Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Beckmann, D.; Lowman, K.L.; Nargiso, J.; McKowen, J.; Watt, L.; Yule, A.M. Substance-induced Psychosis in Youth. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 131–143. [Google Scholar] [CrossRef]
- Dragogna, F.; Oldani, L.; Buoli, M.; Altamura, A.C. A case of severe psychosis induced by novel recreational drugs. F1000Research 2014, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Szigeti, A.; Kearney, A.; Clarke, M. Clinical characteristics of primary psychotic disorders with concurrent substance abuse and substance-induced psychotic disorders: A systematic review. Schizophr. Res. 2018, 197, 78–86. [Google Scholar] [CrossRef]
- Starzer, M.S.K.; Nordentoft, M.; Hjorthøj, C. Rates and Predictors of Conversion to Schizophrenia or Bipolar Disorder Following Substance-Induced Psychosis. Am. J. Psychiatry 2018, 175, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Aas, M.; Melle, I.; Bettella, F.; Djurovic, S.; Le Hellard, S.; Bjella, T.; Ringen, P.A.; Lagerberg, T.V.; Smeland, O.B.; Agartz, I.; et al. Psychotic patients who used cannabis frequently before illness onset have higher genetic predisposition to schizophrenia than those who did not. Psychol. Med. 2018, 48, 43–49. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Radhakrishnan, R.; Sherif, M.; Cortes-Briones, J.; Cahill, J.; Gupta, S.; Skosnik, P.D.; Ranganathan, M. Cannabinoids and Psychosis. Curr. Pharm. Des. 2016, 22, 6380–6391. [Google Scholar] [CrossRef] [PubMed]
- Buoli, M.; Cesana, B.M.; Fagiolini, A.; Albert, U.; Maina, G.; de Bartolomeis, A.; Pompili, M.; Bondi, E.; Steardo, L., Jr.; Amore, M.; et al. Which factors delay treatment in bipolar disorder? A nationwide study focussed on duration of untreated illness. Early Interv. Psychiatry 2021, 15, 1136–1145. [Google Scholar] [CrossRef]
- Inchausti, L.; Gorostiza, I.; Gonzalez Torres, M.A.; Oraa, R. Diagnostic stability in substance-induced psychosis. Rev. Psiquiatr. Salud Ment. Engl. Ed. 2022; online ahead of print. [Google Scholar] [CrossRef]
- McKetin, R.; McLaren, J.; Lubman, D.I.; Hides, L. The prevalence of psychotic symptoms among methamphetamine users. Addiction 2006, 101, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Gicas, K.M.; Parmar, P.K.; Fabiano, G.F.; Mashhadi, F. Substance-induced psychosis and cognitive functioning: A systematic review. Psychiatry Res. 2022, 308, 114361. [Google Scholar] [CrossRef]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar] [CrossRef]
- Voce, A.; Calabria, B.; Burns, R.; Castle, D.; McKetin, R. A Systematic Review of the Symptom Profile and Course of Methamphetamine-Associated PsychosisSubstance Use and Misuse. Subst. Use Misuse 2019, 54, 549–559. [Google Scholar] [CrossRef]
- Aagaard, N.K.; Thøgersen, T.; Grøfte, T.; Greisen, J.; Vilstrup, H. Alcohol acutely down-regulates urea synthesis in normal men. Alcohol Clin. Exp. Res. 2004, 28, 697–701. [Google Scholar] [CrossRef]
- Stankewicz, H.A.; Richards, J.R.; Salen, P. Alcohol Related Psychosis. In StatPearls. Treasure Island (FL); StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Tsai, G.; Gastfriend, D.R.; Coyle, J.T. The glutamatergic basis of human alcoholism. Am. J. Psychiatry 1995, 152, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, J.P.; Pandey, S.C. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. Int. Rev. Neurobiol. 2021, 156, 1–62. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Johnston, M.; Terpstra, K.; Bureau, Y. Cannabis and psychosis: Neurobiology. Indian J. Psychiatry 2014, 56, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, B.; Diederen, K.; Bhattacharyya, S. Cannabinoids, reward processing, and psychosis. Psychopharmacology 2022, 239, 1157–1177. [Google Scholar] [CrossRef] [PubMed]
- Morton, W.A. Cocaine and Psychiatric Symptoms. Prim Care Companion. J. Clin. Psychiatry 1999, 1, 109–113. [Google Scholar] [CrossRef]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef]
- Tanaka, M.; Tóth, F.; Polyák, H.; Szabó, Á.; Mándi, Y.; Vécsei, L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef]
- Pollak, T.A.; Rogers, J.P.; Nagele, R.G.; Peakman, M.; Stone, J.M.; David, A.S.; McGuire, P. Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders. Schizophr. Bull. 2019, 45, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pinilla, P.; López-Gil, J.; Crespo-Facorro, B. Immune system: A possible nexus between cannabinoids and psychosis. Brain Behav. Immun. 2014, 40, 269–282. [Google Scholar] [CrossRef]
- Nair, M.P.; Figueroa, G.; Casteleiro, G.; Muñoz, K.; Agudelo, M. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials. J. Alcohol. Drug Depend. 2015, 3, 184. [Google Scholar] [CrossRef]
- Pascual, M.; Baliño, P.; Aragón, C.M.; Guerri, C. Cytokines and chemokines as biomarkers of ethanol-induced neuroinflammation and anxiety-related behavior: Role of TLR4 and TLR2. Neuropharmacology 2015, 89, 352–359. [Google Scholar] [CrossRef]
- Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res. 2017, 120, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez-Castillo, N.; Cabana-Domínguez, J.; Corominas, R.; Cormand, B. Molecular genetics of cocaine use disorders in humans. Mol. Psychiatry 2022, 27, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, P.; Liao, K.; Kook, Y.H.; Niu, F.; Callen, S.E.; Guo, M.L.; Buch, S. Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol. Neurobiol. 2018, 55, 3196–3210. [Google Scholar] [CrossRef] [PubMed]
- Chivero, E.T.; Sil, S.; Kumar, M.; Buch, S. Substance use, microbiome and psychiatric disorders. Pharmacol. Biochem. Behav. 2022, 219, 173432. [Google Scholar] [CrossRef] [PubMed]
- Barkin, J.L.; Osborne, L.M.; Buoli, M.; Bridges, C.C.; Callands, T.A.; Ezeamama, A.E. Training Frontline Providers in the Detection and Management of Perinatal Mood and Anxiety Disorders. J. Womens Health 2020, 29, 889–890. [Google Scholar] [CrossRef]
- Buoli, M.; Dell’osso, B.; Zaytseva, Y.; Gurovich, I.Y.; Movina, L.; Dorodnova, A.; Shmuckler, A.; Altamura, A.C. Duration of untreated illness (DUI) and schizophrenia sub-types: A collaborative study between the universities of Milan and Moscow. Int. J. Soc. Psychiatry 2013, 59, 765–770. [Google Scholar] [CrossRef]
- Fiorentini, A.; Cantù, F.; Crisanti, C.; Cereda, G.; Oldani, L.; Brambilla, P. Substance-Induced Psychoses: An Updated Literature Review. Front. Psychiatry 2021, 12, 694863. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef]
- Donroe, J.H.; Edelman, E.J. Alcohol Use. Ann. Intern. Med. 2022, 175, ITC145–ITC160. [Google Scholar] [CrossRef]
- Ibarretxe, D.; Masana, L. Triglyceride metabolism and classification of hypertriglyceridemias. Clínica Investig. Arterioscler. 2021, 33 (Suppl. 2), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.E.; Gomaa, S.; Alhazmi, A.; ElKalla, I.; Khalil, D. Metabolic profile in first episode drug naïve patients with psychosis and its relation to cognitive functions and social cognition: A case control study. Sci. Rep. 2023, 13, 5435. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.Y.; Smith, M.M.; Sherry, S.B.; Seno, M.; Moore, M.L.; Stewart, S.H. Alcohol use and death by suicide: A meta-analysis of 33 studies. Suicide Life Threat. Behav. 2022, 52, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Mattisson, C.; Bogren, M.; Öjehagen, A.; Nordström, G.; Horstmann, V. Mortality in alcohol use disorder in the Lundby Community Cohort—A 50 year follow-up. Drug Alcohol Depend. 2011, 118, 141–147. [Google Scholar] [CrossRef]
- Mowbray, O.; Quinn, A.; Cranford, J.A. Social networks and alcohol use disorders: Findings from a nationally representative sample. Am. J. Drug Alcohol Abus. 2014, 40, 181–186. [Google Scholar] [CrossRef]
- Smith, M.J.; Thirthalli, J.; Abdallah, A.B.; Murray, R.M.; Cottler, L.B. Prevalence of psychotic symptoms in substance users: A comparison across substances. Compr. Psychiatry 2009, 50, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Di Forti, M.; Marconi, A.; Carra, E.; Fraietta, S.; Trotta, A.; Bonomo, M.; Bianconi, F.; Gardner-Sood, P.; O’Connor, J.; Russo, M.; et al. Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: A case-control study. Lancet Psychiatry 2015, 2, 233–238. [Google Scholar] [CrossRef]
- Hindocha, C.; Lawn, W.; Freeman, T.P.; Curran, H.V. Individual and combined effects of cannabis and tobacco on drug reward processing in non-dependent users. Psychopharmacology 2017, 234, 3153–3163. [Google Scholar] [CrossRef]
- Castañé, A.; Valjent, E.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 2002, 43, 857–867. [Google Scholar] [CrossRef]
- Lampron, M.C.; Desbiens-Tremblay, C.; Loubaki, L. In vitro exposure of whole blood to a cannabinoid mixture impairs the quality of red blood cells and platelets. Blood Transfus. 2022, 21, 240. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Ju, P.; Gao, J.; Zhang, L.; Li, J.; Wang, K.; Zhang, J.; Li, C.; Xia, Q.; et al. Network Association of Biochemical and Inflammatory Abnormalities With Psychiatric Symptoms in First-Episode Schizophrenia Patients. Front. Psychiatry 2022, 13, 834539. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef]
- Caldiroli, A.; Capuzzi, E.; Barkin, J.L.; Grassi, S.; Esposito, C.M.; Auxilia, A.M.; Russo, S.; Tagliabue, I.; Carnevali, G.S.; Mucci, F.; et al. Is there an association between inflammatory/anti-oxidant markers and the presence of psychotic symptoms or severity of illness in mood and psychotic disorders? A multi-centric study on a drug-free sample. Brain Behav. Immun. Health 2022, 22, 100453. [Google Scholar] [CrossRef]
- Chen, S.; Xia, H.S.; Zhu, F.; Yin, G.Z.; Qian, Z.K.; Jiang, C.X.; Gu, X.C.; Yin, X.Y.; Tang, W.J.; Zhang, T.H.; et al. Association between decreased serum albumin levels and depressive symptoms in patients with schizophrenia in a Chinese Han population: A pilot study. Psychiatry Res. 2018, 270, 438–442. [Google Scholar] [CrossRef]
- Labad, J.; Stojanovic-Pérez, A.; Montalvo, I.; Solé, M.; Cabezas, Á.; Ortega, L.; Moreno, I.; Vilella, E.; Martorell, L.; Reynolds, R.M.; et al. Stress biomarkers as predictors of transition to psychosis in at-risk mental states: Roles for cortisol, prolactin and albumin. J. Psychiatr. Res. 2015, 60, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, N.S.; Portoghese, I.; Renati, R.; Mascia, M.L.; Penna, M.P. Polysubstance Use Patterns among Outpatients Undergoing Substance Use Disorder Treatment: A Latent Class Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16759. [Google Scholar] [CrossRef]
- Budisavljevic, M.N.; Stewart, L.; Sahn, S.A.; Ploth, D.W. Hyponatremia associated with 3,4-methylenedioxymethylamphetamine (“Ecstasy”) abuse. Am. J. Med. Sci. 2003, 326, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Capogrosso, C.A.; Guzzi, P.; Bernasconi, G.; Re, M.; Misiak, B.; Crocamo, C.; Bartoli, F.; Carrà, G. Blood concentrations of anterior pituitary hormones in drug-naïve people with first-episode psychosis: A systematic review and meta-analysis. Psychoneuroendocrinology 2023, 158, 106392. [Google Scholar] [CrossRef]
- Valente, M.J.; Carvalho, F.; Bastos, M.; de Pinho, P.G.; Carvalho, M. Contribution of oxidative metabolism to cocaine-induced liver and kidney damage. Curr. Med. Chem. 2012, 19, 5601–5606. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, N.A.; Kruse, G.R.; Livingstone-Banks, J.; Hartmann-Boyce, J. Treatment of Tobacco Smoking: A Review. JAMA 2022, 327, 566–577. [Google Scholar] [CrossRef]
- Khoury, R.; Nasrallah, H.A. Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): State or trait? Schizophr. Res. 2018, 199, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Coentre, R.; Fonseca, A.; Mendes, T.; Rebelo, A.; Fernandes, E.; Levy, P.; Góis, C.; Figueira, M.L. Suicidal behaviour after first-episode psychosis: Results from a 1-year longitudinal study in Portugal. Ann. Gen. Psychiatry 2021, 20, 35. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Sample N = 218 | Alcohol-Induced Psychosis N = 31 (14.2%) | Psychostimulant-Induced Psychosis N = 71 (32.6%) | Cannabis-Induced Psychosis N = 116 (53.2%) | F or χ2 | p-Value | |
---|---|---|---|---|---|---|---|
Gender Missing = 0 | Male | 191 (87.6%) | 28 (90.3%) | 59 (83.1%) | 104 (89.7%) | 1.99 | 0.40 |
Female | 27 (12.4%) | 3 (9.7%) | 12 (16.9%) | 12 (10.3%) | |||
Age (years) Missing = 0 | 33.89 (±12.21) | 45.42 (±13.64) | 35.41 (±11.91) | 29.87 (± 9.63) | 25.29 | <0.01 | |
Age at illness onset (years) Missing = 15 | 28.09 (±10.97) | 33.28 (±12.90) | 30.38 (±11.58) | 25.20 (±9.07) | 9.08 | <0.01 | |
Duration of hospitalization (days) Missing = 60 | 11.59 (±9.57) | 8.92 (±6.38) | 13.63 (±12.51) | 10.99 (±7.57) | 2.43 | 0.09 | |
Duration of untreated illness (years) Missing = 61 | 1.18 (±2.74) | 0.63 (±1.61) | 1.36 (±3.19) | 1.23 (±2.68) | 0.62 | 0.54 | |
Duration of SUD (years) Missing = 15 | 5.83 (±8.81) | 11.83 (±14.64) | 4.97 (±7.42) | 4.74(±6.75) | 8.43 | <0.01 | |
Presence of previous hospitalizations Missing = 8 | 133 (63.3%) | 21 (67.8%) | 39 (57.4%) | 73 (65.8%) | 1.59 | 0.45 | |
Number of previous hospitalizations Missing = 8 | 2.18 (±4.73) | 3.71 (±7.05) | 1.71 (±1.48) | 2.38 (±5.13) | 3.36 | 0.04 | |
Presence of family history of psychiatric disorders Missing = 60 | 55 (34.8%) | 10 (40.0%) | 13 (23.2%) | 32 (41.6%) | 5.16 | 0.08 | |
Presence of family history of multiple psychiatric disorders Missing = 60 | 33 (20.9%) | 5 (20.0%) | 10 (17.9%) | 18 (23.4%) | 0.61 | 0.74 | |
Presence of family history of substance use disorders Missing = 60 | 24 (15.2%) | 4 (16.0%) | 12 (21.4%) | 8 (10.4%) | 3.08 | 0.20 | |
Presence of lifetime history of poly-substance use disorders Missing = 0 | 118 (54.1%) | 7 (22.6%) | 54 (76.1%) | 57 (49.1%) | 27.34 | <0.01 | |
Presence of tobacco smoke Missing = 5 | 106 (48.6%) | 15 (48.4%) | 24 (34.3%) | 67 (59.8%) | 11.26 | <0.01 | |
Current prescription of benzodiazepines Missing = 60 | 120 (75.8%) | 15 (60.0%) | 46 (82.1%) | 59 (76.7%) | 4.68 | 0.10 | |
Current treatment with more than one psychotropic drug Missing = 60 | 153 (96.8%) | 23 (92.0%) | 54 (96.4%) | 76 (98.7%) | 2.81 | 0.25 | |
Comorbidity with at least one psychiatric diagnosis Missing = 60 | 66 (41.8%) | 12 (48.0%) | 25 (44.6%) | 29 (60.4%) | 1.12 | 0.60 | |
Comorbidity with more than one psychiatric diagnosis Missing = 60 | 21 (13.2%) | 5 (20.0%) | 6 (10.7%) | 10 (12.9%) | 1.31 | 0.50 | |
Presence of comorbid personality disorders Missing = 60 | 37 (17.0%) | 3 (12%) | 16 (28.6%) | 18 (23.4%) | 2.65 | 0.27 | |
Presence of lifetime suicide attempts Missing = 0 | 29 (13.3%) | 6 (19.4%) | 10 (14.1%) | 13 (11.2%) | 1.46 | 0.48 | |
Number of lifetime suicide attempts Missing = 0 | 0.17 (±0.56) | 0.23 (±0.50) | 0.18 (±0.66) | 0.16 (±0.50) | 0.21 | 0.81 | |
Comorbidity with other medical conditions Missing = 60 | 69 (59.2%) | 17 (68.0%) | 28 (50.0%) | 24 (31.2%) | 11.82 | <0.01 | |
Comorbidity with multiple medical conditions Missing = 60 | 23 (14.6%) | 6 (24.0%) | 8 (14.3%) | 9 (11.7%) | 2.31 | 0.32 | |
Presence of hypothyroidism Missing = 60 | 9 (5.7%) | 0 (0.0%) | 6 (10.7%) | 3 (3.9%) | 4.60 | 0.10 | |
Presence of hypercholesterolemia Missing = 0 | 32 (14.7%) | 10 (32.3%) | 8 (11.3%) | 14 (12.1%) | 8.94 | 0.01 | |
Presence of diabetes Missing = 60 | 11 (7.0%) | 3 (12.0%) | 6 (10.7%) | 2 (2.6%) | 4.46 | 0.11 | |
Presence of obesity Missing = 0 | 5 (2.3%) | 1 (3.2%) | 1 (1.4%) | 3 (2.6%) | 0.41 | 0.81 | |
Lifetime psychotherapy Missing = 60 | 12 (7.6%) | 1 (4.0%) | 2 (3.6%) | 9 (11.7%) | 3.59 | 0.17 | |
History of obstetric complications Missing = 0 | 25 (11.5%) | 5 (16.1%) | 4 (5.6%) | 16 (13.8%) | 3.66 | 0.16 | |
GAF score Missing = 61 | 46.37 (±15.20) | 58.04 (±15.83) | 53.71 (±16.66) | 54.87 (±13.3) | 0.73 | 0.49 | |
PANSS score Missing = 61 | 61.83 (±15.16) | 60.76 (±15.33) | 59.45 (±16.49) | 63.93 (±13.94) | 1.50 | 0.23 | |
BPRS score Missing = 46 | 43.97 (±12.13) | 46.61 (±11.62) | 41.27 (±12.04) | 44.96 (±12.16) | 2.54 | 0.08 | |
MSPS score Missing = 61 | 2.49 (±1.09) | 3.16(±1.21) | 2.29 (±1.02) | 2.42 (±1.04) | 6.19 | <0.01 | |
MOAS score Missing = 1 | 4.34 (±4.91) | 4.03 (±5.04) | 4.72 (±4.88) | 4.19 (±4.93) | 0.32 | 0.73 |
Variables | Total Sample N = 218 | Alcohol-Induced Psychosis N = 31 (14.2%) | Psychostimulant-Induced Psychosis N = 71 (32.6%) | Cannabis-Induced Psychosis N = 116 (53.2%) | F | p-Value |
---|---|---|---|---|---|---|
Sodium (Na) (mEq/L) Missing = 84 | 141.45 (±2.50) | 142.08 (±2.71) | 140.80 (±2.90) | 141.70 (±2.00) | 2.66 | 0.07 |
Potassium (K) (mEq/L) Missing = 84 | 4.23 (±0.38) | 4.26 (±0.41) | 4.24 (±0.34) | 4.21 (±0.39) | 0.22 | 0.81 |
Na/K ratio Missing = 86 | 33.72 (±3.04) | 33.69 (±3.17) | 33.47 (±2.64) | 33.91 (±3.28) | 0.29 | 0.75 |
Number of lymphocytes (109/L) Missing = 64 | 2.58 (±1.59) | 2.08 (±0.68) | 2.55 (±0.76) | 2.75 (±2.07) | 1.70 | 0.19 |
Number of neutrophils (109/L) Missing = 64 | 5.00 (±2.60) | 4.98 (±2.51) | 5.13 (±2.74) | 4.93 (±2.57) | 0.09 | 0.91 |
NLR Missing = 77 | 2.19 (±1.32) | 2.77 (±2.03) | 2.01(±1.09) | 2.13(±1.17) | 2.47 | 0.09 |
Number of RBCs (1012/L) Missing = 25 | 4.86 (±0.57) | 4.81 (±0.61) | 4.74 (±0.57) | 4.94 (±0.54) | 2.52 | 0.08 |
Number of WBCs (109/L) Missing = 25 | 8.56 (±3.11) | 8.15 (±2.56) | 8.68 (±3.19) | 8.60 (±3.22) | 0.30 | 0.75 |
MCV (fL) Missing = 86 | 87.61 (±6.85) | 89.65 (±9.36) | 87.43 (±6.27) | 87.03 (±6.21) | 1.22 | 0.30 |
HB (g/dL) Missing = 29 | 14.49 (±1.55) | 14.36 (±1.68) | 14.15 (±1.62) | 14.73 (±1.44) | 2.77 | 0.07 |
Number of PLTs (109/L) Missing = 79 | 254.13 (±85.54) | 259.73 (±122.87) | 265.23 (±71.31) | 244.91 (±80.44) | 0.85 | 0.43 |
MPV (fL) Missing = 86 | 10.57 (±1.10) | 10.28 (±0.90) | 10.67 (±1.21) | 10.60 (±1.08) | 0.97 | 0.38 |
Glycemia (mg/dL) Missing = 27 | 90.37 (±22.79) | 93.75 (±25.21) | 91.21 (±25.10) | 88.91 (±20.62) | 0.55 | 0.58 |
Creatinine (mg/dL) Missing = 32 | 0.90 (±0.15) | 0.89 (±0.16) | 0.92 (±0.16) | 0.89 (±0.15) | 0.68 | 0.51 |
Urea (mg/dL) Missing = 63 | 27.64 (±9.08) | 31.56 (±11.03) | 27.92 (±10.23) | 26.10 (±7.03) | 3.79 | 0.03 |
Uric acid (mg/dL) Missing = 96 | 5.50 (±1.60) | 6.06 (±1.29) | 5.18 (±1.46) | 5.50 (±1.76) | 2.16 | 0.12 |
ALT (U/L) Missing = 29 | 32.19 (±30.43) | 31.59 (±28.20) | 36.90 (±41.76) | 29.60 (±22.05) | 1.08 | 0.34 |
AST (U/L) Missing = 59 | 39.68 (±45.91) | 40.81 (±54.97) | 39.34 (±40.69) | 39.51 (±46.07) | 0.01 | 0.99 |
GGT (U/L) Missing = 36 | 29.69 (±38.97) | 33.54 (±32.40) | 37.38 (±60.32) | 24.12 (±18.83) | 2.29 | 0.10 |
Bilirubin (mg/dL) Missing = 44 | 0.68 (±0.42) | 0.61 (±0.30) | 0.61 (±0.39) | 0.73 (±0.46) | 1.77 | 0.17 |
Total plasmatic proteins (g/dL) Missing = 97 | 6.88 (±0.55) | 6.91 (±0.54) | 6.84 (±0.66) | 6.89 (±0.49) | 0.16 | 0.85 |
Albumin (g/dL) Missing = 87 | 4.42 (±0.46) | 4.38 (±0.59) | 4.30 (±0.44) | 4.51 (±0.40) | 2.74 | 0.07 |
Total cholesterol (mg/dL) Missing = 57 | 170.72 (±44.23) | 192.92 (±49.51) | 169.00 (±53.78) | 165.31 (±34.16) | 3.98 | 0.02 |
Triglycerides (mg/dL) Missing = 128 | 112.96 (±77.20) | 159.13 (±112.31) | 102.55 (±65.15) | 103.13 (±64.29) | 3.69 | 0.03 |
LDH (mU/mL) Missing = 96 | 207.61 (±94.58) | 205.02 (±102.96) | 220.38 (±110.85) | 199.34 (±77.81) | 0.61 | 0.55 |
CPK (U/L) Missing = 54 | 511.76 (±890.42) | 292.82 (±366.90) | 392.79 (±530.87) | 674.59 (±1163.05) | 2.11 | 0.13 |
PChE (U/L)Missing = 104 | 7523.62 (±2084.10) | 8001.14 (±2115.56) | 7431.03 (±1654.13) | 7405.73 (±2323.45) | 0.67 | 0.51 |
TSH (mcU/mL) Missing = 111 | 1.81 (±1.35) | 1.51 (±0.85) | 2.03 (±1.73) | 1.78 (±1.22) | 0.99 | 0.37 |
Variables | B | S.E. | Wald | p | OR | 95% CI for OR |
---|---|---|---|---|---|---|
Age at hospital admission | −0.064 | 0.042 | 2.343 | 0.126 | 0.938 | 0.864–1.018 |
Age at illness onset | 0.018 | 0.043 | 0.171 | 0.679 | 1.018 | 0.936–1.106 |
Number of previous hospitalizations | 0.221 | 0.172 | 1.651 | 0.199 | 1.248 | 0.890–1.748 |
BPRS score | 0.082 | 0.028 | 8.8606 | 0.003 | 1.085 | 1.027–1.146 |
Sodium (Na) | 0.343 | 0.137 | 6.308 | 0.012 | 1.409 | 1.078–1.842 |
Number of RBCs | −0.324 | 0.567 | 0.327 | 0.567 | 0.723 | 0.238–2.198 |
Hb | 0.440 | 0.214 | 4.222 | 0.040 | 1.553 | 1.021–2.362 |
GGT | −0.014 | 0.014 | 1.048 | 0.306 | 0.986 | 0.959–1.013 |
Albumin | 0.735 | 0.686 | 1.147 | 0.284 | 2.085 | 0.543–7.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paolo, M.; Calabrese, A.; Nosari, G.; Ciappolino, V.; Cirella, L.; Caldiroli, A.; Capuzzi, E.; Clerici, M.; Buoli, M. Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. J. Pers. Med. 2024, 14, 325. https://doi.org/10.3390/jpm14030325
Di Paolo M, Calabrese A, Nosari G, Ciappolino V, Cirella L, Caldiroli A, Capuzzi E, Clerici M, Buoli M. Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. Journal of Personalized Medicine. 2024; 14(3):325. https://doi.org/10.3390/jpm14030325
Chicago/Turabian StyleDi Paolo, Martina, Antonia Calabrese, Guido Nosari, Valentina Ciappolino, Luisa Cirella, Alice Caldiroli, Enrico Capuzzi, Massimo Clerici, and Massimiliano Buoli. 2024. "Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse" Journal of Personalized Medicine 14, no. 3: 325. https://doi.org/10.3390/jpm14030325
APA StyleDi Paolo, M., Calabrese, A., Nosari, G., Ciappolino, V., Cirella, L., Caldiroli, A., Capuzzi, E., Clerici, M., & Buoli, M. (2024). Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. Journal of Personalized Medicine, 14(3), 325. https://doi.org/10.3390/jpm14030325