The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Determinations
2.3. Statistical Analysis
3. Results
3.1. Inflammation-Associated Factors Studied in SLE and Control Groups
3.2. Inflammation-Associated Ffactors and Renal Function
3.3. Interplay between Inflammation-Associated Factors and Renal Impairment in SLE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caielli, S.; Wan, Z.; Pascual, V. Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Annu. Rev. Immunol. 2023, 41, 533–560. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.-V.; Nicolae, I.; Geavlete, B.; Geavlete, P.; Ene, C.D. IL-6 Signaling Link between Inflammatory Tumor Microenvironment and Prostatic Tumorigenesis. Anal. Cell. Pathol. 2022, 2022, 5980387. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K. Pathogenesis of Systemic Lupus Erythematosus: Risks, Mechanisms and Therapeutic Targets. Ann. Rheum. Dis. 2023, ard-2022-223741. [Google Scholar] [CrossRef]
- Bhargava, R.; Li, H.; Tsokos, G.C. Pathogenesis of Lupus Nephritis: The Contribution of Immune and Kidney Resident Cells. Curr. Opin. Rheumatol. 2022, 35, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.D.; Georgescu, S.R.; Tampa, M.; Matei, C.; Mitran, C.I.; Mitran, M.I.; Penescu, M.N.; Nicolae, I. Cellular Response against Oxidative Stress, a Novel Insight into Lupus Nephritis Pathogenesis. J. Pers. Med. 2021, 11, 693. [Google Scholar] [CrossRef]
- Pan, L.; Yang, S.; Wang, J.; Xu, M.; Wang, S.; Yi, H. Inducible Nitric Oxide Synthase and Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. BMC Immunol. 2020, 21, 6. [Google Scholar] [CrossRef][Green Version]
- Ene, C.-D.; Penescu, M.N.; Nicolae, I. Sialoglyco-Conjugate Abnormalities, IL-6 Trans-Signaling and Anti-Ganglioside Immune Response—Potential Interferences in Lupus Nephritis Pathogenesis. Diagnostics 2021, 11, 1129. [Google Scholar] [CrossRef]
- Morales, E.; Sandino, J.; Galindo, M. Lupus Nephropathy beyond Immunosuppression: Searching for Nephro and Cardioprotection. Front. Nephrol. 2023, 3, 6. [Google Scholar] [CrossRef]
- Ene, C.D.; Nicolae, I. Hypoxia-Nitric Oxide Axis and the Associated Damage Molecular Pattern in Cutaneous Melanoma. J. Pers. Med. 2022, 12, 1646. [Google Scholar] [CrossRef]
- Lee, M.; Wang, C.; Jin, S.W.; Labrecque, M.P.; Beischlag, T.V.; Brockman, M.A.; Choy, J.C. Expression of Human Inducible Nitric Oxide Synthase in Response to Cytokines Is Regulated by Hypoxia-Inducible Factor-1. Free. Radic. Biol. Med. 2019, 130, 278–287. [Google Scholar] [CrossRef]
- Ahmad, R.; Hussain, A.; Ahsan, H. Peroxynitrite: Cellular Pathology and Implications in Autoimmunity. J. Immunoass. Immunochem. 2019, 40, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Li, H.; Liu, C.; Cheng, L.; Yan, S.; Li, Y. Association of Circulating Vascular Endothelial Growth Factor Levels with Autoimmune Diseases: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 674343. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Wang, D.C.; Wang, Y.Q.; Huang, A.F.; Xu, W.D. Emerging Role of Hypoxia-Inducible Factor-1α in Inflammatory Autoimmune Diseases: A Comprehensive Review. Front. Immunol. 2023, 13, 1073971. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hong, K.; Weng, W.; Huang, S.; Zhou, T. Association of Vascular Endothelial Growth Factor (VEGF) Protein Levels and Gene Polymorphism with the Risk of Chronic Kidney Disease. Libyan J. Med. 2023, 18, 2156675. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, K.S.; Nündel, K. Editorial: Systemic Lupus Erythematosus—Predisposition Factors, Pathogenesis, Diagnosis, Treatment and Disease Models. Front. Immunol. 2022, 13, 1118180. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.D.; Penescu, M.; Anghel, A.; Neagu, M.; Budu, V.; Nicolae, I. Monitoring Diabetic Nephropathy by Circulating Gangliosides. J. Immunoass. Immunochem. 2015, 37, 68–79. [Google Scholar] [CrossRef]
- Nicolae, I.; Tampa, M.; Ene, C.; Mitran, C.; Mitran, M.; Sarbu, M.; Matei, C.; Ene, C.; Georgescu, S. Correlations between Related-Purine Derivatives and Renal Disorders in Patients with Psoriasis Vulgaris. Exp. Ther. Med. 2018, 17, 1012–1019. [Google Scholar] [CrossRef][Green Version]
- Ene, C.D.; Penescu, M.N.; Georgescu, S.R.; Tampa, M.; Nicolae, I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020, 11, 10. [Google Scholar] [CrossRef]
- Wang, J.; Niu, R.; Jiang, L.; Wang, Y.; Shao, X.; Wu, M.; Ma, Y. The Diagnostic Values of C-Reactive Protein and Procalcitonin in Identifying Systemic Lupus Erythematosus Infection and Disease Activity. Medicine 2019, 98, e16798. [Google Scholar] [CrossRef]
- Zeinolabediny, Y.; Kumar, S.; Slevin, M. Monomeric C-Reactive Protein—A Feature of Inflammatory Disease Associated with Cardiovascular Pathophysiological Complications? In Vivo 2021, 35, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Potempa, L.A.; Rajab, I.M.; Olson, M.E.; Hart, P.C. C-Reactive Protein and Cancer: Interpreting the Differential Bioactivities of Its Pentameric and Monomeric, Modified Isoforms. Front. Immunol. 2021, 12, 744129. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Wetterö, J.; Weiner, M.; Rönnelid, J.; Fernandez-Botran, R.; Sjöwall, C. Associations of C-reactive protein isoforms with systemic lupus erythematosus phenotypes and disease activity. Arthritis Res. Ther. 2022, 24, 139. [Google Scholar] [CrossRef] [PubMed]
- Enocsson, H.; Karlsson, J.; Li, H.-Y.; Wu, Y.; Kushner, I.; Wetterö, J.; Sjöwall, C. The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J. Clin. Med. 2021, 10, 5837. [Google Scholar] [CrossRef] [PubMed]
- Enocsson, H.; Gullstrand, B.; Eloranta, M.-L.; Wetterö, J.; Leonard, D.; Rönnblom, L.; Bengtsson, A.A.; Sjöwall, C. C-Reactive Protein Levels in Systemic Lupus Erythematosus Are Modulated by the Interferon Gene Signature and CRP Gene Polymorphism Rs1205. Front. Immunol. 2021, 11, 622326. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef][Green Version]
- Svanberg, C.; Enocsson, H.; Govender, M.; Martinsson, K.; Potempa, L.A.; Rajab, I.M.; Fernandez-Botran, R.; Wetterö, J.; Larsson, M.; Sjöwall, C. Conformational State of C-Reactive Protein Is Critical for Reducing Immune Complex-Triggered Type I Interferon Response: Implications for Pathogenic Mechanisms in Autoimmune Diseases Imprinted by Type I Interferon Gene Dysregulation. J. Autoimmun. 2023, 135, 102998. [Google Scholar] [CrossRef]
- Slevin, M.; Heidari, N.; Azamfirei, L. Monomeric C-Reactive Protein: Current Perspectives for Utilization and Inclusion as a Prognostic Indicator and Therapeutic Target. Front. Immunol. 2022, 13, 866379. [Google Scholar] [CrossRef]
- Kadkhodaee, M.; Zahmatkesh, M.; Sadeghipour, H.R.; Eslamifar, A.; Taeb, J.; Shams, A.; Mahdavi-Mazdeh, M. Proteinuria Is Reduced by Inhibition of Inducible Nitric Oxide Synthase in Rat Renal Ischemia-Reperfusion Injury. Transplant. Proc. 2009, 41, 2907–2909. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Zhang, F.; Li, P.-L.; Boini, K.M.; Yi, F.; Li, N. Hypoxia Inducible Factor-1α Mediates the Profibrotic Effect of Albumin in Renal Tubular Cells. Sci. Rep. 2017, 7, 15878. [Google Scholar] [CrossRef][Green Version]
- Tanaka, S.; Tanaka, T.; Nangaku, M. Hypoxia and Dysregulated Angiogenesis in Kidney Disease. Kidney Dis. 2015, 1, 80–89. [Google Scholar] [CrossRef]
- Ding, M.; Coward, R.J.; Jeansson, M.; Kim, W.; Quaggin, S.E. Regulation of Hypoxia-Inducible Factor 2-a Is Essential for Integrity of the Glomerular Barrier. Am. J. Physiol.-Ren. Physiol. 2013, 304, F120–F126. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, Z.; Limbu, M.H.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B.-C. MMP-2 and 9 in Chronic Kidney Disease. Int. J. Mol. Sci. 2017, 18, 776. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ugarte-Berzal, E.; Boon, L.; Martens, E.; Rybakin, V.; Blockmans, D.; Vandooren, J.; Proost, P.; Opdenakker, G. MMP-9/Gelatinase B Degrades Immune Complexes in Systemic Lupus Erythematosus. Front. Immunol. 2019, 10, 538. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Izzedine, H.; Massard, C.; Spano, J.P.; Goldwasser, F.; Khayat, D.; Soria, J.C. VEGF Signalling Inhibition-Induced Proteinuria: Mechanisms, Significance and Management. Eur. J. Cancer 2010, 46, 439–448. [Google Scholar] [CrossRef][Green Version]
- Vaglio, A.; Gattorno, M.; McAdoo, S.; Obici, L.P.; Ghiggeri, G.M. Editorial: The Kidney in Auto-Immune and Auto-Inflammatory Processes: Definitions, Mechanisms, and Biomarkers. Front. Med. 2023, 9, 1129021. [Google Scholar] [CrossRef]
- Edelbauer, M.; Kshirsagar, S.; Riedl, M.; Billing, H.; Tönshoff, B.; Haffner, D.; Dötsch, J.; Wechselberger, G.; Weber, L.T.; Steichen-Gersdorf, E. Soluble VEGF Receptor 1 Promotes Endothelial Injury in Children and Adolescents with Lupus Nephritis. Pediatr. Nephrol. 2012, 27, 793–800. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, R.; Zhao, X.; Cheng, Y.; Jia, R.; Wang, Y.; Sun, X. Decreased Serum Thrombospondin-1 and Elevation of Its Autoantibody Are Associated with Multiple Exacerbated Clinical Manifestations in Systemic Lupus Erythematosus. Clin. Rheumatol. 2018, 37, 2707–2714. [Google Scholar] [CrossRef]
- El-Gazzar, I.I.; Ibrahim, S.E.; Elsawy, W.H.; Fathi, H.M.; Amal, A.M.; Eissa, A.H. Assessment of Vascular Endothelial Growth Factor in Systemic Lupus Erythematosus Patients with Anti-Phospholipid Syndrome. Egypt. Rheumatol. 2019, 41, 41–45. [Google Scholar] [CrossRef]
- Adamidis, K.N.; Kopaka, M.-E.; Petraki, C.; Charitaki, E.; Apostolou, T.; Christodoulidou, C.; Nikolopoulou, N.; Giatromanolaki, A.; Vargemesis, V.; Passadakis, P. Glomerular Expression of Matrix Metalloproteinases in Systemic Lupus Erythematosus in Association with Activity Index and Renal Function. Ren. Fail. 2019, 41, 229–237. [Google Scholar] [CrossRef][Green Version]
- Vira, H.J.; Pradhan, V.D.; Umare, V.D.; Chaudhary, A.K.; Rajadhyksha, A.G.; Nadkar, M.Y.; Ghosh, K.; Nadkarni, A.H. Expression of the matrix metalloproteinases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 in systemic lupus erythematosus patients. Neth. J. Med. 2020, 78, 261–268. [Google Scholar]
- Tveita, A.; Rekvig, O.; Zykova, S.N. Glomerular Matrix Metalloproteinases and Their Regulators in the Pathogenesis of Lupus Nephritis. Arthritis Res. Ther. 2008, 10, 229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zakiyanov, O.; Kalousová, M.; Zima, T.; Tesar, V. Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinases in Kidney Disease. Adv. Clin. Chem. 2021, 105, 141–212. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.; van der Vliet, A. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease. Nitric Oxide 2011, 25, 125–137. [Google Scholar] [CrossRef] [PubMed][Green Version]
Characteristics | SLE | LN | Control | p Significance |
---|---|---|---|---|
Men: women | 17/59 | 11/62 | 10/50 | >0.05 |
Age (years old) | 43.0 ± 6.5 | 44.1 ± 5.6 | 41.7 ± 6.5 | >0.05 |
SLEDAI | 9.4 ± 4.1 | 12.9 ± 3.9 | - | - |
Disease duration (years) | 5.7 ± 1.4 | 6.5 ± 1.1 | - | - |
Clinical presentation (%) | ||||
Constitutional manifestations | ||||
Fatigue | 37.4 | 39.7 | - | >0.05 |
Fever | 11.2 | 9.5 | - | >0.05 |
Weight loss | 7.1 | 5.7 | - | >0.05 |
Cutaneous-mucosal lesions | ||||
Vespertilio | 38.4 | 33.7 | - | >0.05 |
Photosensitivity | 33.9 | 31.4 | - | >0.05 |
Hyperkeratosis/cutaneous atrophy | 27.1 | 22.8 | - | >0.05 |
Depigmentation | 14.5 | 12.6 | - | >0.05 |
Digital ulcerations | 8.2 | 7.3 | - | >0.05 |
Mucosal ulcerations | 11.4 | 9.8 | - | >0.05 |
Alopecia | 24.1 | 21.9 | - | >0.05 |
Musculoskeletal manifestations | ||||
Arthritis/arthralgia | 39.7 | 36.4 | - | >0.05 |
Myositis | 21.1 | 17.2 | - | >0.05 |
Systolic pressure (mm Hg) | 11.9 ± 1.6 | 13.1 ± 1.4 | 11.7 ± 2.3 | >0.05 |
Diastolic pressure (mm Hg) | 6.8 ± 0.8 | 7.1 ± 0.8 | 6.9 ± 0.9 | >0.05 |
Laboratory data | ||||
Leukocytes (cells/mmc) | 3700 ± 2103 | 4022 ± 1051 | 5426 ± 1210 | >0.05 |
Hemoglobin (g/dL) | 10.7 ± 1.4 | 10.1 ± 1.1 | 13.1 ± 1.3 | >0.05 |
Urea (mg/dL) | 28.5 ± 11.7 | 36.0 ± 12.5 | 22.5 ± 7.6 | >0.05 |
Creatinine (mg/dL) | 0.9 ± 0.11 | 1.27 ± 0.19 | 0.68 ± 0.19 | >0.05 |
eGFR (ml/min/1.73mp) | 79.4 ± 16.8 | 44.7 ± 12.6 | 87.5 ± 14.2 | >0.05 |
Hematuria (sw—RBC/camp) | 5 ± 2 | 37 ± 8 | 1 ± 1 | >0.05 |
Leukocyturia (sw—leuc/camp) | 10 ± 2 | 9.3 ± 1.9 | 3.8 ± 2.9 | >0.05 |
Albuminuria (mg/L) | 0.012 ± 0.0003 | 1900 ± 1175 | 0.0001 ± 0.0001 | <0.001 |
Albumin (g/dL) | 3.72 ± 0.32 | 3.41 ± 0.29 | 4.11 ± 0.37 | >0.05 |
Parameters | SLE Group (A, n = 86) | LN Group (B, n = 73) | Control Group (C, n = 60) | p1 | p2 |
---|---|---|---|---|---|
CRP (mg/dL) | 20.4 ± 11.3 | 24.6 ± 9.8 | 1.0 ± 1.0 | 0.009 | A vs. B = 0.084 A vs. C = 0.003 B vs. C = 0.000 |
NOS2 (U/L) | 43.7 ± 13.8 | 75.9 ± 25.3 | 12.6 ± 1.5 | 0.002 | A vs. B = 0.001 A vs. C = 0.006 B vs. C = 0.000 |
HIF-1a (ng/mL) | 108.9 ± 26.4 | 168.2 ± 56.3 | 56.8 ± 16.1 | 0.017 | A vs. B: = 0.024 A vs. C = 0.024 B vs. C = 0.001 |
HIF-2a (ng/mL) | 4.82 ± 1.7 | 7.0 ± 2.8 | 1.41 ± 0.70 | 0.008 | A vs. B = 0.014 A vs. C = 0.001 B vs. C = 0.000 |
VEGF (pg/mL) | 377.3 ± 88.3 | 541.5 ± 103.5 | 118.6 ± 20.6 | 0.009 | A vs. B = 0.011 A vs. C = 0.014 B vs. C = 0.001 |
MMP-2 (ng/mL) | 904.7 ± 142.6 | 1272.7 ± 406.4 | 453.3 ± 84.4 | 0.001 | A vs. B = 0.019 A vs. C = 0.026 B vs. C = 0.002 |
MMP-9(ng/mL) | 492.3 ± 101.4 | 808.2 ± 275.8 | 168.2 ± 26.9 | 0.029 | A vs. B = 0.012 A vs. C = 0.002 B vs. C = 0.003 |
TSP-1(ng/mL) | 716.2 ± 201.4 | 351.7 ± 105.3 | 1109.0 ± 102.9 | 0.027 | A vs. B = 0.003 A vs. C = 0.033 B vs. C = 0.0001 |
sVEGFR-1 (ng/mL) | 10.7 ± 4.3 | 6.3 ± 2.8 | 14.9 ± 2.2 | 0.026 | A vs. B = 0.0046 A vs. C = 0.012 B vs. C = 0.002 |
eGFR (mL/min/1.73mp) | |||||
---|---|---|---|---|---|
Parameters | > 90(A1) | 89–60 (A2) | 59–45 (A3) | 30–44 (A4) | p significance |
Subjects number | 18 | 23 | 20 | 12 | |
CRP (mg/L) | 11.4 ± 6.9 | 17.1 ± 13.4 | 24.9 ± 17.2 | 34.5 ± 22.9 | A1 vs. A2 = 0.019 |
A1 vs. A3 = 0.001 | |||||
A1 vs. A4 = 0.0001 | |||||
A2 vs. A3 = 0.022 | |||||
A2 vs. A4 = 0.001 | |||||
A3 vs. A4 = 0.17 | |||||
NOS2 (U/L) | 31.4 ± 16.9 | 52.8 ± 15.1 | 89.1 ± 42.3 | 91.6 ± 53.7 | A1 vs. A2 = 0.021 |
A1 vs. A3 = 0.001 | |||||
A1 vs. A4 = 0.0001 | |||||
A2 vs. A3 = 0.017 | |||||
A2 vs. A4 = 0.021 | |||||
A3 vs. A4 = 0.054 | |||||
HIF-1a (ng/mL) | 66.4 ± 5.6 | 102.8 ± 27.3 | 201.4 ± 34.6 | 216.5 ± 44.2 | A1 vs. A2 = 0.001 |
A1 vs. A3 = 0.001 | |||||
A1 vs. A4 = 0.0001 | |||||
A2 vs. A3 = 0.012 | |||||
A2 vs. A4 = 0.018 | |||||
A3 vs. A4 = 0.044 | |||||
HIF-2a (ng/mL) | 2.9 ± 0.8 | 5.1 ± 3.9 | 6.2 ± 4.0 | 10.7 ± 4.1 | A1 vs. A2 = 0.031 |
A1 vs. A3 = 0.019 | |||||
A1 vs. A4 = 0.0001 | |||||
A2 vs. A3 = 0.046 | |||||
A2 vs. A4 = 0.032 | |||||
A3 vs. A4 = 0.045 | |||||
VEGF (pg/mL) | 178.3 ± 37.6 | 299.9 ± 107.2 | 602.8 ± 186.2 | 878.2 ± 272.7 | A1 vs. A2 = 0.001 |
A1 vs. A3 = 0.0001 | |||||
A1 vs. A4 = 0.0001 | |||||
A2 vs. A3 = 0.001 | |||||
A2 vs. A4 = 0.001 | |||||
A3 vs. A4 = 0.017 | |||||
MMP-2 (ng/mL) | 494.2 ± 85.9 | 902.5 ± 301.3 | 1408.3 ± 402.6 | 516.5 ± 174.9 | A1 vs. A2 = 0.001 |
A1 vs. A3 = 0.001 | |||||
A1 vs. A4 = 0.051 | |||||
A2 vs. A3 = 0.002 | |||||
A2 vs. A4 = 0.002 | |||||
A3 vs. A4 = 0.001 | |||||
TSP-1(ng/mL) | 1001.4 ± 140.5 | 422.2 ± 142.4 | 313.1. ± 123.0 | 248.2 ± 117.3 | A1 vs. A2 = 0.001 |
A1 vs. A3 = 0.0001 | |||||
A1 vs. A4 = 0.001 | |||||
A2 vs. A3 = 0.027 | |||||
A2 vs. A4 = 0.031 | |||||
A3 vs. A4 = 0.27 | |||||
sVEGFR-1 (ng/mL) | 13.9 ± 2.3 | 7.2 ± 2.1 | 6.1 ± 2.4 | 5.7 ± 1.4 | A1 vs. A2 = 0.012 |
A1 vs. A3 = 0.014 | |||||
A1 vs. A4 = 0.022 | |||||
A2 vs. A3 = 0.047 | |||||
A2 vs. A4 = 0.071 | |||||
A3 vs. A4 = 0.22 |
Parameters | Albuminuria (mg/L) | <30 (A1) | 30–300(A2) | >300 (A3) | p Significance |
---|---|---|---|---|---|
Subject number | 19 | 40 | 14 | ||
CRP (mg/L) | 14.2 ± 7.1 | 23.9 ± 15.1 | 34.5 ± 17.1 | A1 vs. A2 = 0.027 A1 vs. A3 = 0.001 A2 vs. A3 = 0.018 | |
NOS2 (U/L) | 31.2 ± 14.2 | 69.0 ± 42.0 | 104.8 ± 48.1 | A1 vs. A2 = 0.011 A1 vs. A3 = 0.0001 A2 vs. A3 = 0.007 | |
HIF-1a (ng/mL) | 68.3 ± 10.1 | 147.4 ± 41.3 | 254.9 ± 51.2 | A1 vs. A2 = 0.022 A1 vs. A3 = 0.0001 A2 vs. A3 = 0.032 | |
HIF-2a (ng/mL) | 3.1 ± 1.5 | 6.2 ± 3.3 | 11.0 ± 4.5 | A1 vs. A2 = 0.012 A1 vs. A3 = 0.014 A2 vs. A3 = 0.047 | |
VEGF (pg/mL) | 221.2 ± 99.4 | 456.8 ± 193.4 | 897.1 ± 303.6 | A1 vs. A2 = 0.019 A1 vs. A3 = 0.001 A2 vs. A3 = 0.002 | |
MMP-2 (ng/mL) | 614.5 ± 241.9 | 1112.3 ± 498.6 | 621.3 ± 611.6 | A1 vs. A2 = 0.002 A1 vs. A3 = 0.0001 A2 vs. A3 = 0.001 | |
TSP-1(ng/mL) | 872.6 ± 166.3 | 367.6. ± 118.6 | 284.3 ± 119.1 | A1 vs. A2 = 0.002 A1 vs. A3 = 0.0001 A2 vs. A3 = 0.57 | |
sVEGFR-1 (ng/mL) | 12.2 ± 3.2 | 6.6 ± 2.2 | 5.0 ± 1.6 | A1 vs. A2 = 0.035 A1 vs. A3 = 0.001 A2 vs. A3 = 0.043 |
Parameters | eGFR | Albuminuria | ||
---|---|---|---|---|
r | p | r | p | |
CRP | 0.23 | 0.051 | 0.41 | <0.01 |
NOS2 | 0.71 | 0.01 | 0.93 | <0.01 |
HIF-1a | 0.27 | >0.05 | 0.91 | <0.01 |
HIF-2a | 0.17 | 0.05 | 0.36 | 0.05 |
VEGF | 0.32 | 0.05 | 0.67 | 0.001 |
MMP-2 | 0.14 | 0.05 | 0.61 | p < 0.01 |
MMP-9 | 0.22 | 0.05 | 0.72 | p < 0.001 |
TSP-1 | 0.14 | 0.05 | −0.19 | p > 0.05 |
sVEGFR-1 | 0.26 | 0.05 | −0.22 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, C.D.; Nicolae, I. The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus. J. Pers. Med. 2023, 13, 934. https://doi.org/10.3390/jpm13060934
Ene CD, Nicolae I. The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus. Journal of Personalized Medicine. 2023; 13(6):934. https://doi.org/10.3390/jpm13060934
Chicago/Turabian StyleEne, Corina Daniela, and Ilinca Nicolae. 2023. "The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus" Journal of Personalized Medicine 13, no. 6: 934. https://doi.org/10.3390/jpm13060934
APA StyleEne, C. D., & Nicolae, I. (2023). The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus. Journal of Personalized Medicine, 13(6), 934. https://doi.org/10.3390/jpm13060934