Personalized Antifibrotic Therapy in CKD Progression
Abstract
:1. Introduction
2. Mechanisms of Kidney Fibrosis in CKD
2.1. Key Molecular Pathways
2.1.1. Epithelial-to-Mesenchymal Transition and Chronic Inflammation
2.1.2. Hypoxia
2.1.3. TGF-β Signaling
2.1.4. Wnt/β-Catenin Pathway
2.1.5. Notch Pathway
2.1.6. NF-κB Pathway
2.2. Genetic and Environmental Risk Factors
2.2.1. Role of Genetics in Fibrosis Susceptibility
2.2.2. Environmental Triggers
3. Experimental Therapies in Kidney Fibrosis
3.1. Pirfenidone and Nintedanib as Promising Candidates
3.2. PRM-151 and Ziritaxestat
3.3. Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors
3.4. Emerging Targets
3.4.1. Connective Tissue Growth Factor
3.4.2. Galectin-3
3.4.3. Homeodomain-Interacting Protein Kinase 2
3.4.4. Lademirsen (miR-21 Antagonist)
3.4.5. Interleukin-11 (IL-11) Targeting
3.4.6. Pentoxifylline
4. Personalization of Antifibrotic Therapies
4.1. Genetic Markers
4.2. Proteomic and Metabolomic Markers
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A.; El Kossi, M.; Floege, J.; El Nahas, M. The management of CKD: A look into the future. Kidney Int. 2007, 72, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nakano, D.; Guan, Y.; Hitomi, H.; Uemura, A.; Masaki, T.; Kobara, H.; Sugaya, T.; Nishiyama, A. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor–dependent pathway after renal injury in mice. Kidney Int. 2018, 94, 524–535. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Lamas, S.; Ortiz, A. Antifibrotic Agents for the Management of CKD: A Review. Am. J. Kidney Dis. 2022, 80, 251–263. [Google Scholar] [CrossRef]
- Tampe, B.; Zeisberg, M. Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol. Dial. Transplant. 2014, 29, iv72–iv79. [Google Scholar] [CrossRef]
- Fogo, A.B. Mechanisms of progression of chronic kidney disease. Pediatr. Nephrol. 2007, 22, 2011–2022. [Google Scholar] [CrossRef]
- Declèves, A.-E.; Sharma, K. Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat. Rev. Nephrol. 2014, 10, 257–267. [Google Scholar] [CrossRef]
- Nogueira, A.; Pires, M.J.; Oliveira, P.A. Pathophysiological Mechanisms of Renal Fibrosis: A Review of Animal Models and Therapeutic Strategies. In Vivo 2017, 31, 1–22. [Google Scholar] [CrossRef]
- Eddy, A.A. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. Suppl. 2014, 4, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.; Kirpalani, A.; Szeto, S.G.; Deeb, M.; Foltz, W.; Simmons, C.A.; Yuen, D.A. Could MRI Be Used To Image Kidney Fibrosis? A Review of Recent Advances and Remaining Barriers. Clin. J. Am. Soc. Nephrol. 2017, 12, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Streja, E.; Streja, D.A.; Soohoo, M.; Kleine, C.-E.; Hsiung, J.-T.; Park, C.; Moradi, H. Precision Medicine and Personalized Management of Lipoprotein and Lipid Disorders in Chronic and End-Stage Kidney Disease. Semin. Nephrol. 2018, 38, 369–382. [Google Scholar] [CrossRef]
- Sun, L.; Zou, L.-X.; Chen, M.-J. Make Precision Medicine Work for Chronic Kidney Disease. Med. Princ. Pract. 2017, 26, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Tye, S.C.; Denig, P.; Heerspink, H.J.L. Precision medicine approaches for diabetic kidney disease: Opportunities and challenges. Nephrol. Dial. Transplant. 2021, 36, ii3–ii9. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.H.; Alpers, C.E.; Azeloglu, E.U.; Balis, U.G.J.; Barasch, J.M.; Barisoni, L.; Blank, K.N.; Bomback, A.S.; Brown, K.; Dagher, P.C.; et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 2021, 99, 498–510. [Google Scholar] [CrossRef]
- Lv, W.; Fan, F.; Wang, Y.; Gonzalez-Fernandez, E.; Wang, C.; Yang, L.; Booz, G.W.; Roman, R.J. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol. Genomics 2018, 50, 20–34. [Google Scholar] [CrossRef]
- Rhee, C.M.; Obi, Y.; Mathew, A.T.; Kalantar-Zadeh, K. Precision Medicine in the Transition to Dialysis and Personalized Renal Replacement Therapy. Semin. Nephrol. 2018, 38, 325–335. [Google Scholar] [CrossRef]
- Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Tang, P.C.-T.; Chan, A.S.-W.; Zhang, C.-B.; García Córdoba, C.A.; Zhang, Y.-Y.; To, K.-F.; Leung, K.-T.; Lan, H.-Y.; Tang, P.M.-K. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front. Med. 2021, 8, 628519. [Google Scholar] [CrossRef]
- Hills, C.E.; Squires, P.E. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev. 2011, 22, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Yasumura, S.; Okuno, K.; Asakura, M.; Tsujino, T.; Masuyama, T.; Ishihara, M. Hypoxia-inducible factor-prolyl hydroxylase inhibitor Roxadustat (FG-4592) reduces renal fibrosis in Dahl salt-sensitive rats. J. Hypertens. 2024, 42, 497–505. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, F.J.; López-Novoa, J.M. Role of TGF-β in chronic kidney disease: An integration of tubular, glomerular and vascular effects. Cell Tissue Res. 2012, 347, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.-H.; Cai, P.-P.; Liu, X.; Si, G.-M. Adenovirus-mediated P311 ameliorates renal fibrosis through inhibition of epithelial-mesenchymal transition via TGF-β1-Smad-ILK pathway in unilateral ureteral obstruction rats. Int. J. Mol. Med. 2018, 41, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, N.; Sun, A.; Wu, Q.; Hu, W.; Hou, X.; Zeng, X.; Zhu, M.; Liao, Y. Transient Receptor Potential Channel 6 Knockout Ameliorates Kidney Fibrosis by Inhibition of Epithelial–Mesenchymal Transition. Front. Cell Dev. Biol. 2021, 8, 602703. [Google Scholar] [CrossRef]
- Lv, W.; Booz, G.W.; Fan, F.; Wang, Y.; Roman, R.J. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front. Physiol. 2018, 9, 105. [Google Scholar] [CrossRef]
- Naas, S.; Schiffer, M.; Schödel, J. Hypoxia and renal fibrosis. Am. J. Physiol.-Cell Physiol. 2023, 325, C999–C1016. [Google Scholar] [CrossRef]
- Gu, Y.-Y.; Liu, X.-S.; Huang, X.-R.; Yu, X.-Q.; Lan, H.-Y. Diverse Role of TGF-β in Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 123. [Google Scholar] [CrossRef]
- Zhou, D.; Tan, R.J.; Fu, H.; Liu, Y. Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. Lab. Investig. 2016, 96, 156–167. [Google Scholar] [CrossRef]
- He, W.; Dai, C.; Li, Y.; Zeng, G.; Monga, S.P.; Liu, Y. Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. J. Am. Soc. Nephrol. 2009, 20, 765–776. [Google Scholar] [CrossRef]
- Hoi, S.; Tsuchiya, H.; Itaba, N.; Suzuki, K.; Oka, H.; Morimoto, M.; Takata, T.; Isomoto, H.; Shiota, G. WNT/β-catenin signal inhibitor IC-2–derived small-molecule compounds suppress TGF-β1–induced fibrogenic response of renal epithelial cells by inhibiting SMAD2/3 signalling. Clin. Exp. Pharmacol. Physiol. 2020, 47, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Madan, B.; Patel, M.B.; Zhang, J.; Bunte, R.M.; Rudemiller, N.P.; Griffiths, R.; Virshup, D.M.; Crowley, S.D. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney Int. 2016, 89, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, D.-Q.; Chen, L.; Liu, D.; Zhao, H.; Zhang, Z.-H.; Vaziri, N.D.; Guo, Y.; Zhao, Y.-Y.; Cao, G. Novel RAS Inhibitors Poricoic Acid ZG and Poricoic Acid ZH Attenuate Renal Fibrosis via a Wnt/β-Catenin Pathway and Targeted Phosphorylation of smad3 Signaling. J. Agric. Food Chem. 2018, 66, 1828–1842. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Sun, Q.; Hua, M.-R.; Suo, P.; Chen, J.-R.; Yu, X.-Y.; Zhao, Y.-Y. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front. Pharmacol. 2021, 12, 719880. [Google Scholar] [CrossRef]
- Bielesz, B.; Sirin, Y.; Si, H.; Niranjan, T.; Gruenwald, A.; Ahn, S.; Kato, H.; Pullman, J.; Gessler, M.; Haase, V.H.; et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Investig. 2010, 120, 4040–4054. [Google Scholar] [CrossRef]
- Niranjan, T.; Bielesz, B.; Gruenwald, A.; Ponda, M.P.; Kopp, J.B.; Thomas, D.B.; Susztak, K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 2008, 14, 290–298. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, J.; Peng, X.; Dong, Y.; Jia, L.; Li, H.; Du, J. The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int. J. Biochem. Cell Biol. 2014, 55, 65–71. [Google Scholar] [CrossRef]
- Juillerat-Jeanneret, L.; Flohr, A.; Schneider, M.; Walter, I.; Wyss, J.-C.; Kumar, R.; Golshayan, D.; Aebi, J.D. Targeted γ-Secretase Inhibition To Control the Notch Pathway in Renal Diseases. J. Med. Chem. 2015, 58, 8097–8109. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, S.; Xie, H.; Qiu, Q.; Wang, H.; Zhang, J.; Luo, D.; Zhang, J. RO4929097, a Selective γ-Secretase Inhibitor, Inhibits Subretinal Fibrosis Via Suppressing Notch and ERK1/2 Signaling in Laser-Induced Mouse Model. Investig. Opthalmology Vis. Sci. 2022, 63, 14. [Google Scholar] [CrossRef]
- Chade, A.R.; Engel, J.E.; Hall, M.E.; Eirin, A.; Bidwell, G.L. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: A renal-cardio axis. Am. J. Physiol.-Ren. Physiol. 2021, 321, F411–F423. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Liu, Y.; Tang, C.; Cai, J.; Chen, G.; Dong, Z. p53/sirtuin 1/NF-κB Signaling Axis in Chronic Inflammation and Maladaptive Kidney Repair After Cisplatin Nephrotoxicity. Front. Immunol. 2022, 13, 925738. [Google Scholar] [CrossRef] [PubMed]
- Chade, A.R.; Williams, M.L.; Engel, J.E.; Williams, E.; Bidwell, G.L. Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease. Am. J. Physiol.-Ren. Physiol. 2020, 319, F139–F148. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.S.; Prokop, J.; Keele, G.; Holl, K.; He, H.; Littrell, J.; Deal, A.; Valdar, W.; Garrett, M. Integrating Genetic Fine-mapping in Outbred Rats with a Novel Human Tubule Fibrosis Model Identifies Sept8 as a Gene Involved in Cellular Structure and Kidney Fibrosis. FASEB J. 2020, 34, 1-1. [Google Scholar] [CrossRef]
- Smyth, L.J.; Duffy, S.; Maxwell, A.P.; McKnight, A.J. Genetic and epigenetic factors influencing chronic kidney disease. Am. J. Physiol.-Ren. Physiol. 2014, 307, F757–F776. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J. Genes and environment in chronic kidney disease hotspots. Curr. Opin. Nephrol. Hypertens. 2019, 28, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Calzetta, L.; Cavalli, F.; Matera, M.G.; Cazzola, M. Pirfenidone, nintedanib and N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Pulm. Pharmacol. Ther. 2016, 40, 95–103. [Google Scholar] [CrossRef]
- Overed-Sayer, C.; Miranda, E.; Dunmore, R.; Liarte Marin, E.; Beloki, L.; Rassl, D.; Parfrey, H.; Carruthers, A.; Chahboub, A.; Koch, S.; et al. Inhibition of mast cells: A novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax 2020, 75, 754–763. [Google Scholar] [CrossRef]
- Adler, S.G.; Schwartz, S.; Williams, M.E.; Arauz-Pacheco, C.; Bolton, W.K.; Lee, T.; Li, D.; Neff, T.B.; Urquilla, P.R.; Sewell, K.L. Phase 1 Study of Anti-CTGF Monoclonal Antibody in Patients with Diabetes and Microalbuminuria. Clin. J. Am. Soc. Nephrol. 2010, 5, 1420–1428. [Google Scholar] [CrossRef]
- Martinez-Martinez, E.; Ibarrola, J.; Calvier, L.; Fernandez-Celis, A.; Leroy, C.; Cachofeiro, V.; Rossignol, P.; Lopez-Andres, N. Galectin-3 Blockade Reduces Renal Fibrosis in Two Normotensive Experimental Models of Renal Damage. PLoS ONE 2016, 11, e0166272. [Google Scholar] [CrossRef]
- Navarro-González, J.F.; Sánchez-Niño, M.D.; Donate-Correa, J.; Martín-Núñez, E.; Ferri, C.; Pérez-Delgado, N.; Górriz, J.L.; Martínez-Castelao, A.; Ortiz, A.; Mora-Fernández, C. Effects of Pentoxifylline on Soluble Klotho Concentrations and Renal Tubular Cell Expression in Diabetic Kidney Disease. Diabetes Care 2018, 41, 1817–1820. [Google Scholar] [CrossRef]
- Myllärniemi, M.; Kaarteenaho, R. Pharmacological treatment of idiopathic pulmonary fibrosis—Preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur. Clin. Respir. J. 2015, 2, 26385. [Google Scholar] [CrossRef]
- Bahudhanapati, H.; Kass, D.J. Unwinding the Collagen Fibrils: Elucidating the Mechanism of Pirfenidone and Nintedanib in Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2017, 57, 10–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Yang, X.; Fan, L.; Li, Y.; Zhu, F.; Zhu, A.; Du, S.; Min, H.; Qi, Y. LRG1-Targeted Nintedanib Delivery for Enhanced Renal Fibrosis Mitigation. Nano Lett. 2024, 24, 11097–11107. [Google Scholar] [CrossRef]
- Lv, W.; Booz, G.W.; Wang, Y.; Fan, F.; Roman, R.J. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur. J. Pharmacol. 2018, 820, 65–76. [Google Scholar] [CrossRef]
- Duffield, J.S.; Lupher, M.L., Jr. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect. 2010, 23, 305. [Google Scholar] [CrossRef]
- Raghu, G.; Van Den Blink, B.; Hamblin, M.J.; Brown, A.W.; Golden, J.A.; Ho, L.A.; Wijsenbeek, M.S.; Vasakova, M.; Pesci, A.; Antin-Ozerkis, D.E.; et al. Long-term treatment with recombinant human pentraxin 2 protein in patients with idiopathic pulmonary fibrosis: An open-label extension study. Lancet Respir. Med. 2019, 7, 657–664. [Google Scholar] [CrossRef]
- Richeldi, L.; Schiffman, C.; Behr, J.; Inoue, Y.; Corte, T.J.; Cottin, V.; Jenkins, R.G.; Nathan, S.D.; Raghu, G.; Walsh, S.L.F.; et al. Zinpentraxin Alfa for Idiopathic Pulmonary Fibrosis: The Randomized Phase III STARSCAPE Trial. Am. J. Respir. Crit. Care Med. 2024, 209, 1132–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Summa, L.; Heckmann, B.; Distler, J.H.W. OP0242 Effects of the Autotaxin Inhibitor Ziritaxestat on Skin and Lung Fibrosis in a Murine Graft-Versus-Host Disease Model of Systemic Sclerosis. Ann. Rheum. Dis. 2021, 80, 148–149. [Google Scholar] [CrossRef]
- Maher, T.M.; Ford, P.; Brown, K.K.; Costabel, U.; Cottin, V.; Danoff, S.K.; Groenveld, I.; Helmer, E.; Jenkins, R.G.; Milner, J.; et al. Ziritaxestat, a Novel Autotaxin Inhibitor, and Lung Function in Idiopathic Pulmonary Fibrosis: The ISABELA 1 and 2 Randomized Clinical Trials. JAMA 2023, 329, 1567. [Google Scholar] [CrossRef]
- Haase, V.H. Hypoxia-inducible factor–prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 2021, 11, 8–25. [Google Scholar] [CrossRef]
- Kapitsinou, P.P.; Jaffe, J.; Michael, M.; Swan, C.E.; Duffy, K.J.; Erickson-Miller, C.L.; Haase, V.H. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2012, 302, F1172–F1179. [Google Scholar] [CrossRef]
- Wakashima, T.; Tanaka, T.; Fukui, K.; Komoda, Y.; Shinozaki, Y.; Kobayashi, H.; Matsuo, A.; Nangaku, M. JTZ-951, an HIF prolyl hydroxylase inhibitor, suppresses renal interstitial fibroblast transformation and expression of fibrosis-related factors. Am. J. Physiol.-Ren. Physiol. 2020, 318, F14–F24. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Tsai, P.-Z.; Chou, Y.-H.; Chang, Y.-T.; Chang, F.-C.; Chiu, Y.-L.; Chiang, W.-C.; Hsu, T.; Chen, Y.-M.; Chu, T.-S.; et al. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int. 2021, 99, 1354–1368. [Google Scholar] [CrossRef]
- Yokoi, H.; Mukoyama, M.; Nagae, T.; Mori, K.; Suganami, T.; Sawai, K.; Yoshioka, T.; Koshikawa, M.; Nishida, T.; Takigawa, M.; et al. Reduction in Connective Tissue Growth Factor by Antisense Treatment Ameliorates Renal Tubulointerstitial Fibrosis. J. Am. Soc. Nephrol. 2004, 15, 1430–1440. [Google Scholar] [CrossRef]
- Phanish, M.K.; Winn, S.K.; Dockrell, M.E.C. Connective Tissue Growth Factor-(CTGF, CCN2)—A Marker, Mediator and Therapeutic Target for Renal Fibrosis. Nephron Exp. Nephrol. 2009, 114, e83–e92. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, X.; Zhu, Z.; Yang, X.; Deng, A. Role of connective tissue growth factor in renal tubular epithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro. Life Sci. 2004, 75, 367–379. [Google Scholar] [CrossRef]
- Mahmoud, H.M.; Abdel-Razik, A.H.; Elrehany, M.A.; Othman, E.M.; Bekhit, A.A. Modified Citrus Pectin (MCP) Confers a Renoprotective Effect on Early-Stage Nephropathy in Type-2 Diabetic Mice. Chem. Biodivers. 2024, 21, e202400104. [Google Scholar] [CrossRef]
- Traber, P.G.; Zomer, E. Therapy of Experimental NASH and Fibrosis with Galectin Inhibitors. PLoS ONE 2013, 8, e83481. [Google Scholar] [CrossRef]
- Hao, C.; Cao, M.; Ouyang, H.; Chen, Z.; Hu, G.; Li, Q. Recent Advances in the Development of HIPK2 Inhibitors As anti-renal Fibrosis Agents. Future Med. Chem. 2023, 15, 453–465. [Google Scholar] [CrossRef]
- Rubel, D.; Boulanger, J.; Craciun, F.; Xu, E.Y.; Zhang, Y.; Phillips, L.; Callahan, M.; Weber, W.; Song, W.; Ngai, N.; et al. Anti-microRNA-21 Therapy on Top of ACE Inhibition Delays Renal Failure in Alport Syndrome Mouse Models. Cells 2022, 11, 594. [Google Scholar] [CrossRef]
- Gale, D.P.; Gross, O.; Wang, F.; Esteban De La Rosa, R.J.; Hall, M.; Sayer, J.A.; Appel, G.; Hariri, A.; Liu, S.; Maski, M.; et al. A Randomized Controlled Clinical Trial Testing Effects of Lademirsen on Kidney Function Decline in Adults with Alport Syndrome. Clin. J. Am. Soc. Nephrol. 2024, 19, 995–1004. [Google Scholar] [CrossRef]
- Bhatia, S.; Curti, B.; Ernstoff, M.S.; Gordon, M.; Heath, E.I.; Miller, W.H.; Puzanov, I.; Quinn, D.I.; Flaig, T.W.; VanVeldhuizen, P.; et al. Recombinant interleukin-21 plus sorafenib for metastatic renal cell carcinoma: A phase 1/2 study. J. Immunother. Cancer 2014, 2, 2. [Google Scholar] [CrossRef]
- Ng, Y.-Y.; Chen, Y.-M.; Tsai, T.-J.; Lan, X.-R.; Yang, W.-C.; Lan, H.Y. Pentoxifylline Inhibits Transforming Growth Factor-Beta Signaling and Renal Fibrosis in Experimental Crescentic Glomerulonephritis in Rats. Am. J. Nephrol. 2009, 29, 43–53. [Google Scholar] [CrossRef]
- Kuo, K.-L.; Hung, S.-C.; Liu, J.-S.; Chang, Y.-K.; Hsu, C.-C.; Tarng, D.-C. Add-on Protective Effect of Pentoxifylline in Advanced Chronic Kidney Disease Treated with Renin-Angiotensin-Aldosterone System Blockade—A Nationwide Database Analysis. Sci. Rep. 2015, 5, 17150. [Google Scholar] [CrossRef]
- Cao, J.-Y.; Zhou, L.-T.; Liu, B.-C. Genomic biomarkers for chronic kidney disease: The first step towards personalized medicine? J. Transl. Genet. Genomics 2019, 3. [Google Scholar] [CrossRef]
- Cosgrove, D.; Liu, S. Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix Biol. 2017, 57–58, 45–54. [Google Scholar] [CrossRef]
- Luttropp, K.; Lindholm, B.; Carrero, J.J.; Glorieux, G.; Schepers, E.; Vanholder, R.; Schalling, M.; Stenvinkel, P.; Nordfors, L. Progress in Uremic Toxin Research: Genetics/Genomics in Chronic Kidney Disease—Towards Personalized Medicine? Semin. Dial. 2009, 22, 417–422. [Google Scholar] [CrossRef]
- Provenzano, M.; Serra, R.; Garofalo, C.; Michael, A.; Crugliano, G.; Battaglia, Y.; Ielapi, N.; Bracale, U.M.; Faga, T.; Capitoli, G.; et al. OMICS in Chronic Kidney Disease: Focus on Prognosis and Prediction. Int. J. Mol. Sci. 2021, 23, 336. [Google Scholar] [CrossRef]
- Verbeke, F.; Siwy, J.; Van Biesen, W.; Mischak, H.; Pletinck, A.; Schepers, E.; Neirynck, N.; Magalhães, P.; Pejchinovski, M.; Pontillo, C.; et al. The urinary proteomics classifier chronic kidney disease 273 predicts cardiovascular outcome in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2021, 36, 811–818. [Google Scholar] [CrossRef]
- Rambabova-Bushljetik, I.; Metzger, J.; Siwy, J.; Dohcev, S.; Bushljetikj, O.; Filipce, V.; Trajceska, L.; Mischak, H.; Spasovski, G. Association of the chronic kidney disease urinary proteomic predictor CKD273 with clinical risk factors of graft failure in kidney allograft recipients. Nephrol. Dial. Transplant. 2022, 37, 2014–2021. [Google Scholar] [CrossRef]
- Cañadas-Garre, M.; Anderson, K.; McGoldrick, J.; Maxwell, A.P.; McKnight, A.J. Proteomic and metabolomic approaches in the search for biomarkers in chronic kidney disease. J. Proteomics 2019, 193, 93–122. [Google Scholar] [CrossRef]
- Zhao, Y.-Y. Metabolomics in chronic kidney disease. Clin. Chim. Acta 2013, 422, 59–69. [Google Scholar] [CrossRef]
- Huang, J.; Huth, C.; Covic, M.; Troll, M.; Adam, J.; Zukunft, S.; Prehn, C.; Wang, L.; Nano, J.; Scheerer, M.F.; et al. Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes. Diabetes 2020, 69, 2756–2765. [Google Scholar] [CrossRef]
Pathway | Mechanism | Impact on CKD Progression | Ref. |
---|---|---|---|
TGF-β signaling | Activates Smad2/3, promotes ECM deposition, inhibits ECM degradation. | Central to driving fibrosis, it contributes to glomerulosclerosis and tubulointerstitial fibrosis. | [19] |
Inflammatory cytokines | IL-1β, TNF-α, and IL-6 promote immune cell recruitment and macrophage activation. | Fuels chronic inflammation, stimulates macrophage–myofibroblast transition, worsens fibrosis. | [20] |
Oxidative stress | Promotes fibroblast activation, increases ECM deposition. | Enhances fibrosis and exacerbates kidney injury through sustained inflammation and oxidative damage. | [20] |
EMT | Tubular epithelial cells lose epithelial traits and gain mesenchymal properties. | Increases ECM production, drives myofibroblast proliferation, contributes to glomerular and tubulointerstitial fibrosis. | [21] |
Hypoxia | Activates HIF-1α and induces profibrotic gene expression (e.g., CTGF, TGF-β) under low-oxygen conditions. | Drives fibrotic pathways through HIF stabilization, leading to ECM accumulation and exacerbated renal fibrosis. | [22] |
Therapy | Mechanism of Action | Clinical Status | Efficacy in CKD | Ref. |
---|---|---|---|---|
Pirfenidone | Inhibits fibroblast proliferation, reduces TGF-β activity | Approved for IPF, under investigation for CKD (phase 2) | Shown to reduce fibrosis in preclinical models; phase 2 trials ongoing | [46] |
Nintedanib | Inhibits VEGF, FGF, and PDGF receptors, reduces fibroblast activity | Approved for IPF, under investigation for CKD (phase 2) | Preclinical models show promise in reducing ECM accumulation and fibrosis | [47] |
CTGF Inhibition (FG-3019) | Blocks connective tissue growth factor (CTGF), reduces ECM deposition | Phase 1 trial in diabetic nephropathy | Early clinical studies show reduced albuminuria and kidney damage | [48] |
Galectin-3 Inhibitors (MCP) | Inhibits Galectin-3, reduces myofibroblast activity and ECM production | Preclinical studies | Shown to reduce kidney fibrosis and inflammation in animal models | [49] |
Pentoxifylline | Increases Klotho levels, reduces inflammation and fibrosis via TGF-β inhibition | Used off-label in CKD | Demonstrated reduction in fibrosis and inflammation in diabetic and other CKD models | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Eisenga, M.F.; Delanghe, J.R.; Speeckaert, M.M. Personalized Antifibrotic Therapy in CKD Progression. J. Pers. Med. 2024, 14, 1141. https://doi.org/10.3390/jpm14121141
Delrue C, Eisenga MF, Delanghe JR, Speeckaert MM. Personalized Antifibrotic Therapy in CKD Progression. Journal of Personalized Medicine. 2024; 14(12):1141. https://doi.org/10.3390/jpm14121141
Chicago/Turabian StyleDelrue, Charlotte, Michele F. Eisenga, Joris R. Delanghe, and Marijn M. Speeckaert. 2024. "Personalized Antifibrotic Therapy in CKD Progression" Journal of Personalized Medicine 14, no. 12: 1141. https://doi.org/10.3390/jpm14121141
APA StyleDelrue, C., Eisenga, M. F., Delanghe, J. R., & Speeckaert, M. M. (2024). Personalized Antifibrotic Therapy in CKD Progression. Journal of Personalized Medicine, 14(12), 1141. https://doi.org/10.3390/jpm14121141