Evaluation of Plasma miR-17-5p, miR-24-3p and miRNA-223-3p Profile of Hepatitis C Virus-Infected Patients after Treatment with Direct-Acting Antivirals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. RNA Isolation and Reverse Transcription
2.3. Quantitative Real-Time PCR (RT-qPCR)
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Analysis of miRNA Expression
3.3. Pre- and Post-Treatment miRNA Expression Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Baack, B.; Smith, B.D.; Yartel, A.; Pitasi, M.; Falck-Ytter, Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: A meta-analysis of observational studies. Ann. Intern. Med. 2013, 158, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3, 5245–5248. [Google Scholar]
- Garrison, K.L.; German, P.; Mogalian, E.; Mathias, A. The Drug-Drug Interaction Potential of Antiviral Agents for the Treatment of Chronic Hepatitis C Infection. Drug Metab. Dispos. 2017, 46, 1212–1225. [Google Scholar] [CrossRef]
- Spengler, U. Direct antiviral agents (DAAs)—A new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018, 183, 118–126. [Google Scholar] [CrossRef]
- Asselah, T.; Marcellin, P. New direct-acting antivirals’ combination for the treatment of chronic hepatitis C. Liver Int. 2011, 31, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.J.; Ghany, M.G. Current and future therapies for hepatitis C virus infection. N. Engl. J. Med. 2013, 368, 1907–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, G.N.; Fonseca do Rosário, N.; Medeiros, T.; Côrrea Leite, P.E.; de Souza Lacerda, G.; Guaraná de Andrade, T.; de Azeredo, E.L.; Ancuta, P.; Almeida, J.R.; Xavier, A.R.; et al. Restoring Inflammatory Mediator Balance after Sofosbuvir-Induced Viral Clearance in Patients with Chronic Hepatitis C. Mediat. Inflamm. 2018, 27, 8578051. [Google Scholar] [CrossRef] [Green Version]
- Waziry, R.; Hajarizadeh, B.; Grebely, J.; Amin, J.; Law, M.; Danta, M.; George, J.; Dore, G.J. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: A systematic review, meta-analyses, and meta-regression. J. Hepatol. 2017, 6, 1204–1212. [Google Scholar] [CrossRef]
- Sangiovanni, A.; Alimenti, E.; Gattai, R.; Filomia, R.; Parente, E.; Valenti, L.; Marzi, L.; Pellegatta, G.; Borgia, G.; Gambato, M.; et al. Undefined/non-malignant hepatic nodules are associated with early occurrence of HCC in DAA-treated patients with HCV-related cirrhosis. J. Hepatol. 2020, 3, 593–602. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 2017, 68, 25–32. [Google Scholar] [CrossRef]
- Celsa, C.; Stornello, C.; Giuffrida, P.; Giacchetto, C.M.; Grova, M.; Rancatore, G.; Pitrone, C.; Di Marco, V.; Cammà, C.; Cabibbo, G. Direct-acting antiviral agents and risk of Hepatocellular carcinoma: Critical appraisal of the evidence. Ann. Hepatol. 2022, 27, 100568. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, S.M.; Zheng, H.; Li, D.K.; Chung, R.T. No evidence for higher rates of hepatocellular carcinoma after direct-acting antiviral treatment: A meta-analysis. Hepatoma Res. 2019, 5, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Re, V.; De Zorzi, M.; Caggiari, L.; Lauletta, G.; Tornesello, M.L.; Fognani, E.; Miorin, M.; Racanelli, V.; Quartuccio, L.; Gragnani, L.; et al. HCV-related liver and lymphoproliferative diseases: Association with polymorphisms of IL28B and TLR2. Oncotarget 2016, 25, 37487–37497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamore, P.D.; Haley, B. Ribo-gnome: The big world of small RNAs. Science 2005, 309, 1519–1524. [Google Scholar] [CrossRef] [Green Version]
- Krützfeldt, J.; Poy, M.N.; Stoffel, M. Strategies to determine the biological function of microRNAs. Nat. Genet. 2006, 10, 14–19. [Google Scholar]
- Nilsen, T.W. Mechanisms of microRNA-mediated gene regulation in animal cells. TRENDS Genet. 2007, 5, 243–249. [Google Scholar] [CrossRef]
- Girard, M.; Jacquemin, E.; Munnich, A.; Lyonnet, S.; Henrion-Caude, A. miR-122, a paradigm for the role of microRNAs in the liver. J. Hepatol. 2008, 4, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Kunden, R.D.; Khan, J.Q.; Ghezelbash, S.; Wilson, J.A. The Role of the Liver-Specific microRNA, miRNA-122 in the HCV Replication Cycle. Int. J. Mol. Sci. 2020, 16, 5677. [Google Scholar] [CrossRef]
- Conrad, K.D.; Niepmann, M. The role of microRNAs in hepatitis C virus RNA replication. Arch. Virol. 2014, 5, 849–862. [Google Scholar]
- Wong, C.M.; Wong, C.C.; Lee, J.M.; Fan, D.N.; Au, S.L.; Ng, I.O. Sequential alterations of microRNA expression in hepatocellular carcinoma development and venous metastasis. Hepatology 2012, 5, 1453–1461. [Google Scholar] [CrossRef]
- Oksuz, Z.; Serin, M.S.; Kaplan, E.; Dogen, A.; Tezcan, S.; Aslan, G.; Emekdas, G.; Sezgin, O.; Altintas, E.; Tiftik, E.N. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma. Mol. Biol. Rep. 2015, 3, 713–720. [Google Scholar] [CrossRef]
- Jin, Y.; Wong, Y.S.; Goh, B.K.P.; Chan, C.Y.; Cheow, P.C.; Chow, P.K.H.; Lim, T.K.H.; Goh, G.B.B.; Krishnamoorthy, T.L.; Kumar, R.; et al. Circulating microRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Sci. Rep. 2019, 1, 10464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 6, 1101. [Google Scholar] [CrossRef]
- Roche, B.; Coilly, A.; Duclos-Vallee, J.C.; Samuel, D. The impact of treatment of hepatitis C with DAAs on the occurrence of HCC. Liver Int. 2018, 38, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Montaldo, C.; Terri, M.; Riccioni, V.; Battistelli, C.; Bordoni, V.; D’Offizi, G.; Prado, M.G.; Trionfetti, F.; Vescovo, T.; Tartaglia, E.; et al. Fibrogenic signals persist in DAA-treated HCV patients after sustained virological response. J. Hepatol. 2021, 75, 1301–1311. [Google Scholar] [CrossRef]
- Pascut, D.; Cavalletto, L.; Pratama, M.Y.; Bresolin, S.; Trentin, L.; Basso, G.; Bedogni, G.; Tiribelli, C.; Chemello, L. Serum miRNA Are Promising Biomarkers for the Detection of Early Hepatocellular Carcinoma after Treatment with Direct-Acting Antivirals. Cancers 2019, 11, 1773. [Google Scholar] [CrossRef] [Green Version]
- El-Ahwany, E.; Nagy, F.; Zoheiry, M.; Shemis, M.; Nosseir, M.; Taleb, H.A.; El Ghannam, M.; Atta, R.; Zada, S. Circulating miRNAs as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis. Electron. Physician 2016, 1, 1804–1810. [Google Scholar] [CrossRef] [Green Version]
- Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer. 2010, 102, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Ebi, H.; Sato, T.; Sugito, N.; Hosono, Y.; Yatabe, Y.; Matsuyama, Y.; Yamaguchi, T.; Osada, H.; Suzuki, M.; Takahashi, T. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009, 28, 3371–3379. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Yin, Y.; Wang, F.; Wang, Y.; Zhang, L.; Tang, Y.; Sun, S. miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology 2010, 51, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiang, M.; Yuan, W.; Tang, H. miR-17-5p as a novel prognostic marker for hepatocellular carcinoma. J. Investig. Surg. 2012, 25, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Guo, Y.; Chen, B.; Dong, P.; Zheng, J. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Investig. 2015, 95, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Öksüz, Z.; Üçbilek, E.; Serin, M.S.; Yaraş, S.; Temel, G.Ö.; Sezgin, O. hsa-miR-17-5p: A Possible Predictor of Ombitasvir/Paritaprevir/Ritonavir + Dasabuvir ± Ribavirin Therapy Efficacy in Hepatitis C Infection. Curr. Microbiol. 2022, 79, 186. [Google Scholar] [CrossRef] [PubMed]
- Romano, G.; Veneziano, D.; Acunzo, M.; Croce, C.M. Small non-coding RNA and cancer. Carcinogenesis 2017, 38, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Le, Y.G.; Fan, L.J.; Xin, L. LncRNA CASC2 inhibited the viability and induced the apoptosis of hepatocellular carcinoma cells through regulating miR-24-3p. J. Cell Biochem. 2018, 119, 6391–6397. [Google Scholar] [CrossRef]
- Dong, X.; Ding, W.; Ye, J.; Yan, D.; Xue, F.; Xu, L.; Yin, J.; Guo, W. MiR-24-3p enhances cell growth in hepatocellular carcinoma by targeting metallothionein 1M. Cell Biochem. Funct. 2016, 7, 491–496. [Google Scholar] [CrossRef]
- Hyrina, A.; Olmstead, A.D.; Steven, P.; Krajden, M.; Tam, E.; Jean, F. Treatment-Induced Viral Cure of Hepatitis C Virus-Infected Patients Involves a Dynamic Interplay among three Important Molecular Players in Lipid Homeostasis: Circulating microRNA (miR)-24, miR-223, and Proprotein Convertase Subtilisin/Kexin Type 9. EBioMedicine 2017, 23, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Yuan, X.; Liu, M.; Xue, B. miRNA-223-3p regulates NLRP3 to promote apoptosis and inhibit proliferation of hep3B cells. Exp. Ther. Med. 2018, 3, 2429–2435. [Google Scholar] [CrossRef] [Green Version]
- Shaker, O.G.; Senousy, M.A. Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. J. Viral Hepat. 2017, 24, 636–644. [Google Scholar] [CrossRef]
- Qi, P.; Cheng, S.Q.; Wang, H.; Li, N.; Chen, Y.F.; Gao, C.F. Serum MicroRNAs as Biomarkers for Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection. PLoS ONE 2011, 6, e28486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Steele, R.; Shrivastava, S.; Chakraborty, S.; Bisceglie, A.M.D.; Ray, R.B. Serum miR-30e and miR-223 as Novel Noninvasive Biomarkers for Hepatocellular Carcinoma. Am. J. Pathol. 2016, 2, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Serti, E.; Park, H.; Keane, M.; O’Keefe, A.C.; Rivera, E.; Liang, T.J.; Ghany, M.; Rehermann, B. Rapid decrease in hepatitis C viremia by direct acting antivirals improves the natural killer cell response to IFN alpha. Gut 2017, 4, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.Z.; Zayed, N.A.; Mohamed, A.M.; Attia, D.; Esmat, G.; Khairy, A. Circulating microRNAs (miR-21, miR-223, miR-885-5p) along the clinical spectrum of HCV-related chronic liver disease in Egyptian patients. Arab. J. Gastroenterol. 2019, 20, 198–204. [Google Scholar] [CrossRef]
Total HCV Population (n = 50) | CH Patients (n = 21) | Cirrhotic Patients (n = 15) | HCC Patients (n = 14) | p | |
---|---|---|---|---|---|
Age (mean ± SD) | 67.46 ± 11.75 | 65.90 ± 11.61 | 66 ± 12.61 | 70.64 ± 10.91 | |
Gender | |||||
Male | 31 (62) | 6 (28) | 6 (40) | 7 (50) | |
Female | 19 (38) | 15 (72) | 9 (60) | 7 (50) | |
Genotype, n (%) | |||||
1a–1b | 5 (10)–28 (56) | 3 (14)–7 (33) | 1 (6)–9 (60) | 1 (7)–12 (85) | |
2–2a/2c | 9 (18)–4 (8) | 7 (33)–3 (14) | 2 (13)–1 (6) | - | |
3a–3c | 3 (6)–1 (2) | 1 (4)–0 | 1 (6)–1 (6) | 1 (7)–0 | |
DAA treatment (%) | |||||
Harvoni | 19 (38) | 7 (33) | 5 (33) | 7 (50) | |
SOF + RBV | 15 (30) | 10 (47) | 4 (26) | 1 (7) | |
SOF + RBV + DAC | 7 (14) | - | 4 (26) | 3 (21) | |
DAS + OMB + ABT 450 | 4 (8) | - | 2 (13) | 2 (14) | |
Maviret | 4 (8) | 4 (19) | - | - | |
Zepatier | 1 (2) | - | - | 1 (7) | |
ALT (IU/L) | |||||
Pre-treatment | 90.78 ± 72.70 | 95.32 ± 89.67 | 75.67 ± 45.19 | 97.57 ± 68.84 | <0.001 * 0.002 ** 0.001 *** 0.003 **** |
Post-treatment | 25.93 ± 9.88 | 22.60 ± 7.18 | 24.25 ± 6.64 | 31.86 ± 12.87 | |
AST (IU/L) | |||||
Pre-treatment | 88.47 ± 63.06 | 92.47 ± 84.41 | 81.92 ± 36.98 | 88.64 ± 48.71 | <0.001 * 0.001 ** <0.001 *** <0.001 **** |
Post-treatment | 25.04 ± 10.97 | 22.68 ± 9.87 | 27.33 ± 11.78 | 26.29 ± 11.84 | |
HCV RNA (IU/mL) | |||||
Pre-treatment | 3,054,496.80 ± 4,604,619.523 | 3,428,032.75 ± 6,306,331.477 | 1,865,182.82 ± 1,847,452.949 | 3,455,335.00 ± 3,070,385.284 | <0.001 * 0.003 ** 0 < 0.001 *** 0.001 **** |
Post-treatment | 0 | 0 | 0 | 0 |
miRNA | p | Pre-miR-24-3p | Post-miR-24-3p | Pre-miR-223-3p | Post-miR-223-3p | Pre-miR-17-5p | Post-miR-17-5p |
---|---|---|---|---|---|---|---|
Pre-miR-24-3p | r | 1.000 | 0.295 | 0.780 | 0.385 | 0.794 | 0.517 |
p | . | 0.037 * | <0.001 * | 0.006 * | <0.001 * | <0.001 * | |
Post-miR-24-3p | r | 1.000 | 0.183 | 0.741 | 0.212 | 0.427 | |
p | . | 0.204 | <0.001 * | 0.139 | 0.002 * | ||
Pre-miR-223-3p | r | 1.000 | 0.272 | 0.859 | 0.412 | ||
p | . | 0.056 | <0.001 * | 0.003 * | |||
Post-miR-223-3p | r | 1.000 | 0.227 | 0.460 | |||
p | . | 0.113 | 0.001 * | ||||
Pre-miR-17-5p | r | 1.000 | 0.473 | ||||
p | . | 0.001 * | |||||
Post-miR-17-5p | r | 1.000 | |||||
p | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öksüz, Z.; Gragnani, L.; Lorini, S.; Temel, G.Ö.; Serin, M.S.; Zignego, A.L. Evaluation of Plasma miR-17-5p, miR-24-3p and miRNA-223-3p Profile of Hepatitis C Virus-Infected Patients after Treatment with Direct-Acting Antivirals. J. Pers. Med. 2023, 13, 1188. https://doi.org/10.3390/jpm13081188
Öksüz Z, Gragnani L, Lorini S, Temel GÖ, Serin MS, Zignego AL. Evaluation of Plasma miR-17-5p, miR-24-3p and miRNA-223-3p Profile of Hepatitis C Virus-Infected Patients after Treatment with Direct-Acting Antivirals. Journal of Personalized Medicine. 2023; 13(8):1188. https://doi.org/10.3390/jpm13081188
Chicago/Turabian StyleÖksüz, Zehra, Laura Gragnani, Serena Lorini, Gülhan Örekici Temel, Mehmet Sami Serin, and Anna Linda Zignego. 2023. "Evaluation of Plasma miR-17-5p, miR-24-3p and miRNA-223-3p Profile of Hepatitis C Virus-Infected Patients after Treatment with Direct-Acting Antivirals" Journal of Personalized Medicine 13, no. 8: 1188. https://doi.org/10.3390/jpm13081188