Considerations for Satisfactory Sedation during Dental Implant Surgery
Abstract
:1. Introduction
2. Pain Control by Local Anesthesia for Implant Surgery
2.1. Consideration of Vasoconstrictors
2.2. Clues for Prolongation of the Effect of Local Anesthesia
3. Sedatives
3.1. Propofol
3.2. Midazolam
3.3. Dexmedetomidine
3.4. Remimazolam
4. Practical Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheung, C.W.; Ying, C.L.A.; Chiu, W.K.; Wong, G.T.C.; Ng, K.F.J.; Irwin, M.G. A Comparison of Dexmedetomidine and Midazolam for Sedation in Third Molar Surgery. Anaesthesia 2007, 62, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Masuda, R.; Nonaka, M.; Nishimura, A.; Gotoh, K.; Oka, S.; Iijima, T. Optimal and Safe Standard Doses of Midazolam and Propofol to Achieve Patient and Doctor Satisfaction with Dental Treatment: A Prospective Cohort Study. PLoS ONE 2017, 12, e0171627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovaira, M.; Babiloni, A.; Jovaní, M.; Peñarrocha-Diago, M.; González-Lemonnier, S.; Peñarrocha-Oltra, D. Preoperative Anxiety and Its Influence on Patient and Surgeon Satisfaction in Patients Receiving Dental Implant Surgeries Performed Under Intravenous Conscious Sedation. Int. J. Oral Maxillofac. Implants 2017, 32, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.E.; Reed, K.L. Local Anesthetics: Review of Pharmacological Considerations. Anesth. Prog. 2012, 59, 90–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandy, W. Severe Epinephrine-Propranolol Interaction. Ann. Emerg. Med. 1989, 18, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Mask, A.G. Medical Management of the Patient with Cardiovascular Disease. Periodontol. 2000 2000, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Katyal, V. The Efficacy and Safety of Articaine versus Lignocaine in Dental Treatments: A Meta-Analysis. J. Dent. 2010, 38, 307–317. [Google Scholar] [CrossRef]
- Nagendrababu, V.; Duncan, H.F.; Whitworth, J.; Nekoofar, M.H.; Pulikkotil, S.J.; Veettil, S.K.; Dummer, P.M.H. Is Articaine More Effective than Lidocaine in Patients with Irreversible Pulpitis? An Umbrella Review. Int. Endod. J. 2020, 53, 200–213. [Google Scholar] [CrossRef] [Green Version]
- St George, G.; Morgan, A.; Meechan, J.; Moles, D.R.; Needleman, I.; Ng, Y.-L.; Petrie, A. Injectable Local Anaesthetic Agents for Dental Anaesthesia. Cochrane Database Syst. Rev. 2018, 7, CD006487. [Google Scholar] [CrossRef] [Green Version]
- Camps-Font, O.; Figueiredo, R.; Sánchez-Torres, A.; Clé-Ovejero, A.; Coulthard, P.; Gay-Escoda, C.; Valmaseda-Castellón, E. Which Is the Most Suitable Local Anaesthetic When Inferior Nerve Blocks Are Used for Impacted Mandibular Third Molar Extraction? A Network Meta-Analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 1497–1507. [Google Scholar] [CrossRef]
- Kyosaka, Y.; Owatari, T.; Inokoshi, M.; Kubota, K.; Inoue, M.; Minakuchi, S. Cardiovascular Comparison of 2 Types of Local Anesthesia With Vasoconstrictor in Older Adults: A Crossover Study. Anesth. Prog. 2019, 66, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, Y.; Rosenberg, M.E.; Kyttä, J.; Randell, T.; Tuominen, M.; Reunala, T.; Rosenberg, P.H. Anaphylactoid Skin Reactions after Intravenous Regional Anaesthesia Using 0.5% Prilocaine with or without Preservative—A Double-Blind Study. Acta Anaesthesiol. Scand. 1995, 39, 782–784. [Google Scholar] [CrossRef] [PubMed]
- Replogle, K.; Reader, A.; Nist, R.; Beck, M.; Weaver, J.; Meyers, W.J. Cardiovascular Effects of Intraosseous Injections of 2 Percent Lidocaine with 1:100,000 Epinephrine and 3 Percent Mepivacaine. J. Am. Dent. Assoc. 1999, 130, 649–657. [Google Scholar] [CrossRef]
- Su, N.; Liu, Y.; Yang, X.; Shi, Z.; Huang, Y. Efficacy and Safety of Mepivacaine Compared with Lidocaine in Local Anaesthesia in Dentistry: A Meta-Analysis of Randomised Controlled Trials. Int. Dent. J. 2014, 64, 96–107. [Google Scholar] [CrossRef]
- Hall, D.L.; Moses, M.K.; Weaver, J.M.; Yanich, J.P.; Voyles, J.W.; Reed, D.N. Dental Anesthesia Management of Methemoglobinemia-Susceptible Patients: A Case Report and Review of Literature. Anesth. Prog. 2004, 51, 24–27. [Google Scholar]
- Wilburn-Goo, D.; Lloyd, L.M. When Patients Become Cyanotic: Acquired Methemoglobinemia. J. Am. Dent. Assoc. 1999, 130, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Kämmerer, P.W.; Palarie, V.; Daubländer, M.; Bicer, C.; Shabazfar, N.; Brüllmann, D.; Al-Nawas, B. Comparison of 4% Articaine with Epinephrine (1:100,000) and without Epinephrine in Inferior Alveolar Block for Tooth Extraction: Double-Blind Randomized Clinical Trial of Anesthetic Efficacy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Managutti, A.; Prakasam, M.; Puthanakar, N.; Menat, S.; Shah, D.; Patel, H. Comparative Analysis of Local Anesthesia with 2 Different Concentrations of Adrenaline: A Randomized and Single Blind Study. J. Int. Oral Health JIOH 2015, 7, 24–27. [Google Scholar] [PubMed]
- Dagher, F.B.; Yared, G.M.; Machtou, P. An Evaluation of 2% Lidocaine with Different Concentrations of Epinephrine for Inferior Alveolar Nerve Block. J. Endod. 1997, 23, 178–180. [Google Scholar] [CrossRef]
- Kalath, R.N.; Kulal, R.; Gopinath, S. Comparison of Clinical Efficacy of Ropivacaine and Lignocaine with Adrenaline for Implant Surgery Anesthesia: A Split-Mouth Randomized Controlled Clinical Trial. J. Dent. Anesth. Pain Med. 2021, 21, 337. [Google Scholar] [CrossRef]
- Su, N.; Wang, H.; Zhang, S.; Liao, S.; Yang, S.; Huang, Y. Efficacy and Safety of Bupivacaine versus Lidocaine in Dental Treatments: A Meta-Analysis of Randomised Controlled Trials. Int. Dent. J. 2014, 64, 34–45. [Google Scholar] [CrossRef]
- De Martin, S.; Orlando, R.; Bertoli, M.; Pegoraro, P.; Palatini, P. Differential Effect of Chronic Renal Failure on the Pharmacokinetics of Lidocaine in Patients Receiving and Not Receiving Hemodialysis. Clin. Pharmacol. Ther. 2006, 80, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Vree, T.B.; Simon, M.A.M.; Gielen, M.J.M.; Booij, L.H.D.J. Regional Metabolism of Articaine in 10 Patients Undergoing Intravenous Regional Anaesthesia during Day Case Surgery. Br. J. Clin. Pharmacol. 1997, 44, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Oertel, R.; Rahn, R.; Kirch, W. Clinical Pharmacokinetics of Articaine. Clin. Pharmacokinet. 1997, 33, 417–425. [Google Scholar] [CrossRef]
- Vree, T.B.; Gielen, M.J.M. Clinical Pharmacology and the Use of Articaine for Local and Regional Anaesthesia. Best Pract. Res. Clin. Anaesthesiol. 2005, 19, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Malamed, S.F.; Gagnon, S.; Leblanc, D. Articaine Hydrochloride: A Study of the Safety of a New Amide Local Anesthetic. J. Am. Dent. Assoc. 2001, 132, 177–185. [Google Scholar] [CrossRef]
- Vyas, K.S.; Rajendran, S.; Morrison, S.D.; Shakir, A.; Mardini, S.; Lemaine, V.; Nahabedian, M.Y.; Baker, S.B.; Rinker, B.D.; Vasconez, H.C. Systematic Review of Liposomal Bupivacaine (Exparel) for Postoperative Analgesia. Plast. Reconstr. Surg. 2016, 138, 748e–756e. [Google Scholar] [CrossRef]
- McCann, M.E. Liposomal Bupivacaine. Anesthesiology 2021, 134, 139–142. [Google Scholar] [CrossRef]
- Lieblich, S.E.; Danesi, H. Liposomal Bupivacaine Use in Third Molar Impaction Surgery: INNOVATE Study. Anesth. Prog. 2017, 64, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Ding, O.; Islam, A.; Li, R.; Lin, J. Comparison of Liposomal Bupivacaine and Conventional Local Anesthetic Agents in Regional Anesthesia: A Systematic Review. Anesth. Analg. 2021, 132, 1626–1634. [Google Scholar] [CrossRef]
- Garcia-Blanco, M.; Gualtieri, A.; Puia, S. A Randomized Controlled Trial Comparing Nerve Block and Mandibular Infiltration Techniques in Posterior Mandible Implant Surgeries. J. Clin. Exp. Dent. 2018, 10, e1003. [Google Scholar] [CrossRef]
- Esteve-Pardo, G.; De-Larriva, E.; Salgado, A.; Bernabeu-Esclapez, A.; Bardaji, J.A.; Esteve-Colomina, L. Is Inferior Alveolar Nerve Block Needed to Perform Implant Surgery in the Posterior Mandible? A Randomized Controlled Trial. J. Oral Maxillofac. Surg. 2022, 80, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, I.; Bajrović, F. Failure of Inferior Alveolar Nerve Block in Endodontics. Dent. Traumatol. 1999, 15, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lima Dias-Junior, L.C.; Bezerra, A.P.; Schuldt, D.P.V.; Kuntze, M.M.; de Luca Canto, G.; da Fonseca Roberti Garcia, L.; da Silveira Teixeira, C.; Bortoluzzi, E.A. Effectiveness of Different Anesthetic Methods for Mandibular Posterior Teeth with Symptomatic Irreversible Pulpitis: A Systematic Review and Meta-Analysis. Clin. Oral. Investig. 2021, 25, 6477–6500. [Google Scholar] [CrossRef] [PubMed]
- Zanjir, M.; Lighvan, N.L.; Yarascavitch, C.; Beyene, J.; Shah, P.S.; Azarpazhooh, A. Efficacy and Safety of Pulpal Anesthesia Strategies during Endodontic Treatment of Permanent Mandibular Molars with Symptomatic Irreversible Pulpitis: A Systematic Review and Network Meta-Analysis. J. Endod. 2019, 45, 1435–1464.e10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.C.; Bhattarai, B.P.; Subedi, S. Comparison of Anesthetic Efficacy of Intraosseous Injection with Conventional Inferior Alveolar Nerve Block in Mandibular Third Molar Surgery: A Systematic Review and Meta-Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, e33–e42. [Google Scholar] [CrossRef]
- Kampitak, W.; Tansatit, T.; Shibata, Y. A Novel Technique of Ultrasound-Guided Selective Mandibular Nerve Block With a Lateral Pterygoid Plate Approach. Reg. Anesth. Pain Med. 2018, 43, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Murouchi, T.; Akiba, M.; Oka, T. Ultrasound-Guided Inferior Alveolar Nerve Block for Postoperative Analgesia after Mandibular Sequestrectomy: A Single-Center Retrospective Study. J. Clin. Anesth. 2020, 60, 39–40. [Google Scholar] [CrossRef]
- Venkatraman, R.; Karthik, K.; Belinda, C.; Balaji, R. A Randomized Observer-Blinded Controlled Trial to Compare Pre-Emptive with Postoperative Ultrasound-Guided Mandibular Nerve Block for Postoperative Analgesia in Mandibular Fracture Surgeries. Local Reg. Anesth. 2021, 14, 13–20. [Google Scholar] [CrossRef]
- Kojima, Y.; Murouchi, T.; Okayama, N.; Asano, K.; Akiba, M.; Hamasaki, J. Postoperative Complications of Ultrasound-Guided Inferior Alveolar Nerve and Maxillary Nerve Blocks: A Retrospective Study. JA Clin. Rep. 2022, 8, 42. [Google Scholar] [CrossRef]
- Watanabe, Y.; Higuchi, H.; Ishii-Maruhama, M.; Honda, Y.; Yabuki-Kawase, A.; Yamane-Hirano, A.; Tomoyasu, Y.; Maeda, S.; Miyawaki, T. Effect of a Low Dose of Midazolam on High Blood Pressure in Dental Patients: A Randomised, Double-Blind, Placebo-Controlled, Two-Centre Study. Br. J. Oral Maxillofac. Surg. 2016, 54, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Kapur, A.; Kapur, V. Conscious Sedation in Dentistry. Ann. Maxillofac. Surg. 2018, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Shafer, A.; Doze, V.A.; Shafer, S.L.; White, P.F. Pharmacokinetics and Pharmacodynamics of Propofol Infusions during General Anesthesia. Anesthesiology 1988, 69, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, M.A.; Vargo, J.J.; Khandwala, F.; Lopez, R.; Zuccaro, G. Propofol Versus Traditional Sedative Agents for Gastrointestinal Endoscopy: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2005, 3, 1049–1056. [Google Scholar] [CrossRef]
- Choong, E.; Loryan, I.; Lindqvist, M.; Nordling, Å.; el Bouazzaoui, S.; van Schaik, R.H.; Johansson, I.; Jakobsson, J.; Ingelman-Sundberg, M. Sex Difference in Formation of Propofol Metabolites: A Replication Study. Basic Clin. Pharmacol. Toxicol. 2013, 113, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Cortínez, L.I.; De la Fuente, N.; Eleveld, D.J.; Oliveros, A.; Crovari, F.; Sepulveda, P.; Ibacache, M.; Solari, S. Performance of Propofol Target-Controlled Infusion Models in the Obese. Anesth. Analg. 2014, 119, 302–310. [Google Scholar] [CrossRef]
- Kurita, T.; Morita, K.; Kazama, T.; Sato, S. Influence of Cardiac Output on Plasma Propofol Concentrations during Constant Infusion in Swine. Anesthesiology 2002, 96, 1498–1503. [Google Scholar] [CrossRef]
- Takizawa, D.; Sato, E.; Hiraoka, H.; Tomioka, A.; Yamamoto, K.; Horiuchi, R.; Goto, F. Changes in Apparent Systemic Clearance of Propofol during Transplantation of Living Related Donor Liver. Br. J. Anaesth. 2005, 95, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Hoymork, S.C.; Raeder, J. Why Do Women Wake up Faster than Men from Propofol Anaesthesia? Br. J. Anaesth. 2005, 95, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Gan, T.J.; Glass, P.S.; Sigl, J.; Sebel, P.; Payne, F.; Rosow, C.; Embree, P. Women Emerge from General Anesthesia with Propofol/Alfentanil/Nitrous Oxide Faster than Men. Anesthesiology 1999, 90, 1283–1287. [Google Scholar] [CrossRef]
- Mastrogianni, O.; Gbandi, E.; Orphanidis, A.; Raikos, N.; Goutziomitrou, E.; Kolibianakis, E.M.; Tarlatzis, B.C.; Goulas, A. Association of the CYP2B6 c.516G>T Polymorphism with High Blood Propofol Concentrations in Women from Northern Greece. Drug Metab. Pharmacokinet. 2014, 29, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, H.; Shimizu, M.; Nagashima, T.; Minoshima, M.; Murayama, N. Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol. Drug Metab. Dispos. 2006, 34, 1803–1805. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Sai, K.; Maekawa, K.; Kaniwa, N.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Yamada, Y.; et al. Close Association of UGT1A9 IVS1+399C>T with UGT1A1*28, *6, or *60 Haplotype and Its Apparent Influence on 7-Ethyl-10-Hydroxycamptothecin (SN-38) Glucuronidation in Japanese. Drug. Metab. Dispos. 2009, 37, 272–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, S.; Tomoyasu, Y.; Higuchi, H.; Honda, Y.; Ishii-Maruhama, M.; Miyawaki, T. Female Patients Require a Higher Propofol Infusion Rate for Sedation. Anesth. Prog. 2016, 63, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Corral, A.; Caples, S.M.; Lopez-Jimenez, F.; Somers, V.K. Interactions Between Obesity and Obstructive Sleep Apnea. Chest 2010, 137, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Gong, J.; He, X.; Wu, Z.; Shen, J.; Shang, J. Body Mass Index and Pharmacodynamics of Target-controlled Infusion of Propofol: A Prospective Non-randomized Controlled Study. J. Clin. Pharm. Ther. 2022, 47, 662–667. [Google Scholar] [CrossRef]
- Schnider, T.W.; Minto, C.F.; Shafer, S.L.; Gambus, P.L.; Andresen, C.; Goodale, D.B.; Youngs, E.J. The Influence of Age on Propofol Pharmacodynamics. Anesthesiology 1999, 90, 1502–1516. [Google Scholar] [CrossRef]
- Schultz, A.; Grouven, U.; Zander, I.; Beger, F.A.; Siedenberg, M.; Schultz, B. Age-Related Effects in the EEG during Propofol Anaesthesia. Acta Anaesthesiol. Scand. 2004, 48, 27–34. [Google Scholar] [CrossRef]
- Takizawa, D.; Hiraoka, H.; Goto, F.; Yamamoto, K.; Horiuchi, R. Human Kidneys Play an Important Role in the Elimination of Propofol. Anesthesiology 2005, 102, 327–330. [Google Scholar] [CrossRef]
- Han, P.Y.; Duffull, S.B.; Kirkpatrick, C.M.J.; Green, B. Dosing in Obesity: A Simple Solution to a Big Problem. Clin. Pharmacol. Ther. 2007, 82, 505–508. [Google Scholar] [CrossRef]
- Servln, F.; Desmonts, J.M.; Haberer, J.P.; Cockshott, I.D.; Plummer, G.F.; Farinotti, R. Pharmacokinetics and Protein Binding of Propofol in Patients with Cirrhosis. Anesthesiology 1988, 69, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Servin, F.; Cockshott, I.D.; Farinotti, R.; Haberer, J.P.; Winckler, C.; Desmonts, J.M. Pharmacokinetics of Propofol Infusions in Patients with Cirrhosis. Br. J. Anaesth. 1990, 65, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, H.; Yamamoto, K.; Miyoshi, S.; Morita, T.; Nakamura, K.; Kadoi, Y.; Kunimoto, F.; Horiuchi, R. Kidneys Contribute to the Extrahepatic Clearance of Propofol in Humans, but Not Lungs and Brain. Br. J. Clin. Pharmacol. 2005, 60, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-M.; Ho, S.-T.; Chen, A.; Wang, J.-J.; Tsai, S.-K.; Wu, C.-C. Propofol Ameliorates Liver Dysfunction and Inhibits Aortic Superoxide Level in Conscious Rats with Endotoxic Shock. Eur. J. Pharmacol. 2003, 477, 183–193. [Google Scholar] [CrossRef]
- Peeters, M.Y.M.; Aarts, L.P.H.J.; Boom, F.A.; Bras, L.J.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. Pilot Study on the Influence of Liver Blood Flow and Cardiac Output on the Clearance of Propofol in Critically Ill Patients. Eur. J. Clin. Pharmacol. 2008, 64, 329–334. [Google Scholar] [CrossRef]
- Burggraaf, J.; Schoemaker, H.C.; Cohen, A.F. Assessment of Changes in Liver Blood Flow after Food Intake--Comparison of ICG Clearance and Echo-Doppler. Br. J. Clin. Pharmacol. 1996, 42, 499–502. [Google Scholar] [CrossRef]
- Hopkinson, B.R.; Schenk, W.G. The Electromagnetic Measurement of Liver Blood Flow and Cardiac Output in Conscious Dogs during Feeding and Exercise. Surgery 1968, 63, 970–975. [Google Scholar]
- Jun, M.R.; Kim, M.G.; Han, K.S.; Park, J.E.; Cho, H.B.; Park, S.Y.; Song, S.; Yoo, J.H.; Chung, J.W.; Kim, S.H. Potency of Propofol for Inducing Loss of Consciousness in End-Stage Kidney Disease Patients. PLoS ONE 2021, 16, e0254520. [Google Scholar] [CrossRef]
- Goyal, P.; Puri, G.D.; Pandey, C.K.; Srivastva, S. Evaluation of Induction Doses of Propofol: Comparison between Endstage Renal Disease and Normal Renal Function Patients. Anaesth. Intensive Care 2002, 30, 584–587. [Google Scholar] [CrossRef]
- Halim, B.; Schneider, I.; Claeys, M.A.; Camu, F. The Use of Midazolam and Flumazenil in Locoregional Anaesthesia: An Overview. Acta Anaesthesiol. Scand. 1990, 34, 42–46. [Google Scholar] [CrossRef]
- Grendelmeier, P.; Tamm, M.; Jahn, K.; Pflimlin, E.; Stolz, D. Propofol versus Midazolam in Medical Thoracoscopy: A Randomized, Noninferiority Trial. Respiration 2014, 88, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J.; Abernethy, D.R.; Locniskar, A.; Harmatz, J.S.; Limjuco, R.A.; Shader, R.I. Effect of Age, Gender, and Obesity on Midazolam Kinetics. Anesthesiology 1984, 61, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gade, C.; Sverrisdóttir, E.; Dalhoff, K.; Sonne, J.; Johansen, M.Ø.; Christensen, H.R.; Burhenne, J.; Mikus, G.; Holm, J.C.; Lund, T.M.; et al. Midazolam Pharmacokinetics in Obese and Non-Obese Children and Adolescents. Clin. Pharmacokinet. 2020, 59, 643–654. [Google Scholar] [CrossRef]
- Albrecht, S.; Ihmsen, H.; Hering, W.; Geisslinger, G.; Dingemanse, J.; Schwilden, H.; Schüttler, J. The Effect of Age on the Pharmacokinetics and Pharmacodynamics of Midazolam. Clin. Pharmacol. Ther. 1999, 65, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.R.; Reves, J.G.; Marty, J.; White, W.D.; Bai, S.A.; Smith, L.R. Aging Increases Pharmacodynamic Sensitivity to the Hypnotic Effects of Midazolam. Anesth. Analg. 1995, 80, 143–148. [Google Scholar] [CrossRef]
- Pentikäinen, P.J.; Välisalmi, L.; Himberg, J.-J.; Crevoisier, C. Pharmacokinetics of Midazolam Following Intravenous and Oral Administration in Patients with Chronic Liver Disease and in Healthy Subjects. J. Clin. Pharmacol. 1989, 29, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Vinik, H.R.; Reves, J.G.; Greenblatt, D.J.; Abernethy, D.R.; Smith, L.R. The Pharmacokinetics of Midazolam in Chronic Renal Failure Patients. Anesthesiology 1983, 59, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.R. Drug Metabolism and Variability among Patients in Drug Response. N. Engl. J. Med. 2005, 352, 2211–2221. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-M.; Temple, R.; Throckmorton, D.C.; Lesko, L.J. Drug Interaction Studies: Study Design, Data Analysis, and Implications for Dosing and Labeling. Clin. Pharmacol. Ther. 2007, 81, 298–304. [Google Scholar] [CrossRef]
- Backman, J.T.; Kivistö, K.T.; Olkkola, K.T.; Neuvonen, P.J. The Area under the Plasma Concentration-Time Curve for Oral Midazolam Is 400-Fold Larger during Treatment with Itraconazole than with Rifampicin. Eur. J. Clin. Pharmacol. 1998, 54, 53–58. [Google Scholar] [CrossRef]
- Yeates, R.A.; Laufen, H.; Zimmermann, T. Interaction between Midazolam and Clarithromycin: Comparison with Azithromycin. Int. J. Clin. Pharmacol. Ther. 1996, 34, 400–405. [Google Scholar] [PubMed]
- Backman, J.; Olkkola, K.; Aranko, K.; Himberg, J.; Neuvonen, P. Dose of Midazolam Should Be Reduced during Diltiazem and Verapamil Treatments. Br. J. Clin. Pharmacol. 1994, 37, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Kaneko, A.; Fujiki, T.; Kusakabe, Y.; Noda, A.; Tanaka, A.; Yamamoto, N.; Tashima, M.; Tashima, N.; Ito, C.; et al. Prevalence and Characteristics of Disinhibition during Bronchoscopy with Midazolam. Respir. Investig. 2022, 60, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Steinfort, D.P.; Irving, L.B. Patient Satisfaction during Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Performed under Conscious Sedation. Respir. Care 2010, 55, 702–706. [Google Scholar] [PubMed]
- Khan, Z.P.; Ferguson, C.N.; Jones, R.M. Alpha-2 and Imidazoline Receptor Agonists. Their Pharmacology and Therapeutic Role. Anaesthesia 1999, 54, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Venn, R.M.; Grounds, R.M. Comparison between Dexmedetomidine and Propofol for Sedation in the Intensive Care Unit: Patient and Clinician Perceptions. Br. J. Anaesth. 2001, 87, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Venn, R.M.; Karol, M.D.; Grounds, R.M. Pharmacokinetics of Dexmedetomidine Infusions for Sedation of Postoperative Patients Requiring Intensive Care. Br. J. Anaesth. 2002, 88, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Wakita, R.; Kohase, H.; Fukayama, H. A Comparison of Dexmedetomidine Sedation With and Without Midazolam for Dental Implant Surgery. Anesth. Prog. 2012, 59, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, Y.; Yu, C.; Yao, Y.; Wu, Y.; Qian, L.; Cheung, C.W. Dexmedetomidine Analgesia Effects in Patients Undergoing Dental Implant Surgery and Its Impact on Postoperative Inflammatory and Oxidative Stress. Oxid. Med. Cell. Longev. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.W.V.; Ti, L.K.; Islam, I. Comparison of Dexmedetomidine and Midazolam for Conscious Sedation in Dental Surgery Monitored by Bispectral Index. Br. J. Oral Maxillofac. Surg. 2013, 51, 428–433. [Google Scholar] [CrossRef]
- Togawa, E.; Hanamoto, H.; Maegawa, H.; Yokoe, C.; Niwa, H. Dexmedetomidine and Midazolam Sedation Reduces Unexpected Patient Movement During Dental Surgery Compared With Propofol and Midazolam Sedation. J. Oral Maxillofac. Surg. 2019, 77, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litovitz, T.L.; Klein-Schwartz, W.; Rodgers, G.C.; Cobaugh, D.J.; Youniss, J.; Omslaer, J.C.; May, M.E.; Woolf, A.D.; Benson, B.E. 2001 Annual Report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am. J. Emerg. Med. 2002, 20, 391–452. [Google Scholar] [CrossRef] [PubMed]
- Rolle, A.; Paredes, S.; Cortínez, L.I.; Anderson, B.J.; Quezada, N.; Solari, S.; Allende, F.; Torres, J.; Cabrera, D.; Contreras, V.; et al. Dexmedetomidine Metabolic Clearance Is Not Affected by Fat Mass in Obese Patients. Br. J. Anaesth. 2018, 120, 969–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, D.S.; Brummett, C.M. Dexmedetomidine: As Safe as Safe Can Be. Semin. Anesth. Perioper. Med. Pain 2006, 25, 77–83. [Google Scholar] [CrossRef]
- Soleimanpour, H.; Shahsavari Nia, K.; Sanaie, S.; Ghojazadeh, M.; Alavian, S.M. Use of Dexmedetomidine in Liver Disease: A Systematic Review and Meta-Analysis. Hepat. Mon. 2019, 19, e98530. [Google Scholar] [CrossRef] [Green Version]
- Schüttler, J.; Eisenried, A.; Lerch, M.; Fechner, J.; Jeleazcov, C.; Ihmsen, H. Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers. Anesthesiology 2020, 132, 636–651. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, H.; Yuan, S.; Li, Y.; Jia, Y.; Zhang, Z.; Yan, F.; Wang, Z. Efficacy and Safety of Remimazolam in Endoscopic Sedation-A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 655042. [Google Scholar] [CrossRef]
- Stöhr, T.; Colin, P.J.; Ossig, J.; Pesic, M.; Borkett, K.; Winkle, P.; Struys, M.M.R.F.; Schippers, F. Pharmacokinetic Properties of Remimazolam in Subjects with Hepatic or Renal Impairment. Br. J. Anaesth. 2021, 127, 415–423. [Google Scholar] [CrossRef]
- Pesic, M.; Stöhr, T.; Ossig, J.; Borkett, K.; Donsbach, M.; Dao, V.-A.; Webster, L.; Schippers, F. Remimazolam Has Low Oral Bioavailability and No Potential for Misuse in Drug-Facilitated Sexual Assaults, with or Without Alcohol: Results from Two Randomised Clinical Trials. Drugs R&D 2020, 20, 267–277. [Google Scholar] [CrossRef]
- Chen, X.; Sang, N.; Song, K.; Zhong, W.; Wang, H.; Jiang, J.; Huang, Y.; Hu, P. Psychomotor Recovery Following Remimazolam-Induced Sedation and the Effectiveness of Flumazenil as an Antidote. Clin. Ther. 2020, 42, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Wang, X.; Wang, L.; Liu, Y.; Yang, X. Can Remimazolam Be a New Sedative Option for Outpatients Undergoing Ambulatory Oral and Maxillofacial Surgery? J. Oral Maxillofac. Surg. 2023, 81, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Oka, S.; Satomi, H.; Sekino, R.; Taguchi, K.; Kajiwara, M.; Oi, Y.; Kobayashi, R. Sedation Outcomes for Remimazolam, a New Benzodiazepine. J. Oral Sci. 2021, 63, 209–211. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Higuchi, H.; Maeda, S.; Miyawaki, T. Dental Sedation for Patients with Intellectual Disability: A Prospective Study of Manual Control versus Bispectral Index-Guided Target-Controlled Infusion of Propofol. J. Clin. Anesth. 2011, 23, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConn, M.M.; Gundy, J.T.; Karan, S.B.; Lindenmuth, D.M. Adverse Drug Reaction: Midazolam-Induced Extrapyramidal Symptoms: A Case Report. A&A Pract. 2020, 14, e01248. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.J.F.; McArthur, D.; Moulsdale, H. Subcutaneous Midazolam As a Cause of Extrapyramidal Side Effects in a Patient with Prostate Cancer. J. Pain Symptom Manag. 2007, 34, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Komur, M.; Arslankoylu, A.; Okuyaz, C. Midazolam-Induced Acute Dystonia Reversed by Diazepam. J. Anaesthesiol. Clin. Pharmacol. 2012, 28, 368. [Google Scholar] [CrossRef]
- Balasubramaniam, B.; Park, G.R. Sexual Hallucinations during and after Sedation and Anaesthesia. Anaesthesia 2003, 58, 549–553. [Google Scholar] [CrossRef]
Short Duration | Wide and Long Duration | Cardiovascular Diseases | |
---|---|---|---|
Articaine+A [7,8,10] Lidocaine+A [9] | ✔ | ✔ | Dilution [18,19] |
Propitocaine+O [11] Mepivacaine [13,14] | - | - | ✔ |
Ropivacaine [20] Bupivacaine [21] | - | ✔ | ✔ |
Intraosseous [34,35,36] | ✔ | - | - |
Conventional IANB [31,32,33] | - | - | - |
Echo-guided IANB using ropivacaine [37,38,39,40] | ✔ | ✔ | |
The main outcomes of the references are as follows: [7] Articaine is more effective than lidocaine in the first molar region during routine dental procedures. The side effects of both drugs appear to be similar (systematic review); [8] Articaine is more effective than lidocaine for local anesthesia for the treatment of pulpitis. Alticaine injections are less painful, more immediate, and have fewer adverse events when compared with lidocaine (umbrella review); [9] Four percent articaine 1:100,000 adrenaline was superior to two percent lidocaine, 1:100,000 adrenaline. Two percent lidocaine, 1:100,000 adrenaline was superior to three percent prilocaine, 0.03 IU ferypressin (systematic review); [10] The most effective local anesthetic for mandibular wisdom tooth extraction was 4% articaine, which was significantly more effective than 2% lidocaine, 0.5% bupivacaine, and 1% ropivacaine (meta-analysis); [11] Propitocaine with felypressin increased blood pressure, and lidocaine with adrenaline increased the heart rate; [13] Intraosseous injection of 2% lidocaine–adrenaline increased the heart rate but did not significantly increase the heart rate with intraosseous injection of 3% mepivacaine; [14] Compared with adrenaline-added lidocaine, 3% mepivacaine without vasoconstrictor had a significantly weaker local anesthetic effect, but it was better for patients with cardiac disease; [18] The effects of 2% lidocaine with 1:200,000 adrenaline were at the same level as that of 1:80,000 adrenaline, but 2% lidocaine with 1:80,000 adrenaline increased heart rate and blood pressure significantly; [19] The effects of anesthesia with 2% lidocaine and adrenaline concentrations of 1:50,000, 1:80,000, and 1:100,000 in the inferior alveolar nerve block were at the same level of success and failure; [20] Ropivacaine 0.75% resulted in a significantly longer duration of anesthesia and less intraoperative and postoperative analgesia than 2% lidocaine with adrenaline for implant surgery; [21] Bupivacaine with adrenaline is superior to lidocaine with adrenaline in relatively prolonged dental procedures, especially those requiring endodontic treatment or postoperative pain management (meta-analysis); [31] Both IANB and infiltration anesthesia are safe and effective for implant placement in the posterior mandible; however, IANB provides deeper analgesia than mandibular infiltration (RCT); [32] IANB may not be necessary for standard implant surgery in the posterior mandible, and infiltration with 4% articaine and 1:100,000 adrenaline may be sufficient (RCT); [33] IANB has been shown to fail in approximately 30% to 45% of cases, even when properly performed (review); [34] The combination of infiltration anesthesia, IANB, Vazirani–Akinosi nerve block, and IOI was more effective than IANB (meta-analysis); [35] Intraosseous injection with 2% lidocaine with adrenaline, 4% articaine with adrenaline, or buccal and lingual infiltration anesthesia with 4% articaine with adrenaline was significantly more effective for treatment of pulpitis in mandibular molars (meta-analysis); [36] For mandibular wisdom tooth extractions, intraosseous injection had significantly shorter anesthesia time than inferior alveolar nerve block (meta-analysis); [37] The mandibular nerve and its branches were stained with methylene blue in all cases of ultrasound-guided MNB via the lateral pterygoid approach in cadavers. No accidental injections into the facial nerve or maxillary artery were observed; [38] Ultrasound-guided alveolar nerve block (IANB) was effective for postoperative analgesia after osteomyelitis curettage for advanced drug-induced osteonecrosis of the jaw (MRONJ); [39] The efficacy of ultrasound-guided MNB compared with that of postoperative mandibular nerve block during mandibular fracture repair showed significant intraoperative and postoperative analgesia; [40] Ultrasound-guided MNB was performed in 217 patients who underwent maxillofacial surgery, with no reported complications. |
Short-Acting | Antagonist | Less Respiratory Depression | |
---|---|---|---|
Propofol [43,44] | ✔✔ | - | ✔ |
Midazolam [1,70,71] | ✔ | ✔ | ✔ |
Dexmedetomidine [85,86,87] | - | - | ✔✔ |
Remimazolam [96,97,100] | ✔✔ | ✔ | ✔ |
The main outcomes of the references are as follows: [1] Intraoperative heart rate and blood pressure decreased in the dexmedetomidine group during sedation for wisdom tooth extraction. Midazolam was associated with greater amnesia; [43] The pharmacokinetics of propofol were studied in 50 cases of general anesthesia. The mean systemic clearance rate of propofol was 2.09 ± 0.65 1/min (mean ± SD) and the elimination half-life was 116 ± 34 min; [45] The probability of cardiopulmonary complications was lower in sedation with propofol compared with conventional agents for colonoscopy (meta-analysis); [70] Flumazenil antagonizes the sedative effects of midazolam and has little effect on hemodynamic or respiratory kinetics (review); [71] Minimal oxygen saturation was significantly lower in the propofol group than in the midazolam group during sedation for thoracoscopy. Hypoxemia and hypotension were more common in the propofol group (RCT); [85] Dexmedetomidine is a selective α2-receptor agonist with sedative, analgesic, hypotensive, and bradycardic properties. Respiratory depression was minimal (review); [86] Dexmedetomidine significantly reduced the amount of concomitant alfentanil required for sedation in the ICU compared with propofol; [87] The pharmacokinetics of dexmedetomidine in patients managed in the postoperative ICU were similar to those previously observed in volunteers, with the exception of steady-state volume of distribution; [96] The pharmacokinetics of remimazolam showed that it had a rapid onset of effect and recovery, with some hemodynamic effects; [97] The sedative efficiency of remimazolam was significantly higher than that of midazolam but slightly lower than that of propofol. Inhibitory effects of remimazolam on respiration and circulation were weaker than midazolam and propofol (meta-analysis); [100] The recovery after remimazolam was much faster than that after midazolam administration. After flumazenil injection, the median awake time was reduced to 3.5 min, effectively restoring psychomotor and cardiovascular dysfunction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, T.; Utsumi, N.; Baba, Y.; Matsumura, T.; Wakita, R.; Maeda, S. Considerations for Satisfactory Sedation during Dental Implant Surgery. J. Pers. Med. 2023, 13, 461. https://doi.org/10.3390/jpm13030461
Ito T, Utsumi N, Baba Y, Matsumura T, Wakita R, Maeda S. Considerations for Satisfactory Sedation during Dental Implant Surgery. Journal of Personalized Medicine. 2023; 13(3):461. https://doi.org/10.3390/jpm13030461
Chicago/Turabian StyleIto, Takaya, Nozomi Utsumi, Yukiko Baba, Tomoka Matsumura, Ryo Wakita, and Shigeru Maeda. 2023. "Considerations for Satisfactory Sedation during Dental Implant Surgery" Journal of Personalized Medicine 13, no. 3: 461. https://doi.org/10.3390/jpm13030461