A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression
Abstract
:1. Introduction
2. Methods
3. Current View on Endogenous Depression
4. Physiology and Pathology of REM Sleep
5. REM Sleep Deprivation as a Non-Pharmaceutical Choice for Treating Endogenous Depression
6. Risks and Side Effects Associated with REM Sleep Deprivation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falup-Pecurariu, C.; Diaconu, Ș.; Țînț, D.; Falup-Pecurariu, O. Neurobiology of sleep (Review). Exp. Ther. Med. 2021, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Le Bon, O. Relationships between REM and NREM in the NREM-REM sleep cycle: A review on competing concepts. Sleep Med. 2020, 70, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.D.; Kilduff, T.S. The Neurobiology of Sleep and Wakefulness. Psychiatr. Clin. N. Am. 2015, 38, 615–644. [Google Scholar] [CrossRef] [PubMed]
- Malkani, R.G.; Wenger, N.S. REM Sleep Behavior Disorder as a Pathway to Dementia: If, When, How, What, and Why Should Physicians Disclose the Diagnosis and Risk for Dementia. Curr. Sleep Med. Reports 2021, 7, 57. [Google Scholar] [CrossRef]
- McCarley, R.W. Mechanisms and models of REM sleep control. Arch. Ital. Biol. 2004, 142, 429–467. [Google Scholar]
- Steriade, M.; Paré, D.; Datta, S.; Oakson, G.; Dossi, R. Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J. Neurosci. 1990, 10, 2560–2579. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1981, 1, 876. [Google Scholar] [CrossRef]
- Morgane, P.J.; Stern, W.C. The role of serotonin and norepinephrine in sleep-waking activity. Natl. Inst. Drug Abuse Res. Monogr. Ser. 1975, 3, 37–61. [Google Scholar] [CrossRef]
- Kimura, M.; Curzi, M.L.; Romanowski, C.P. REM sleep alteration and depression. Arch. Ital. Biol. 2014, 152, 111–117. [Google Scholar] [CrossRef]
- Honeycutt, L.; Gagnon, J.F.; Pelletier, A.; Montplaisir, J.Y.; Gagnon, G.; Postuma, R.B. Characterization of Depressive and Anxiety Symptoms in Idiopathic REM Sleep Behavior Disorder. J. Parkinsons Dis. 2021, 11, 1409–1416. [Google Scholar] [CrossRef]
- Geckil, A.A.; Ermis, H. The relationship between anxiety, depression, daytime sleepiness in the REM-related mild OSAS and the NREM-related mild OSAS. Sleep Breath. 2020, 24, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, A.K.; Gradisar, M.; Kuula, L.; Short, M.; Merikanto, I.; Tark, R.; Räikkönen, K.; Lahti, J. REM sleep fragmentation associated with depressive symptoms and genetic risk for depression in a community-based sample of adolescents. J. Affect. Disord. 2019, 245, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Modell, S.; Lauer, C.J. Rapid eye movement (REM) sleep: An endophenotype for depression. Curr. Psychiatry Rep. 2007, 9, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Q.; Li, R.; Zhang, M.Q.; Zhang, Z.; Qu, W.M.; Huang, Z.L. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression. Curr. Neuropharmacol. 2015, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A.; Pawlowski, M. Depression and Sleep. Int. J. Mol. Sci. 2019, 20, 607. [Google Scholar] [CrossRef]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: State of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Lee, H.G.; Choi, J.W.; Lee, Y.J.; Jeong, D.U. Depressed REM Sleep Behavior Disorder Patients Are Less Likely to Recall Enacted Dreams than Non-Depressed Ones. Psychiatry Investig. 2016, 13, 227. [Google Scholar] [CrossRef]
- Killgore, W.D.S.; Killgore, D.B.; Day, L.M.; Li, C.; Kamimori, G.H.; Balkin, T.J. The Effects of 53 Hours of Sleep Deprivation on Moral Judgment. Sleep 2007, 30, 345–352. [Google Scholar] [CrossRef]
- Killgore, W.D.S.; Kahn-Greene, E.T.; Lipizzi, E.L.; Newman, R.A.; Kamimori, G.H.; Balkin, T.J. Sleep deprivation reduces perceived emotional intelligence and constructive thinking skills. Sleep Med. 2008, 9, 517–526. [Google Scholar] [CrossRef]
- Gujar, N.; Yoo, S.S.; Hu, P.; Walker, M.P. Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J. Neurosci. 2011, 31, 4466–4474. [Google Scholar] [CrossRef]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2019, 45, 74–89. [Google Scholar] [CrossRef]
- Wichniak, A.; Wierzbicka, A.; Walęcka, M.; Jernajczyk, W. Effects of Antidepressants on Sleep. Curr. Psychiatry Rep. 2017, 19, 63. [Google Scholar] [CrossRef]
- Giedke, H.; Schwärzler, F. Therapeutic use of sleep deprivation in depression. Sleep Med. Rev. 2002, 6, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.J.; Fram, D.H.; Kupfer, D.J.; Snyder, F. Total Prolonged Drug-Induced REM Sleep Suppression in Anxious-Depressed Patients. Arch. Gen. Psychiatry 1971, 24, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Kovalzon, V.M. Serotonin, Sleep and Depression: A Hypothesis. In Serotonin and the CNS-New Developments in Pharmacology and Therapeutics; IntechOpen Limited: London, UK, 2021. [Google Scholar] [CrossRef]
- Menon, J.M.; Nolten, C.; Achterberg, E.M.; Joosten, R.N.; Dematteis, M.; Feenstra, M.G.; Leenaars, C.H. Brain Microdialysate Monoamines in Relation to Circadian Rhythms, Sleep, and Sleep Deprivation–a Systematic Review, Network Meta-analysis, and New Primary Data. J. Circadian Rhythm. 2019, 17, 1. [Google Scholar] [CrossRef]
- Busse, G.; Duman, R.S. Depression Overview. Am. Health Drug Benefits 2008, 1, 44. [Google Scholar] [CrossRef]
- Kennedy, S.H. Core symptoms of major depressive disorder: Relevance to diagnosis and treatment. Dialogues Clin. Neurosci. 2008, 10, 271. [Google Scholar] [CrossRef]
- Kanter, J.W.; Busch, A.M.; Weeks, C.E.; Landes, S.J. The Nature of Clinical Depression: Symptoms, Syndromes, and Behavior Analysis. Behav. Anal. 2008, 31, 1. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, J.K.; Kim, D.H.; Park, J.H.; Choi, M.; Kim, H.J.; Nam, M.J.; Lee, K.U.; Han, K.; Park, Y.G. Factors associated with quality of life in patients with depression: A nationwide population-based study. PLoS ONE 2019, 14, e0219455. [Google Scholar] [CrossRef]
- da Fernandes, M.S.V.; Mendonça, C.R.; da Silva, T.M.V.; Noll, M. The relationship between depression and quality of life in students and the academic consequences: Protocol for a systematic review with meta-analysis. Int. J. Educ. Res. 2021, 109, 101812. [Google Scholar] [CrossRef]
- Hohls, J.K.; König, H.H.; Quirke, E.; Hajek, A. Anxiety, depression and quality of life—A systematic review of evidence from longitudinal observational studies. Int. J. Environ. Res. Public Health 2021, 18, 12022. [Google Scholar] [CrossRef] [PubMed]
- Benazzi, F. Various forms of depression. Dialogues Clin. Neurosci. 2006, 8, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Types of Depression. 2020. InformedHealth.org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG): Cologne, Germany. Types of Depression. [Updated 2020 Jun 18]. 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279288/ (accessed on 3 October 2022).
- Chand, S.P.; Arif, H. Depression; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.M.; Chan, Y.F.; Huang, H.; Vannoy, S.; Unützer, J. Characteristics, Management, and Depression Outcomes of Primary Care Patients Who Endorse Thoughts of Death or Suicide on the PHQ-9. J. Gen. Intern. Med. 2013, 28, 363. [Google Scholar] [CrossRef] [PubMed]
- Steffen, A.; Nübel, J.; Jacobi, F.; Bätzing, J.; Holstiege, J. Mental and somatic comorbidity of depression: A comprehensive cross-sectional analysis of 202 diagnosis groups using German nationwide ambulatory claims data. BMC Psychiatry 2020, 20, 142. [Google Scholar] [CrossRef]
- Orsolini, L.; Latini, R.; Pompili, M.; Serafini, G.; Volpe, U.; Vellante, F.; Fornaro, M.; Valchera, A.; Tomasetti, C.; Fraticelli, S.; et al. Understanding the Complex of Suicide in Depression: From Research to Clinics. Psychiatry Investig. 2020, 17, 207. [Google Scholar] [CrossRef]
- Brådvik, L. Suicide Risk and Mental Disorders. Int. J. Environ. Res. Public Health 2018, 15, 2028. [Google Scholar] [CrossRef]
- Shorey, S.; Ng, E.D.; Wong, C.H.J. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. Br. J. Clin. Psychol. 2022, 61, 287–305. [Google Scholar] [CrossRef]
- Abdoli, N.; Salari, N.; Darvishi, N.; Jafarpour, S.; Solaymani, M.; Mohammadi, M.; Shohaimi, S. The global prevalence of major depressive disorder (MDD) among the elderly: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 132, 1067–1073. [Google Scholar] [CrossRef]
- VizHub GBD Results. Available online: https://vizhub.healthdata.org/gbd-results/?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (accessed on 4 October 2022).
- Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 4 October 2022).
- Moreno-Agostino, D.; Wu, Y.T.; Daskalopoulou, C.; Hasan, M.T.; Huisman, M.; Prina, M. Global trends in the prevalence and incidence of depression:a systematic review and meta-analysis. J. Affect. Disord. 2021, 281, 235–243. [Google Scholar] [CrossRef]
- Jakobsen, J.C.; Gluud, C.; Kirsch, I. Should antidepressants be used for major depressive disorder? BMJ Evid. -Based Med. 2020, 25, 130. [Google Scholar] [CrossRef]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Jia, X.; Shi, H.; Niu, J.; Yin, X.; Xie, J.; Wang, X. Prevalence of mental health problems during the COVID-19 pandemic: A systematic review and meta-analysis. J. Affect. Disord. 2021, 281, 91–98. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Pandemic Triggers 25% Increase in Prevalence of Anxiety and Depression Worldwide. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 4 October 2022).
- Vamos, E.P.; Mucsi, I.; Keszei, A.; Kopp, M.S.; Novak, M. Comorbid depression is associated with increased healthcare utilization and lost productivity in persons with diabetes: A large nationally representative Hungarian population survey. Psychosom. Med. 2009, 71, 501–507. [Google Scholar] [CrossRef]
- Ssegonja, R.; Alaie, I.; Philipson, A.; Hagberg, L.; Sampaio, F.; Möller, M.; von Knorring, L.; Sarkadi, A.; Langenskiöld, S.; von Knorring, A.L.; et al. Depressive disorders in adolescence, recurrence in early adulthood, and healthcare usage in mid-adulthood: A longitudinal cost-of-illness study. J. Affect. Disord. 2019, 258, 33–41. [Google Scholar] [CrossRef]
- Luber, M.P.; Hollenberg, J.P.; Williams-Russo, P.; DiDomenico, T.N.; Meyers, B.S.; Alexopoulos, G.S.; Charlson, M.E. Diagnosis, treatment, comorbidity, and resource utilization of depressed patients in a general medical practice. Int. J. Psychiatry Med. 2000, 30, 1–13. [Google Scholar] [CrossRef]
- Reed, C.; Monz, B.U.; Perahia, D.G.; Gandhi, P.; Bauer, M.; Dantchev, N.; Demyttenaere, K.; Garcia-Cebrian, A.; Grassi, L.; Quail, D.; et al. Quality of life outcomes among patients with depression after 6 months of starting treatment: Results from FINDER. J. Affect. Disord. 2009, 113, 296–302. [Google Scholar] [CrossRef]
- Bock, J.O.; Luppa, M.; Brettschneider, C.; Riedel-Heller, S.; Bickel, H.; Fuchs, A.; Gensichen, J.; Maier, W.; Mergenthal, K.; Schäfer, I.; et al. Impact of depression on health care utilization and costs among multimorbid patients--from the MultiCare Cohort Study. PLoS ONE 2014, 9, e91973. [Google Scholar] [CrossRef]
- Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). Pharmacoeconomics 2021, 39, 653–665. [Google Scholar] [CrossRef]
- The Lancet Global Health. Mental health matters. Lancet Glob. Health 2020, 8, e1352. [Google Scholar] [CrossRef]
- Lader, M. Limitations of current medical treatments for depression: Disturbed circadian rhythms as a possible therapeutic target. Eur. Neuropsychopharmacol. 2007, 17, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Cuijpers, P.; Stringaris, A.; Wolpert, M. Treatment outcomes for depression: Challenges and opportunities. Lancet Psychiatry 2020, 7, 925–927. [Google Scholar] [CrossRef] [PubMed]
- O’Reardon, J.P.; Amsterdam, J.D. Treatment-resistant depression: Progress and limitations. Psychiatr. Ann. 1998, 28, 633–640. [Google Scholar] [CrossRef]
- Gautam, S.; Jain, A.; Gautam, M.; Vahia, V.; Grover, S. Clinical Practice Guidelines for the management of Depression. Indian J. Psychiatry 2017, 59, S34. [Google Scholar] [PubMed]
- Handy, A.; Mangal, R.; Stead, T.S.; Coffee, R.L.; Ganti, L. Prevalence and Impact of Diagnosed and Undiagnosed Depression in the United States. Cureus 2022, 14, e28011. [Google Scholar] [CrossRef]
- Kolovos, S.; Kleiboer, A.; Cuijpers, P. Effect of psychotherapy for depression on quality of life: Meta-analysis. Br. J. Psychiatry 2016, 209, 460–468. [Google Scholar] [CrossRef]
- Berryhill, M.B.; Culmer, N.; Williams, N.; Halli-Tierney, A.; Betancourt, A.; Roberts, H.; King, M. Videoconferencing Psychotherapy and Depression: A Systematic Review. Telemed J. E Health 2019, 25, 435–446. Available online: https://home.liebertpub.com/tmj (accessed on 4 October 2022). [CrossRef]
- Cuijpers, P.; Karyotaki, E.; Eckshtain, D.; Ng, M.Y.; Corteselli, K.A.; Noma, H.; Quero, S.; Weisz, J.R. Psychotherapy for Depression Across Different Age Groups: A Systematic Review and Meta-analysis. JAMA Psychiatry 2020, 77, 694–702. [Google Scholar] [CrossRef]
- Evans-Lacko, S.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Benjet, C.; Bruffaerts, R.; Chiu, W.T.; Florescu, S.; de Girolamo, G.; Gureje, O.; et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: Results from the WHO World Mental Health (WMH) surveys. Psychol. Med. 2018, 48, 1560–1571. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.; Turner, M.S. Urgent Need for Improved Mental Health Care and a More Collaborative Model of Care. Perm. J. 2017, 21, 17–024. [Google Scholar] [CrossRef]
- Ormel, J.; Kessler, R.C.; Schoevers, R. Depression: More treatment but no drop in prevalence: How effective is treatment? and can we do better? Curr. Opin. Psychiatry 2019, 32, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Carley, D.W.; Farabi, S.S. Physiology of Sleep. Diabetes Spectr. 2016, 29, 5–9. [Google Scholar] [CrossRef]
- Campbell, I.G. EEG Recording and Analysis for Sleep Research. Curr. Protoc. Neurosci. 2009, 49, 10.2.1–10.2.19. [Google Scholar] [CrossRef] [PubMed]
- Rundo, J.V.; Downey, R. Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar]
- Patel, A.K.; Reddy, V.; Araujo, J.F. Physiology, Sleep Stages; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Colten, H.R.; Altevogt, B.M.; Institute of Medicine (US) Committee on Sleep Medicine and Research. Sleep Physiology; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Colten, H.R.; Altevogt, B.M. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; National Academies Press: Washington, DC, USA, 2006; pp. 1–404. [Google Scholar] [CrossRef]
- Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953, 118, 273–274. [Google Scholar] [CrossRef]
- Dement, W.; Kleitman, N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr. Clin. Neurophysiol. 1957, 9, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Dement, W.; Kleitman, N. The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. J. Exp. Psychol. 1957, 53, 339–346. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Sharafkhaneh, A. Chapter 1 The physiology of sleep. Handb. Clin. Neurophysiol. 2005, 6, 3–20. [Google Scholar]
- Jouvet, M.; Michel, F. Washington, DC: The National Academies Press. [Release of the ‘paradoxal phase’ of sleep by stimulation of the brain stem in the intact and chronic mesencephalic cat]. C. R. Seances Soc. Biol. Fil. 1960, 154, 636–641. Available online: https://pubmed.ncbi.nlm.nih.gov/13790854/ (accessed on 4 October 2022).
- Boissard, R.; Gervasoni, D.; Schmidt, M.H.; Barbagli, B.; Fort, P.; Luppi, P.H. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: A combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 2002, 16, 1959–1973. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sherman, D.; Devor, M.; Saper, C.B. A putative flip-flop switch for control of REM sleep. Nature 2006, 441, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.V.; Libourel, P.A.; Lazarus, M.; Grassi, D.; Luppi, P.H.; Fort, P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 2017, 140, 414–428. [Google Scholar] [CrossRef]
- Henley, K.; Morrison, A.R. A Re-Evaluation of the Effects of Lesions of the Pontine Tegmentum and Locus Coeruleus on Phenomena of Paradoxical Sleep in the Cat. Acta Neurobiol. Exp. 1974, 34, 215–232. Available online: https://pubmed.ncbi.nlm.nih.gov/4368348/ (accessed on 5 October 2022).
- Mouret, J.; Delorme, F.; Jouvet, M. [Lesions of the pontine tegmentum and sleep in rats]. C. R. Seances Soc. Biol. Fil. 1967, 161, 1603–1606. Available online: https://pubmed.ncbi.nlm.nih.gov/4231637/ (accessed on 5 October 2022). [PubMed]
- Erickson, E.T.M.; Ferrari, L.L.; Gompf, H.S.; Anaclet, C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front. Neurosci. 2019, 13, 755. [Google Scholar] [CrossRef]
- Kroeger, D.; Saper, C.; Vetrivelan, R. 0117 Genetic Dissection of Neural Pathways Involved in Rem Sleep Regulation by Melanin-Concentrating Hormone Neurons. Sleep 2017, 40, A44. [Google Scholar] [CrossRef]
- Krenzer, M.; Anaclet, C.; Vetrivelan, R.; Wang, N.; Vong, L.; Lowell, B.B.; Fuller, P.M.; Lu, J. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS ONE 2011, 6, e24998. [Google Scholar] [CrossRef]
- Fuller, P.; Sherman, D.; Pedersen, N.P.; Saper, C.B.; Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 2011, 519, 933–956. [Google Scholar] [CrossRef]
- Boissard, R.; Fort, P.; Gervasoni, D.; Barbagli, B.; Luppi, P.H. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur. J. Neurosci. 2003, 18, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, E.; Chen, M.C.; Fuller, P.M. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J. Physiol. 2016, 594, 5391–5414. [Google Scholar] [CrossRef] [PubMed]
- Clément, O.; Sapin, E.; Libourel, P.A.; Arthaud, S.; Brischoux, F.; Fort, P.; Luppi, P.H. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J. Neurosci. 2012, 32, 16763–16774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verret, L.; Fort, P.; Gervasoni, D.; Léger, L.; Luppi, P.H. Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J. Comp. Neurol. 2006, 495, 573–586. [Google Scholar] [CrossRef]
- Weng, F.J.; Williams, R.H.; Hawryluk, J.M.; Lu, J.; Scammell, T.E.; Saper, C.B.; Arrigoni, E. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J. Physiol. 2014, 592, 1601–1617. [Google Scholar] [CrossRef]
- The Form and Function of Infant Sleep: From Muscle to Neocortex.-PsycNET. Available online: https://psycnet.apa.org/record/2009-20947-020 (accessed on 5 October 2022).
- Tiriac, A.; Uitermarkt, B.D.; Fanning, A.S.; Sokoloff, G.; Blumberg, M.S. Rapid whisker movements in sleeping newborn rats. Curr. Biol. 2012, 22, 2075–2080. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Coleman, C.M.; Gerth, A.I.; McMurray, B. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr. Biol. 2013, 23, 2100–2109. [Google Scholar] [CrossRef]
- Siegel, J.M. The REM sleep-memory consolidation hypothesis. Science 2001, 294, 1058–1063. [Google Scholar] [CrossRef]
- Kumar, D.; Koyanagi, I.; Carrier-Ruiz, A.; Vergara, P.; Srinivasan, S.; Sugaya, Y.; Kasuya, M.; Yu, T.S.; Vogt, K.E.; Muratani, M. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron 2020, 107, 552–565.e10. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Yang, G.; Gan, W.B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 2017, 20, 427–437. [Google Scholar] [CrossRef]
- Bridi, M.C.D.; Aton, S.J.; Seibt, J.; Renouard, L.; Coleman, T.; Frank, M.G. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci. Adv. 2015, 1, e1500105. [Google Scholar] [CrossRef] [PubMed]
- Sterpenich, V.; Schmidt, C.; Albouy, G.; Matarazzo, L.; Vanhaudenhuyse, A.; Boveroux, P.; Degueldre, C.; Leclercq, Y.; Balteau, E.; Collette, F.; et al. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. Sleep 2014, 37, 1061–1075. [Google Scholar] [CrossRef]
- Siegel, J.M.; Rogawski, M.A. A function for REM sleep: Regulation of noradrenergic receptor sensitivity. Brain Res. 1988, 472, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.J.; Mednick, S.A.; Harrison, E.M.; Kanady, J.C.; Mednick, S.C. REM, not incubation, improves creativity by priming associative networks. Proc. Natl. Acad. Sci. USA 2009, 106, 10130–10134. [Google Scholar] [CrossRef]
- Wagner, U.; Gais, S.; Born, J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn. Mem. 2001, 8, 112–119. [Google Scholar] [CrossRef]
- Lloyd, R.; Tippmann-Peikert, M.; Slocumb, N.; Kotagal, S. Characteristics of REM sleep behavior disorder in childhood. J. Clin. Sleep Med. 2012, 8, 127–131. [Google Scholar] [CrossRef]
- Schenck, C.H.; Mahowald, M.W. REM sleep parasomnias. Neurol. Clin. 1996, 14, 697–720. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.H.; Mahowald, M.W. REM sleep behavior disorder: Clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 2002, 25, 120–138. [Google Scholar] [CrossRef]
- Scammell, T.E. Narcolepsy. N. Engl. J. Med. 2015, 373, 2654–2662. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Siegel, J.M.; Lopez, R.; Torontali, Z.A.; Peever, J.H. Cataplexy—clinical aspects, pathophysiology and management strategy. Nat. Rev. Neurol. 2014, 10, 386–395. [Google Scholar] [CrossRef]
- Snow, M.B.; Fraigne, J.J.; Thibault-Messier, G.; Chuen, V.L.; Thomasian, A.; Horner, R.L.; Peever, J. GABA Cells in the Central Nucleus of the Amygdala Promote Cataplexy. J. Neurosci. 2017, 37, 4007–4022. [Google Scholar] [CrossRef]
- Vogel, G.W.; Thompson, F.C.; Thurmond, A.; Tlanta, B.R. The Effect of REM Deprivation on Depression 191 The Effect of REM Deprivation on Depression 1. In Proceedings of the First European Congress on Sleep Research, Basel, Switzerland, 3–6 October 1972; Volume 14, pp. 191–195. [Google Scholar]
- Vogel, G.W.; Vogel, F.; McAbee, R.S.; Thurmond, A.J. Improvement of Depression by REM Sleep Deprivation: New Findings and a Theory. Arch. Gen. Psychiatry 1980, 37, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.W. Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 1983, 7, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Lagarde, A.; Armony, J.L.; Del Río-Portilla, Y.; Trejo-Martínez, D.; Conde, R.; Corsi-Cabrera, M. Enhanced emotional reactivity after selective REM sleep deprivation in humans: An fMRI study. Front. Behav. Neurosci. 2012, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Herres, J.; Ewing, E.S.K.; Kobak, R. Emotional Reactivity to Negative Adult and Peer Events and the Maintenance of Adolescent Depressive Symptoms: A Daily Diary Design. J. Abnorm. Child Psychol. 2016, 44, 471. [Google Scholar] [CrossRef]
- Cartwright, R.; Baehr, E.; Kirkby, J.; Pandi-Perumal, S.R.; Kabat, J. REM sleep reduction, mood regulation and remission in untreated depression. Psychiatry Res. 2003, 121, 159–167. [Google Scholar] [CrossRef]
- Ju, X.; Wang, S.; Yan, P.; Zhu, C.; Hu, X.; Dong, J.; Tan, Z. Rapid Eye Movement Sleep Deprivation Combined with Fluoxetine Protects against Depression-Induced Damage and Apoptosis in Rat Hippocampi via A1 Adenosine Receptor. Front. Psychiatry 2021, 12, 1000. [Google Scholar] [CrossRef]
- Wu, D.; Tong, M.; Ji, Y.; Ruan, L.; Lou, Z.; Gao, H.; Yang, Q. REM Sleep Fragmentation in Patients with Short-Term Insomnia Is Associated with Higher BDI Scores. Front. Psychiatry 2021, 12, 733998. [Google Scholar] [CrossRef]
- Vogel, G.W.; Thurmond, A.; Gibbons, P.; Sloan, K.; Walker, M. REM Sleep Reduction Effects on Depression Syndromes. Arch. Gen. Psychiatry 1975, 32, 765–777. [Google Scholar] [CrossRef]
- Clinical Psychiatry Committee. Clinical trial of the treatment of depressive illness: Report to the Medical Research Council. Br. Med. J. 1965, 1, 881–886. [Google Scholar] [CrossRef]
- Maudhuit, C.; Hamon, M.; Adrien, J. Effects of chronic treatment with zimelidine and REM sleep deprivation on the regulation of raphe neuronal activity in a rat model of depression. Psychopharmacology 1996, 124, 267–274. [Google Scholar] [CrossRef]
- Widge, A.S.; Bilge, M.T.; Montana, R.; Chang, W.; Rodriguez, C.I.; Deckersbach, T.; Carpenter, L.L.; Kalin, N.H.; Nemeroff, C.B. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: A meta-analysis. Am. J. Psychiatry 2019, 176, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.I.; Piper, D.C.; Duxon, M.S.; Upton, N. Effect of SB-243213, a selective 5-HT2C receptor antagonist, on the rat sleep profile: A comparison to paroxetine. Pharmacol. Biochem. Behav. 2002, 71, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.J.; Solomons, L.C.; Steier, J.; Kabra, N.; Burnside, A.; Pengo, M.F.; Moxham, J.; Goldstein, L.H.; Kopelman, M.D. Slow wave and rem sleep deprivation effects on explicit and implicit memory during sleep. Neuropsychology 2016, 30, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, J.; Wiesner, C.D.; Hinze, K.; Abels, L.C.; Prehn-Kristensen, A.; Göder, R. Selective REM-Sleep Deprivation Does Not Diminish Emotional Memory Consolidation in Young Healthy Subjects. PLoS ONE 2014, 9, e89849. [Google Scholar] [CrossRef]
- Mathangi, D.C.; Shyamala, R.; Subhashini, A.S. Effect of REM sleep deprivation on the antioxidant status in the brain of Wistar rats. Ann. Neurosci. 2012, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Soto-Rodriguez, S.; Lopez-Armas, G.; Luquin, S.; Ramos-Zuñiga, R.; Jauregui-Huerta, F.; Gonzalez-Perez, O.; Gonzalez-Castañeda, R.E. Rapid Eye Movement Sleep Deprivation Produces Long-Term Detrimental Effects in Spatial Memory and Modifies the Cellular Composition of the Subgranular Zone. Front. Cell. Neurosci. 2016, 10, 132. [Google Scholar] [CrossRef]
- Radu, M.; Ciucă, A.; Crișan, C.A.; Pintea, S.; Predescu, E.; Șipos, R.; Moldovan, R.; Băban, A. The impact of psychiatric disorders on caregivers: An integrative predictive model of burden, stigma, and well-being. Perspect. Psychiatr. Care 2022, 58, 2372–2382. [Google Scholar] [CrossRef]
- Cătălina, C.; Nicoleta, V.; Irina, D.; Nemes, A.; Miclutia, I. Awareness of illness, depression and self-stigma in Romanian patients with schizophrenia. Cognition, Brain, Behavior. Interdiscip. J. 2016, 4, 345–355. [Google Scholar]
Study | Study Model | REM-D Method | Duration | Conclusions | Refs. |
---|---|---|---|---|---|
Vogel et al., 1972 | 12 EDs (seven experimental, five controls) 12 EDs (eight experimental, four controls) | Recurrent awakening during REM sleep | Up to 13.6 weeks | REM-D relieves the symptoms of ED REM pressure is the mechanism behind most antidepressant drugs | [112] |
Vogel et al., 1980 | 14 drug-free EDs 14 matched controls | Recurrent awakening during REM sleep | Up to 13.6 weeks | REM-D improved depression to the extent that it stimulated the oscillator and corrected one manifestation of circadian rhythm disruption | [113] |
Vogel, 1983 | 34 EDs (17 experimental, 17 controls) [120] 18 RDs (11 experimental, 7 controls) [120] Data from Imipramine-treated patients from the British Medical Research Council 1965 [121] | Recurrent awakening during REM sleep Imipramine-treated patients from the British Medical Research Council 1965 [121] | 24 weeks | REM-D is the mechanism of action of antidepressant drugs | [114] |
Rosales-Lagarde et al., 2012 | 20 right-handed adult male volunteers between 21–35 years of age (12 REM-D and 8 NREM-I) | Recurrent awakening during REM sleep | Four nights (one night for treatment) | Post-REM-D emotional reactivity, which has been positively correlated with improved ED symptoms | [115,116] |
Cartwright et al., 2003 | 20 depressed subjects compared with 10 control volunteers | Recurrent awakening during REM sleep | Five months | 60% of the ED group entered remission. Hence, REM-D could be a non-drug antidepressant | [117] |
Ju et al., 2021 | Depressive male Sprague–Dawley rat model | Recurrent awakening during REM sleep, which reduced REM sleep to only 4% of total sleep time | 28 days | These findings indicate an adjuvant role of REM-D when in combination with the administration of fluoxetine | [118] |
Wu et al., 2021 | 54 depressed patients with short-term insomnia | REM sleep fragmentation | Three months | REM sleep is a characteristic marker for assessing the risk of ED | [119] |
Maudhuit et al., 1996 | Depressive male Sprague–Dawley rat model | Zimelidine dissolved in 1 mL saline was injected twice a day at a dose of 2.5 mg/kg IP for 14 days. On day 15, only the morning dose was administered. Control rats received 1 mL saline REM-D by placing the rats on a platform fenced by water Control rats stood on a platform where they could lie down for REM sleep | Zimelidine twice a day for 14 days, once on the 15th day. Four successive REM-D sessions | Electrophysiological activity of 5-HT neurons in the nucleus raphe dorsalis revealed that chronic treatment with both zimelidine and REM-D induced hyporeactivity of 5-HT neurons to the inhibitory effect of depression-like citalopram administration | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crișan, C.A.; Milhem, Z.; Stretea, R.; Țața, I.-M.; Cherecheș, R.M.; Micluția, I.V. A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. J. Pers. Med. 2023, 13, 306. https://doi.org/10.3390/jpm13020306
Crișan CA, Milhem Z, Stretea R, Țața I-M, Cherecheș RM, Micluția IV. A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. Journal of Personalized Medicine. 2023; 13(2):306. https://doi.org/10.3390/jpm13020306
Chicago/Turabian StyleCrișan, Cătălina Angela, Zaki Milhem, Roland Stretea, Ioan-Marian Țața, Răzvan Mircea Cherecheș, and Ioana Valentina Micluția. 2023. "A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression" Journal of Personalized Medicine 13, no. 2: 306. https://doi.org/10.3390/jpm13020306