-Friedman, A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin. Radiat. Oncol. 2024, 34, 276–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, R.R.; He, K.; Barsoumian, H.B.; Chang, J.Y.; Tang, C.; Verma, V.; Comeaux, N.; Chun, S.G.; Gandhi, S.; Truong, M.T.; et al. High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiother. Oncol. 2021, 162, 60–67. [Google Scholar] [CrossRef]
- Li, X.-F.; Du, Y.; Ma, Y.; Postel, G.C.; Civelek, A.C. (18)F-fluorodeoxyglucose uptake and tumor hypoxia: Revisit (18)f-fluorodeoxyglucose in oncology application. Transl. Oncol. 2014, 7, 240–247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boustani, J.; Grapin, M.; Laurent, P.-A.; Apetoh, L.; Mirjolet, C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers 2019, 11, 860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iatì, G.; Ferrantelli, G.; Pergolizzi, S.; Ferini, G.; Venuti, V.; Chillari, F.; Sciacca, M.; Zagardo, V.; Siragusa, C.; Santacaterina, A.; et al. Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication. J. Pers. Med. 2025, 15, 470. https://doi.org/10.3390/jpm15100470
Iatì G, Ferrantelli G, Pergolizzi S, Ferini G, Venuti V, Chillari F, Sciacca M, Zagardo V, Siragusa C, Santacaterina A, et al. Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication. Journal of Personalized Medicine. 2025; 15(10):470. https://doi.org/10.3390/jpm15100470
Chicago/Turabian StyleIatì, Giuseppe, Giacomo Ferrantelli, Stefano Pergolizzi, Gianluca Ferini, Valeria Venuti, Federico Chillari, Miriam Sciacca, Valentina Zagardo, Carmelo Siragusa, Anna Santacaterina, and et al. 2025. "Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication" Journal of Personalized Medicine 15, no. 10: 470. https://doi.org/10.3390/jpm15100470
APA StyleIatì, G., Ferrantelli, G., Pergolizzi, S., Ferini, G., Venuti, V., Chillari, F., Sciacca, M., Zagardo, V., Siragusa, C., Santacaterina, A., Brogna, A., & Parisi, S. (2025). Low Radiation Doses to Gross Tumor Volume in Metabolism Guided Lattice Irradiation Based on Lattice-01 Study: Dosimetric Evaluation and Potential Clinical Research Implication. Journal of Personalized Medicine, 15(10), 470. https://doi.org/10.3390/jpm15100470