Health Professionals’ Preferences for Next-Generation Sequencing in the Diagnosis of Suspected Genetic Disorders in the Paediatric Population
Highlights
- The use of NGS techniques is primarily driven by the reduction in diagnostic odyssey.
- Health professionals’ preferences help in the application of new genetic techniques, steering the formulation of evidence-based sounding genetic health policies.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Population
2.2. Selection of Attributes and Levels for Each Testing Alternative
2.3. Experimental Design
2.4. DCE Survey Design
2.5. Data Collection
2.6. Econometric Analysis
2.6.1. Utility Function
2.6.2. Model
2.6.3. Re-Parametrised Model
3. Results
3.1. Respondents’ Characteristics
3.2. Model of Choice Behaviour
3.3. Willingness to Pay and Willingness to Trade Estimates
3.4. Relative Importance of Attributes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fennell, A.P.; Hunter, M.F.; Corboy, G.P. The Changing Face of Clinical Genetics Service Delivery in the Era of Genomics: A Framework for Monitoring Service Delivery and Data from a Comprehensive Metropolitan General Genetics Service. Genet. Med. 2020, 22, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Gschmeidler, B.; Flatscher-Thoeni, M. Ethical and Professional Challenges of Genetic Counseling—The Case of Austria. J. Genet. Couns. 2013, 22, 741–752. [Google Scholar] [CrossRef]
- Rubinstein, W.S.; Maglott, D.R.; Lee, J.M.; Kattman, B.L.; Malheiro, A.J.; Ovetsky, M.; Hem, V.; Gorelenkov, V.; Song, G.; Wallin, C.; et al. The NIH Genetic Testing Registry: A New, Centralized Database of Genetic Tests to Enable Access to Comprehensive Information and Improve Transparency. Nucleic Acids Res. 2012, 41, D925–D935. [Google Scholar] [CrossRef]
- McPherson, E. Genetic Diagnosis and Testing in Clinical Practice. Clin. Med. Res. 2006, 4, 123–129. [Google Scholar] [CrossRef]
- Dahui, Q. Next-Generation Sequencing and Its Clinical Application. Cancer Biol. Med. 2019, 16, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Metzker, M.L. Sequencing Technologies—The next Generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef]
- Strom, S.P. Current Practices and Guidelines for Clinical Next-Generation Sequencing Oncology Testing. Cancer Biol. Med. 2016, 13, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ferlini, A.; Gennarelli, M.; Genuardi, M.; Grammatico, P.; Seri, M.; Torricelli, F.; Zollino, M.; Zuffardi, O.; Nigro, V.; Tartaglia, M. Il Sequenziamento Del. DNA Di Nuova Generazione: Indicazioni per L’impiego Clinico; The Italian Society of Human Genetics (SIGU): Milan, Italy, 2016. [Google Scholar]
- Saunders, C.J.; Miller, N.A.; Soden, S.E.; Dinwiddie, D.L.; Noll, A.; Alnadi, N.A.; Andraws, N.; Patterson, M.L.; Krivohlavek, L.A.; Fellis, J.; et al. Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units. Sci. Transl. Med. 2012, 4, 154ra135. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, M.H.; Stadelmaier, R.; Heinke, D.; Holm, I.A.; Tan, W.-H.; Agrawal, P.B. The Unrecognized Mortality Burden of Genetic Disorders in Infancy. Am. J. Public. Health 2021, 111, S156–S162. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, M.N.; Wiszniewski, W.; Murdock, D.R.; Friedman, J.; Gonzaga-Jauregui, C.; Newsham, I.; Reid, J.G.; Fink, J.K.; Morgan, M.B.; Gingras, M.-C.; et al. Whole-Genome Sequencing for Optimized Patient Management. Sci. Transl. Med. 2011, 3, 87re3. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, R.D.; Ingles, J.; Dinger, M.E.; Cowley, M.J.; Ross, S.B.; Minoche, A.E.; Lal, S.; Turner, C.; Colley, A.; Rajagopalan, S.; et al. Whole Genome Sequencing Improves Outcomes of Genetic Testing in Patients with Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 72, 419–429. [Google Scholar] [CrossRef]
- Akter, H.; Hossain, M.S.; Dity, N.J.; Rahaman, M.A.; Furkan Uddin, K.M.; Nassir, N.; Begum, G.; Hameid, R.A.; Islam, M.S.; Tusty, T.A.; et al. Whole Exome Sequencing Uncovered Highly Penetrant Recessive Mutations for a Spectrum of Rare Genetic Pediatric Diseases in Bangladesh. NPJ Genom. Med. 2021, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Zeng, C.; Huang, B.; Chen, Y.; Xue, C.; Liu, L.; Rong, S.; Lin, Y. Trio-Whole Exome Sequencing Reveals the Importance of de Novo Variants in Children with Intellectual Disability and Developmental Delay. Sci. Rep. 2024, 14, 27590. [Google Scholar] [CrossRef]
- Woerner, A.C.; Gallagher, R.C.; Vockley, J.; Adhikari, A.N. The Use of Whole Genome and Exome Sequencing for Newborn Screening: Challenges and Opportunities for Population Health. Front. Pediatr. 2021, 9, 663752. [Google Scholar] [CrossRef]
- Bordini, B.J.; Kliegman, R.M.; Basel, D.; Nocton, J.J. Undiagnosed and Rare Diseases in Perinatal Medicine: Lessons in Context and Cognitive Diagnostic Error. Clin. Perinatol. 2020, 47, 1–14. [Google Scholar] [CrossRef]
- Mazur, D.J.; Hickam, D.H.; Mazur, M.D.; Mazur, M.D. The Role of Doctor’s Opinion in Shared Decision Making: What Does Shared Decision Making Really Mean When Considering Invasive Medical Procedures? Health Expect. 2005, 8, 97–102. [Google Scholar] [CrossRef] [PubMed]
- McLeod, C.C.; Klabunde, C.N.; Willis, G.B.; Stark, D. Health Care Provider Surveys in the United States, 2000–2010. Eval. Health Prof. 2013, 36, 106–126. [Google Scholar] [CrossRef]
- Hamoonga, T.E.; Mutale, W.; Igumbor, J.; Bosomprah, S.; Arije, O.; Chi, B.H. Preferences for Pre-Exposure Prophylaxis Delivery among HIV-Negative Pregnant and Breastfeeding Women in Zambia: Evidence from a Discrete Choice Experiment. Front. Reprod. Health 2024, 6, 1350661. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.; Blair, E.; Thomson, K.L.; Ormondroyd, E.; Watkins, H.; Taylor, J.C.; Wordsworth, S. Do Health Professionals Value Genomic Testing? A Discrete Choice Experiment in Inherited Cardiovascular Disease. Eur. J. Hum. Genet. 2019, 27, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, D.S.; Veenstra, D.L.; Regier, D.A.; Basu, A.; Carlson, J.J. Payer Preferences and Willingness to Pay for Genomic Precision Medicine: A Discrete Choice Experiment. J. Manag. Care Spec. Pharm. 2020, 26, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Leigh, S.; Ashall-Payne, L.; Andrews, T. Barriers and Facilitators to the Adoption of Mobile Health Among Health Care Professionals From the United Kingdom: Discrete Choice Experiment. JMIR Mhealth Uhealth 2020, 8, e17704. [Google Scholar] [CrossRef]
- Tarekegn, A.A.; Yismaw, A.E. Health Professionals’ Willingness to Pay and Associated Factors for Human Papilloma Virus Vaccination to Prevent Cervical Cancer at College of Medicine and Health Sciences University of Gondar, Northwest Ethiopia. BMC Res. Notes 2019, 12, 58. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Lancsar, E.; Fiebig, D.G.; Hole, A.R. Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software. Pharmacoeconomics 2017, 35, 697–716. [Google Scholar] [CrossRef] [PubMed]
- Hole, A.R. Modelling Heterogeneity in Patients’ Preferences for the Attributes of a General Practitioner Appointment. J. Health Econ. 2008, 27, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Nieboer, A.P.; Koolman, X.; Stolk, E.A. Preferences for Long-Term Care Services: Willingness to Pay Estimates Derived from a Discrete Choice Experiment. Soc. Sci. Med. 2010, 70, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Panattoni, L.; Cameron, L.; Knox, S.; Ashton, T.; Tenbensel, T.; Windsor, J. Hospital Sector Choice and Support for Public Hospital Care in New Zealand: Results from a Labeled Discrete Choice Survey. J. Health Econ. 2015, 43, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, S.; Rousseau, R. Interactions between Journal Attributes and Authors’ Willingness to Wait for Editorial Decisions. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1213–1225. [Google Scholar] [CrossRef]
- Hagemi, A.; Plumpton, C.; Hughes, D.A. Renal Transplant Patients’ Preference for the Supply and Delivery of Immunosuppressants in Wales: A Discrete Choice Experiment. BMC Nephrol. 2017, 18, 305. [Google Scholar] [CrossRef]
- Marshall, D.A.; Deal, K.; Conner-Spady, B.; Bohm, E.; Hawker, G.; Loucks, L.; MacDonald, K.V.; Noseworthy, T. How Do Patients Trade-off Surgeon Choice and Waiting Times for Total Joint Replacement: A Discrete Choice Experiment. Osteoarthr. Cartil. 2018, 26, 522–530. [Google Scholar] [CrossRef]
- Johnson, R.; Orme, B. Getting the Most from CBC; Research Paper Series; Sawtooth Software, Inc.: Sequim, WA, USA, 2003. [Google Scholar]
- Orme, B. Sample Size Issues for Conjoint Analysis Studies; Sawtooth Software, Inc.: Sequim, WA, USA, 1998. [Google Scholar]
- de Bekker-Grob, E.W.; Donkers, B.; Jonker, M.F.; Stolk, E.A. Sample Size Requirements for Discrete-Choice Experiments in Healthcare: A Practical Guide. The Patient—Patient-Centered Outcomes Res. 2015, 8, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Regier, D.A.; Veenstra, D.L.; Basu, A.; Carlson, J.J. Demand for Precision Medicine: A Discrete-Choice Experiment and External Validation Study. Pharmacoeconomics 2020, 38, 57–68. [Google Scholar] [CrossRef] [PubMed]
- McFadden, D.; Train, K. Mixed MNL Models for Discrete Response. J. Appl. Econom. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Reed Johnson, F.; Lancsar, E.; Marshall, D.; Kilambi, V.; Mühlbacher, A.; Regier, D.A.; Bresnahan, B.W.; Kanninen, B.; Bridges, J.F.P. Constructing Experimental Designs for Discrete-Choice Experiments: Report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health 2013, 16, 3–13. [Google Scholar] [CrossRef] [PubMed]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behaviour. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Hole, A.R. Fitting Mixed Logit Models by Using Maximum Simulated Likelihood. Stata J. Promot. Commun. Stat. Stata 2007, 7, 388–401. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. The Mixed Logit Model: The State of Practice and Warnings for the Unwary; Institute of Transport Studies, the University of Sydney and Monash University: Sydney, NSW, Australia, 2022. [Google Scholar]
- Hole, A.R.; Kolstad, J.R. Mixed Logit Estimation of Willingness to Pay Distributions: A Comparison of Models in Preference and WTP Space Using Data from a Health-Related Choice Experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Brito Fernandes, Ó.; Péntek, M.; Kringos, D.; Klazinga, N.; Gulácsi, L.; Baji, P. Eliciting Preferences for Outpatient Care Experiences in Hungary: A Discrete Choice Experiment with a National Representative Sample. PLoS ONE 2020, 15, e0235165. [Google Scholar] [CrossRef] [PubMed]
- Revelt, D.; Train, K.; Allenby, G.; Huber, J.; Johnson, R.; McFadden, D.; Rossi, P. Customer-Specific Taste Parameters and Mixed Logit; University of California: Berkeley, CA, USA, 1999; Available online: http://elsa.berkeley.edu/~train (accessed on 12 April 2024).
- Revelt, D.; Train, K. Customer-Specific Taste Parameters and Mixed Logit: Households’ Choice of Electricity Supplier; Economics Working Papers; University of California: Berkeley, CA, USA, 2000; Available online: https://EconPapers.repec.org/RePEc:ucb:calbwp:e00-274 (accessed on 12 April 2024).
- Hartzel, J.; Agresti, A.; Caffo, B. Multinomial Logit Random Effects Models. Stat. Model. 2001, 1, 81–102. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Board on the Health of Select Populations; Committee on the Evidence Base for Genetic Testing. An Evidence Framework for Genetic Testing; National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Mahon, S. Errors in Genetic Testing: Common Causes and Strategies for Prevention. Clin. J. Oncol. Nurs. 2017, 21, 673–676. [Google Scholar] [CrossRef]
- Kroese, M.; Zimmern, R.L.; Sanderson, S. Genetic Tests and Their Evaluation: Can We Answer the Key Questions? Genet. Med. 2004, 6, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Cakici, J.A.; Clark, M.M.; Gaughran, M.; Feddock, M.; Batalov, S.; Bainbridge, M.N.; Carroll, J.; Caylor, S.A.; Clarke, C.; et al. A Randomized, Controlled Trial of the Analytic and Diagnostic Performance of Singleton and Trio, Rapid Genome and Exome Sequencing in Ill Infants. Am. J. Human. Genet. 2019, 105, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Ng-Mak, D.; Poon, J.-L.; Roberts, L.; Kleinman, L.; Revicki, D.A.; Rajagopalan, K. Patient Preferences for Important Attributes of Bipolar Depression Treatments: A Discrete Choice Experiment. Patient Prefer. Adherence 2018, 12, 35–44. [Google Scholar] [CrossRef]
- Genie, M.G.; Nicoló, A.; Pasini, G. The Role of Heterogeneity of Patients’ Preferences in Kidney Transplantation. J. Health Econ. 2020, 72, 102331. [Google Scholar] [CrossRef]
- Harrison, M.; Milbers, K.; Hudson, M.; Bansback, N. Do Patients and Health Care Providers Have Discordant Preferences about Which Aspects of Treatments Matter Most? Evidence from a Systematic Review of Discrete Choice Experiments. BMJ Open 2017, 7, e014719. [Google Scholar] [CrossRef] [PubMed]
- Ries, N.M.; Hyde-Lay, R.; Caulfield, T. Willingness to Pay for Genetic Testing: A Study of Attitudes in a Canadian Population. Public Health Genom. 2010, 13, 292–300. [Google Scholar] [CrossRef]
- Lin, P.-J.; Cangelosi, M.J.; Lee, D.W.; Neumann, P.J. Willingness to Pay for Diagnostic Technologies: A Review of the Contingent Valuation Literature. Value Health 2013, 16, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Agha, L.; Skinner, J.; Chan, D. Improving Efficiency in Medical Diagnosis. JAMA 2022, 327, 2189. [Google Scholar] [CrossRef]
- Berner, E.S.; Graber, M.L. Overconfidence as a Cause of Diagnostic Error in Medicine. Am. J. Med. 2008, 121, S2–S23. [Google Scholar] [CrossRef] [PubMed]
- Nalliah, R.P. Clinical Decision Making—Choosing between Intuition, Experience and Scientific Evidence. Br. Dent. J. 2016, 221, 752–754. [Google Scholar] [CrossRef]
- Wattiez, A.; Schindler, L.; Ussia, A.; Campo, R.; Keckstein, J.; Grimbizis, G.; Exacoustos, C.; Kondo, W.; Nezhat, C.; Canis, M.; et al. A Proof of Concept That Experience-Based Management of Endometriosis Can Complement Evidence-Based Guidelines. Facts Views Vis. Obgyn 2023, 15, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Dewitt, B.; Persson, J.; Wallin, A. Perceptions of Clinical Experience and Scientific Evidence in Medical Decision Making: A Survey of a Stratified Random Sample of Swedish Health Care Professionals. Med. Decis. Mak. 2024, 44, 335–345. [Google Scholar] [CrossRef]
- Schuldt, J.; Doktor, A.; Lichters, M.; Vogt, B.; Robra, B.-P. Insurees’ Preferences in Hospital Choice—A Population-Based Study. Health Policy 2017, 121, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Mühlbacher, A.C.; Juhnke, C. Patient Preferences versus Physicians’ Judgement: Does It Make a Difference in Healthcare Decision Making? Appl. Health Econ. Health Policy 2013, 11, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Berwick, D.M.; Nolan, T.W.; Whittington, J. The Triple Aim: Care, Health, and Cost. Health Aff. 2008, 27, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Cascini, F.; Altamura, G.; Failla, G.; Gentili, A.; Puleo, V.; Melnyk, A.; Causio, F.A.; Ricciardi, W. Approaches to Priority Identification in Digital Health in Ten Countries of the Global Digital Health Partnership. Front. Digit. Health 2022, 4, 968953. [Google Scholar] [CrossRef]
- Lancsar, E.; Louviere, J. Conducting Discrete Choice Experiments to Inform Healthcare Decision Making: A User’s Guide. Pharmacoeconomics 2008, 26, 661–677. [Google Scholar] [CrossRef]
- Adams, J.; Bateman, B.; Becker, F.; Cresswell, T.; Flynn, D.; McNaughton, R.; Oluboyede, Y.; Robalino, S.; Ternent, L.; Sood, B.G.; et al. Effectiveness and Acceptability of Parental Financial Incentives and Quasi-Mandatory Schemes for Increasing Uptake of Vaccinations in Preschool Children: Systematic Review, Qualitative Study and Discrete Choice Experiment. Health Technol. Assess. 2015, 19, 1–176. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, H.; Aghamohammadi, A.; Fang, M.; Rezaei, N.; Jiang, C.; Liu, X.; Pan-Hammarström, Q.; Hammarström, L. Clinical Implications of Systematic Phenotyping and Exome Sequencing in Patients with Primary Antibody Deficiency. Genet. Med. 2019, 21, 243–251. [Google Scholar] [CrossRef]
- Berberich, A.J.; Ho, R.; Hegele, R.A. Whole Genome Sequencing in the Clinic: Empowerment or Too Much Information? Can. Med. Assoc. J. 2018, 190, E124–E125. [Google Scholar] [CrossRef] [PubMed]
Test Attribute | Possible Levels for Each Testing Alternative | |
---|---|---|
Genetic Test A | Genetic Test B | |
Diagnostic yield | Pathogenic variation identified in 32 out of 100 cases | |
Pathogenic variation identified in 39 out of 100 cases | ||
Pathogenic variation identified in 46 out of 100 cases | ||
Turnaround time | 8 weeks, 10 weeks, 12 weeks | |
Counselling time | 40 min, 50 min, 60 min | |
Ability of the test to identify variants of unknown significance | Variants of unknown significance identified in 5 out of 100 cases | |
Variants of unknown significance identified in 10 out of 100 cases | ||
Variants of unknown significance identified in 15 out of 100 cases | ||
Variants of unknown significance identified in 20 out of 100 cases | ||
Variants of unknown significance identified in 25 out of 100 cases | ||
Test cost | EUR 1000, EUR 1500, EUR 2000, EUR 2500, EUR 3000 |
Variable | Value | SD |
---|---|---|
Gender | ||
Female | 55.8% | 0.51 |
Male | 41.7% | 0.49 |
Prefer not to say | 2.5% | 0.16 |
Age of respondent | ||
24 years and under | 2.5% | 0.16 |
25–34 years | 39.7% | 0.49 |
35–44 years | 13.7% | 0.34 |
45–54 years | 8.7% | 0.28 |
55–64 | 19.9% | 0.39 |
65 years and over | 15.5% | 0.36 |
Respondent occupation | ||
Clinical geneticist | 34.8% | 0.48 |
Paediatrician | 45.3% | 0.49 |
Biologist | 17.4% | 0.38 |
Laboratory scientist | 1.25% | 0.11 |
Other | 1.25% | 0.11 |
Respondent’s experience in the genomic field | ||
Less than 1 year | 37.4% | 0.48 |
1–9 years | 33.5% | 0.47 |
10–20 years | 18.1% | 0.39 |
20 years and over | 11% | 0.31 |
Education/research activities on NGS testing approaches | ||
Yes | 44.6% | 0.49 |
No | 55.4% | 0.49 |
Use of NGS testing approaches | ||
Yes | 44.8% | 0.49 |
No | 55.2% | 0.49 |
Survey details | ||
Median time to complete the survey, minutes | 12.1 | 3.16 |
Survey response rate | 62.2% | 0.03 |
Attribute | B-Coefficient | SD | Lower CI | Upper CI | p |
---|---|---|---|---|---|
Fixed parameters | |||||
Diagnostic yield | 0.205 *** | 0.659 | 0.178 | 0.232 | <0.001 |
Counselling time | −0.015 * | 0.326 | −0.028 | −0.001 | <0.071 |
Test cost | −0.001 *** | 0.039 | −0.0007 | −0.0004 | <0.001 |
Random parameters | |||||
Turnaround time | −0.248 *** | 2.050 | −0.339 | −0.173 | <0.001 |
Variance of unknown significance | −0.016 *** | 0.511 | −0.037 | 0.004 | <0.001 |
AIC | 782.29 | ||||
Log-likelihood | −384.15 |
Attribute | Preference Space | WTP Space |
---|---|---|
Estimate (CI 95%) | Estimate (CI 95%) | |
Diagnostic yield | EUR 387.3 (271.8–502.9) | EUR 709.8 (427.5–992.1) |
Turnaround time | EUR 468.7 (287.2–744.9) | EUR 777.3 (752.4–802.2) |
Counselling time | EUR 27.8 (2.5–58.8) | EUR 44.9 (12.3–77.6) |
Variance of unknown significance | EUR 31.2 (8.6–77.3) | EUR 42.4 (39.01–45.8) |
Attribute | Preference Space | WTT Space |
---|---|---|
Estimate (CI 90%) | Estimate (CI 90%) | |
Turnaround time | 1.21 (0.786–1.677) | 1.09 (1.022–1.158) |
Counselling time | 0.07 (0.006–0.138) | 0.06 (0.009–0.117) |
Variance of unknown significance | 0.08 (−0.021–0.186) | 0.05 (0.022–0.094) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurchis, M.C.; Altamura, G.; Raspolini, G.M.; Capobianco, E.; Salmasi, L.; Damiani, G. Health Professionals’ Preferences for Next-Generation Sequencing in the Diagnosis of Suspected Genetic Disorders in the Paediatric Population. J. Pers. Med. 2025, 15, 25. https://doi.org/10.3390/jpm15010025
Nurchis MC, Altamura G, Raspolini GM, Capobianco E, Salmasi L, Damiani G. Health Professionals’ Preferences for Next-Generation Sequencing in the Diagnosis of Suspected Genetic Disorders in the Paediatric Population. Journal of Personalized Medicine. 2025; 15(1):25. https://doi.org/10.3390/jpm15010025
Chicago/Turabian StyleNurchis, Mario Cesare, Gerardo Altamura, Gian Marco Raspolini, Enrico Capobianco, Luca Salmasi, and Gianfranco Damiani. 2025. "Health Professionals’ Preferences for Next-Generation Sequencing in the Diagnosis of Suspected Genetic Disorders in the Paediatric Population" Journal of Personalized Medicine 15, no. 1: 25. https://doi.org/10.3390/jpm15010025
APA StyleNurchis, M. C., Altamura, G., Raspolini, G. M., Capobianco, E., Salmasi, L., & Damiani, G. (2025). Health Professionals’ Preferences for Next-Generation Sequencing in the Diagnosis of Suspected Genetic Disorders in the Paediatric Population. Journal of Personalized Medicine, 15(1), 25. https://doi.org/10.3390/jpm15010025