The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Evaluation
2.3. Lipid Profiles and Subfractions of LDL-C
2.4. Apolipoprotein E Genotype
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Other Demen. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Bjorkhem, I.; Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arter. Thromb. Vasc. Biol. 2004, 24, 806–815. [Google Scholar] [CrossRef]
- Pfrieger, F.W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 2003, 60, 1158–1171. [Google Scholar] [CrossRef]
- Sun, J.H.; Yu, J.T.; Tan, L. The role of cholesterol metabolism in Alzheimer’s disease. Mol. Neurobiol. 2015, 51, 947–965. [Google Scholar] [CrossRef]
- Grimm, M.O.; Grimm, H.S.; Tomic, I.; Beyreuther, K.; Hartmann, T.; Bergmann, C. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J. Biol. Chem. 2008, 283, 11302–11311. [Google Scholar] [CrossRef] [PubMed]
- Feringa, F.M.; van der Kant, R. Cholesterol and Alzheimer’s Disease; From Risk Genes to Pathological Effects. Front. Aging Neurosci. 2021, 13, 690372. [Google Scholar] [CrossRef]
- Kojro, E.; Gimpl, G.; Lammich, S.; Marz, W.; Fahrenholz, F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc. Natl. Acad. Sci. USA 2001, 98, 5815–5820. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Callaghan, D.; Jones, A.; Walker, D.G.; Lue, L.F.; Beach, T.G.; Sue, L.I.; Woulfe, J.; Xu, H.; Stanimirovic, D.B.; et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol. Dis. 2008, 29, 422–437. [Google Scholar] [CrossRef]
- Marquer, C.; Laine, J.; Dauphinot, L.; Hanbouch, L.; Lemercier-Neuillet, C.; Pierrot, N.; Bossers, K.; Le, M.; Corlier, F.; Benstaali, C.; et al. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Mol. Neurodegener. 2014, 9, 60. [Google Scholar] [CrossRef]
- Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 2003, 160, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.J.; Moussavi Nik, S.H.; Chen, M.M.; Ong, D.; Wijaya, L.; Laws, S.M.; Taddei, K.; Newman, M.; Lardelli, M.; Martins, R.N.; et al. The Guinea Pig as a Model for Sporadic Alzheimer’s Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. PLoS ONE 2013, 8, e66235. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.Y.; Ionov, M.; Pavlov, E.; Duchen, M.R. Membrane cholesterol content plays a key role in the neurotoxicity of beta-amyloid: Implications for Alzheimer’s disease. Aging Cell 2011, 10, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, P. Cholesterol and late-life cognitive decline. J. Alzheimers Dis. 2012, 30, S147–S162. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhou, F.; Cao, Y.; Liang, X.; Wu, W.; Xiao, Z.; Zhao, Q.; Deng, W. Cholesterol profiles and incident cognitive decline among older adults: The Shanghai Aging Study. Age Ageing 2021, 50, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Ashby-Mitchell, K.; Peters, R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J. Alzheimers Dis. 2017, 56, 215–228. [Google Scholar] [CrossRef]
- Ma, C.; Yin, Z.; Zhu, P.; Luo, J.; Shi, X.; Gao, X. Blood cholesterol in late-life and cognitive decline: A longitudinal study of the Chinese elderly. Mol. Neurodegener. 2017, 12, 24. [Google Scholar] [CrossRef]
- Avogaro, P.; Bon, G.B.; Cazzolato, G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988, 8, 79–87. [Google Scholar] [CrossRef]
- Yang, C.Y.; Raya, J.L.; Chen, H.H.; Chen, C.H.; Abe, Y.; Pownall, H.J.; Taylor, A.A.; Smith, C.V. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arter. Thromb. Vasc. Biol. 2003, 23, 1083–1090. [Google Scholar] [CrossRef]
- Chen, C.H.; Jiang, T.; Yang, J.H.; Jiang, W.; Lu, J.; Marathe, G.K.; Pownall, H.J.; Ballantyne, C.M.; McIntyre, T.M.; Henry, P.D.; et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 2003, 107, 2102–2108. [Google Scholar] [CrossRef]
- Yu, L.E.; Lai, C.L.; Lee, C.T.; Wang, J.Y. Highly electronegative low-density lipoprotein L5 evokes microglial activation and creates a neuroinflammatory stress via Toll-like receptor 4 signaling. J. Neurochem. 2017, 142, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Lai, C.L.; Lee, C.T.; Lin, C.Y. Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1. Int. J. Mol. Sci. 2017, 18, 1744. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Chou, P.; Lin, K.N.; Wang, S.J.; Fuh, J.L.; Lin, H.C.; Liu, C.Y.; Wu, G.S.; Larson, E.B.; White, L.R.; et al. Assessing cognitive abilities and dementia in a predominantly illiterate population of older individuals in Kinmen. Psychol. Med. 1994, 24, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Hasegawa, K.; Homma, A.; Imai, Y.; Larson, E.; Graves, A.; Sugimoto, K.; Yamaguchi, T.; Sasaki, H.; Chiu, D.; et al. The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia. Int. Psychogeriatr. 1994, 6, 45–58. [Google Scholar] [CrossRef]
- Chu, C.S.; Law, S.H.; Lenzen, D.; Tan, Y.H.; Weng, S.F.; Ito, E.; Wu, J.C.; Chen, C.H.; Chan, H.C.; Ke, L.Y. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020, 8, 254. [Google Scholar] [CrossRef]
- Chu, C.S.; Chan, H.C.; Tsai, M.H.; Stancel, N.; Lee, H.C.; Cheng, K.H.; Tung, Y.C.; Chan, H.C.; Wang, C.Y.; Shin, S.J.; et al. Range of L5 LDL levels in healthy adults and L5’s predictive power in patients with hyperlipidemia or coronary artery disease. Sci. Rep. 2018, 8, 11866. [Google Scholar] [CrossRef]
- Lai, C.L.; Hsu, C.Y.; Liou, L.M.; Hsieh, H.Y.; Hsieh, Y.H.; Liu, C.K. Effect of cholesterol and CYP46 polymorphism on cognitive event-related potentials. Psychophysiology 2011, 48, 1572–1577. [Google Scholar] [CrossRef]
- De Leeuw, F.A.; Tijms, B.M.; Doorduijn, A.S.; Hendriksen, H.M.A.; van de Rest, O.; de van der Schueren, M.A.E.; Visser, M.; van den Heuvel, E.; van Wijk, N.; Bierau, J.; et al. LDL cholesterol and uridine levels in blood are potential nutritional biomarkers for clinical progression in Alzheimer’s disease: The NUDAD project. Alzheimers Dement. 2020, 12, e12120. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, F.; Yang, J.; Peng, H.; Li, Y.; Li, B.; Wang, S. Revealing a Novel Landscape of the Association Between Blood Lipid Levels and Alzheimer’s Disease: A Meta-Analysis of a Case-Control Study. Front. Aging Neurosci. 2019, 11, 370. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, Y.; Zhang, X.; Xu, J.; Lin, J.; Zhang, R.; Kang, K.; Liu, C.; Zhao, C.; Zhao, M. Low-Density Lipoprotein Cholesterol and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, P.; Ma, X.; Huang, X.; Liu, Z.; Ren, X.; Yang, Y.; Halm-Lutterodt, N.V.; Yuan, L. Association of Circulating Cholesterol Level with Cognitive Function and Mild Cognitive Impairment in the Elderly: A Community-based Population Study. Curr. Alzheimer Res. 2020, 17, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Deng, W.; Ding, D.; Zhao, Q.; Liang, X.; Wang, F.; Luo, J.; Zheng, L.; Guo, Q.; Hong, Z. High Low-Density Lipoprotein Cholesterol Inversely Relates to Dementia in Community-Dwelling Older Adults: The Shanghai Aging Study. Front. Neurol. 2018, 9, 952. [Google Scholar] [CrossRef]
- Ke, L.Y.; Stancel, N.; Bair, H.; Chen, C.H. The underlying chemistry of electronegative LDL’s atherogenicity. Curr. Atheroscler. Rep. 2014, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.Y.; Chen, F.Y.; Hsu, J.F.; Fu, R.H.; Chang, C.M.; Chang, C.T.; Liu, C.H.; Wu, J.R.; Lee, A.S.; Chan, H.C.; et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood 2016, 127, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Shi, X.; Xing, Y.; Tang, Y. Association between atherosclerosis and Alzheimer’s disease: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01601. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Quesada, J.L.; Otal-Entraigas, C.; Franco, M.; Jorba, O.; Gonzalez-Sastre, F.; Blanco-Vaca, F.; Ordonez-Llanos, J. Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 1999, 84, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Matsunaga, A.; Rainwater, D.L.; Miura, S.; Noda, K.; Nishikawa, H.; Uehara, Y.; Shirai, K.; Ogawa, M.; Saku, K. Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: The ROSARY Study. J. Lipid Res. 2009, 50, 1832–1841. [Google Scholar] [CrossRef]
- Nakano, K.; Hasegawa, G.; Fukui, M.; Yamasaki, M.; Ishihara, K.; Takashima, T.; Kitagawa, Y.; Fujinami, A.; Ohta, M.; Hara, H.; et al. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes. Endocr. J. 2010, 57, 423–430. [Google Scholar] [CrossRef]
- Hasegawa, G.; Kajiyama, S.; Tanaka, T.; Imai, S.; Kozai, H.; Fujinami, A.; Ohta, M.; Obayashi, H.; Park, H.; Nakano, K.; et al. The alpha-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed type 2 diabetes. Clin. Chim. Acta 2008, 390, 110–114. [Google Scholar] [CrossRef]
- Sanchez-Quesada, J.L.; Perez, A.; Caixas, A.; Rigla, M.; Payes, A.; Benitez, S.; Ordonez-Llanos, J. Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: Relation to nonenzymatic glycosylation and oxidative modification. J. Clin. Endocrinol. Metab. 2001, 86, 3243–3249. [Google Scholar] [CrossRef] [PubMed][Green Version]
Characteristic | Control (N = 40) | MCI (N = 22) | p-Value |
---|---|---|---|
Age, years, mean (±SD) 1 | 64.6 ± 5.2 | 66.6 ± 7.0 | 0.209 |
Sex, man, n (%) 2 | 9 (22.5%) | 8 (36.4%) | 0.242 |
Education, years, mean (±SD) 1 | 13.3 ± 3.6 | 10.5 ± 3.6 | 0.005 ** |
MMSE-CE, score, mean (±SD) 1 | 28.4 ± 1.2 | 25.4 ± 2.6 | <0.001 ** |
CASI, score, mean (±SD) 1 | 93.3 ± 3.0 | 86.4 ± 5.0 | <0.001 ** |
LTM | 10.0 ± 0.2 | 10 ± 0.0 | 0.160 |
STM | 10.2 ± 1.4 | 8.0 ± 1.9 | <0.001 ** |
ATT | 7.5 ± 0.8 | 7.3 ± 0.8 | 0.301 |
CCT | 9.7 ± 0.7 | 8.4 ± 1.3 | <0.001 ** |
ORI | 18.0 ± 0.0 | 17.6 ± 1.5 | 0.268 |
ABS | 4.6 ± 1.4 | 3.8 ± 1.7 | 0.039 * |
JUD | 5.1 ± 0.6 | 5.0 ± 0.5 | 0.262 |
LAN | 10.0 ± 0.2 | 9.4 ± 0.9 | 0.007 ** |
FLU | 8.3 ± 1.7 | 7.3 ± 1.4 | 0.010 * |
VC | 9.9 ± 0.4 | 9.6 ± 0.7 | 0.124 |
APOE-ɛ4, n (%) 2 | 26 (65.0%) | 12 (54.5%) | 0.419 |
Hypertension, n (%) 2 | 14 (35.0%) | 9 (40.9%) | 0.645 |
DM, n (%)2 | 12 (30.0%) | 10 (45.5%) | 0.224 |
Hyperlipidemia, n (%) 2 | 4 (10.0%) | 2 (9.1%) | 1.000 |
Metabolic syndrome, n (%) 2 | 17 (42.5%) | 7 (31.8%) | 0.409 |
Characteristic | Control (N = 40) | MCI (N = 22) | p-Value |
---|---|---|---|
TC, mg/dL, mean (±SD) 1 | 189.2 ± 33.6 | 187.4 ± 34.0 | 0.838 |
HDL-C, mg/dL, mean (±SD) 1 | 53.4 ± 14.4 | 51.9 ± 10.0 | 0.681 |
LDL-C, mg/dL, mean (±SD) 1 | 116.0 ± 34.8 | 112.8 ± 29.9 | 0.714 |
L5, mg/dL, mean (±SD) 1 | 2.0 ± 1.7 | 1.5 ± 0.7 | 0.197 |
L5 ≥ 1.7 mg/dL, n (%) 2 | 19 (47.5%) | 8 (36.4%) | 0.397 |
L5%, mean (±SD) 1 | 1.9 ± 1.6 | 1.5 ± 0.8 | 0.140 |
L5% ≥ 1.6%, n (%) 2 | 15 (37.5%) | 8 (36.4%) | 0.929 |
MCI | ||||||
---|---|---|---|---|---|---|
L5 ≥ 1.7 mg/dL | p-Value | L5% ≥ 1.6% | p-Value | |||
No N = 14 | Yes N = 8 | No N = 14 | Yes N = 8 | |||
Age, years, mean (±SD) 1 | 65.3 ± 6.5 | 68.9 ± 7.7 | 0.257 | 66.0 ± 7.6 | 67.6 ± 6.0 | 0.613 |
Sex, man, n (%) 2 | 5 (35.7%) | 3 (37.5%) | 1.000 | 4 (28.6%) | 4 (50.0%) | 0.386 |
Education, years, mean (±SD) 1 | 11.1 ± 3.8 | 9.4 ± 3.0 | 0.276 | 11.6 ± 3.5 | 8.6 ± 3.0 | 0.062 |
MMSE-CE, score, mean (±SD) 1 | 26.0 ± 1.6 | 24.4 ± 3.6 | 0.261 | 26.0 ± 2.0 | 24.4 ± 3.2 | 0.159 |
CASI, score, mean (±SD) 1 | 87.7 ± 3.7 | 84.0 ± 6.3 | 0.096 | 87.5 ± 3.9 | 84.4 ± 6.3 | 0.158 |
LTM | 10.0 ± 0.0 | 10.0 ± 0.0 | N/A | 10.0 ± 0.0 | 10.0 ± 0.0 | N/A |
STM | 8.1 ± 2.0 | 7.8 ± 2.0 | 0.750 | 8.4 ± 1.8 | 7.3 ± 2.1 | 0.196 |
ATT | 7.4 ± 0.6 | 7.0 ± 0.9 | 0.215 | 7.4 ± 0.6 | 7.1 ± 1.0 | 0.508 |
CCT | 8.6 ± 1.2 | 8.1 ± 1.6 | 0.451 | 8.6 ± 1.4 | 8.1 ± 1.1 | 0.451 |
ORI | 18.0 ± 0.0 | 17.0 ± 2.4 | 0.286 | 17.9 ± 0.3 | 17.1 ± 2.5 | 0.390 |
ABS | 4.0 ± 1.9 | 3.4 ± 1.3 | 0.417 | 3.9 ± 1.9 | 3.5 ± 1.3 | 0.579 |
JUD | 5.1 ± 0.5 | 4.8 ± 0.5 | 0.139 | 4.9 ± 0.6 | 5.0 ± 0.0 | 0.671 |
LAN | 9.7 ± 0.5 | 8.9 ± 1.2 | 0.025 * | 9.7 ± 0.5 | 8.9 ± 1.2 | 0.025 * |
FLU | 7.3 ± 1.3 | 7.3 ± 1.5 | 0.954 | 7.0 ± 1.4 | 7.8 ± 13 | 0.219 |
VC | 9.6 ± 0.8 | 9.8 ± 0.7 | 0.592 | 9.7 ± 0.6 | 9.5 ± 0.9 | 0.519 |
Pearson Correlation Coefficient | MCI (N = 22) | |||||||
---|---|---|---|---|---|---|---|---|
TC | p-Value 1 | LDL-C | p-Value 1 | L5 | p-Value 1 | L5% | p-Value 1 | |
MMSE-CE | 0.182 | 0.416 | 0.137 | 0.542 | −0.409 | 0.059 | −0.434 * | 0.044 |
CASI | 0.188 | 0.403 | 0.142 | 0.528 | −0.431 * | 0.045 | −0.484 * | 0.023 |
LTM | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
STM | 0.179 | 0.426 | 0.169 | 0.452 | −0.290 | 0.191 | −0.325 | 0.140 |
ATT | 0.058 | 0.798 | 0.055 | 0.807 | −0.165 | 0.463 | −0.161 | 0.474 |
CCT | 0.107 | 0.637 | 0.047 | 0.835 | −0.075 | 0.739 | −0.133 | 0.556 |
ORI | 0.184 | 0.412 | 0.175 | 0.435 | −0.418 | 0.053 | −0.470 * | 0.027 |
ABS | 0.179 | 0.426 | 0.131 | 0.562 | −0.286 | 0.198 | −0.262 | 0.239 |
JUD | −0.120 | 0.595 | −0.199 | 0.374 | −0.196 | 0.383 | −0.036 | 0.872 |
LAN | 0.284 | 0.200 | 0.302 | 0.171 | −0.438 * | 0.042 | −0.533 * | 0.011 |
FLU | −0.257 | 0.248 | −0.286 | 0.196 | 0.089 | 0.695 | 0.154 | 0.492 |
VC | −0.031 | 0.891 | 0.003 | 0.990 | 0.057 | 0.802 | −0.173 | 0.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, P.-S.; Chen, S.C.-J.; Hsu, C.-Y.; Liou, L.-M.; Juan, C.-H.; Lai, C.-L. The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. J. Pers. Med. 2023, 13, 192. https://doi.org/10.3390/jpm13020192
Chou P-S, Chen SC-J, Hsu C-Y, Liou L-M, Juan C-H, Lai C-L. The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. Journal of Personalized Medicine. 2023; 13(2):192. https://doi.org/10.3390/jpm13020192
Chicago/Turabian StyleChou, Ping-Song, Sharon Chia-Ju Chen, Chung-Yao Hsu, Li-Min Liou, Chi-Hung Juan, and Chiou-Lian Lai. 2023. "The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment" Journal of Personalized Medicine 13, no. 2: 192. https://doi.org/10.3390/jpm13020192
APA StyleChou, P.-S., Chen, S. C.-J., Hsu, C.-Y., Liou, L.-M., Juan, C.-H., & Lai, C.-L. (2023). The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. Journal of Personalized Medicine, 13(2), 192. https://doi.org/10.3390/jpm13020192