Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Definition of Chemotherapy-Induced Cardiotoxicity
2.3. Study Population
2.4. Monitoring
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Follow-Up
3.3. Imaging
3.4. Biomarkers
3.5. Biomarkers as Predictors of Changes in LVEF and GLS
3.6. Chemotherapy/Medication Alterations and Changes in LVEF, GLS, and Biomarkers
4. Discussion
Study Limitations
5. Conclusions
6. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.N.; Gradishar, W.J. Adjuvant Anthracyclines in Breast Cancer: What Is Their Role? Oncologist 2018, 23, 1153–1161. [Google Scholar] [CrossRef]
- Mao, Z.; Shen, K.; Zhu, L.; Xu, M.; Yu, F.; Xue, D.; Li, H.; Xue, C. Comparisons of Cardiotoxicity and Efficacy of Anthracycline-Based Therapies in Breast Cancer: A Network Meta-Analysis of Randomized Clinical Trials. Oncol. Res. Treat. 2019, 42, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Agunbiade, T.A.; Zaghlol, R.Y.; Barac, A. Heart Failure in Relation to Anthracyclines and Other Chemotherapies. Methodist Debakey Cardiovasc. J. 2019, 15, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Shan, K.; Lincoff, A.M.; Young, J.B. Anthracycline-induced cardiotoxicity. Ann. Intern. Med. 1996, 125, 47–58. [Google Scholar] [CrossRef]
- Robinson, E.L.; Azodi, M.; Heymans, S.; Heggermont, W. Anthracycline-Related Heart Failure: Certain Knowledge and Open Questions: Where Do We Stand with Chemotherapyinduced Cardiotoxicity? Curr. Heart Fail. Rep. 2020, 17, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Ghosh, A.K.; Ky, B.; Marwick, T.; Stout, M.; Harkness, A.; Steeds, R.; Robinson, S.; Oxborough, D.; Adlam, D.; et al. British Society for Echocardiography and British Cardio-Oncology Society guideline for transthoracic echocardiographic assessment of adult cancer patients receiving anthracyclines and/or trastuzumab. Echo Res. Pract. 2021, 8, G1–G18. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Moir, S.; Chan, J.; Rakhit, D.; Haluska, B.; Marwick, T.H. Left ventricular volume measurement with echocardiography: A comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur. Heart J. 2008, 30, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2014, 27, 911–939. [Google Scholar] [CrossRef] [PubMed]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of Echocardiography and Biomarkers for the Extended Prediction of Cardiotoxicity in Patients Treated with Anthracyclines, Taxanes, and Trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef]
- Brunner-La Rocca, H.P.; Eurlings, L.; Richards, A.M.; Januzzi, J.L.; Pfisterer, M.E.; Dahlström, U.; Pinto, Y.M.; Karlström, P.; Erntell, H.; Berger, R.; et al. Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur. J. Heart Fail. 2015, 17, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hayashi, D.; Yamazaki, T.; Mizuno, T.; Kanda, Y.; Komuro, I.; Kurabayashi, M.; Yamaoki, K.; Mitani, K.; Hirai, H.; et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am. Heart J. 1998, 136, 362–363. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Eur. Heart J. 2012, 33, 2551–2567. [Google Scholar] [CrossRef]
- Cardinale, D.; Sandri, M.T.; Colombo, A.; Colombo, N.; Boeri, M.; Lamantia, G.; Civelli, M.; Peccatori, F.; Martinelli, G.; Fiorentini, C.; et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004, 109, 2749–2754. [Google Scholar] [CrossRef] [PubMed]
- Pudil, R.; Mueller, C.; Čelutkienė, J.; Henriksen, P.A.; Lenihan, D.; Dent, S.; Barac, A.; Stanway, S.; Moslehi, J.; Suter, T.M.; et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1966–1983. [Google Scholar] [CrossRef]
- Rehman, S.U.; Mueller, T.; Januzzi, J.L., Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008, 52, 1458–1465. [Google Scholar] [CrossRef]
- Bulten, B.F.; Verberne, H.J.; Bellersen, L.; Oyen, W.J.G.; Sabaté-Llobera, A.; Mavinkurve-Groothuis, A.M.C.; Kapusta, L.; van Laarhoven, H.W.M.; de Geus-Oei, L.-F. Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer Chemother. Pharmacol. 2015, 76, 957–967. [Google Scholar] [CrossRef]
- Perez, I.E.; Taveras Alam, S.; Hernandez, G.A.; Sancassani, R. Cancer Therapy-Related Cardiac Dysfunction: An Overview for the Clinician. Clin. Med. Insights: Cardiol. 2019, 13, 117954681986644. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Poulin, F.; Lim, K.-D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of Myocardial Strain Imaging by Echocardiography for the Early Detection of Cardiotoxicity in Patients During and After Cancer Chemotherapy. J. Am. Coll. Cardiol. 2014, 63, 2751–2768. [Google Scholar] [CrossRef]
- Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498. [Google Scholar] [CrossRef]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar]
- Stevens, P.L.; Lenihan, D.J.; Ky, B.; Warneke, C.L.; Johnson, M.M.; Abramson, V.G.; Mayer, I.A.; Adams, P.T.; Campbell, M.G.; Cheema, P.S.; et al. Prediction and early detection of anthracycline-related cardiotoxicity using cardiac biomarkers. J. Clin. Oncol. 2014, 32, 9644. [Google Scholar] [CrossRef]
- Demissei, B.G.; Hubbard, R.A.; Zhang, L.; Smith, A.M.; Sheline, K.; McDonald, C.; Narayan, V.; Domchek, S.M.; DeMichele, A.; Shah, P.; et al. Changes in Cardiovascular Biomarkers with Breast Cancer Therapy and Associations with Cardiac Dysfunction. J. Am. Heart Assoc. 2020, 9, e014708. [Google Scholar] [CrossRef]
- Bloom, M.W.; Hamo, C.E.; Cardinale, D.; Ky, B.; Nohria, A.; Baer, L.; Skopicki, H.; Lenihan, D.J.; Gheorghiade, M.; Lyon, A.R.; et al. Cancer Therapy-Related Cardiac Dysfunction and Heart Failure: Part 1: Definitions, Pathophysiology, Risk Factors, and Imaging. Circ. Heart Fail. 2016, 9, e002661. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; Putt, M.; Sawaya, H.; French, B.; Januzzi, J.L.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early Increases in Multiple Biomarkers Predict Subsequent Cardiotoxicity in Patients with Breast Cancer Treated with Doxorubicin, Taxanes, and Trastuzumab. J. Am. Coll. Cardiol. 2014, 63, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Pascual-Figal, D.; Januzzi, J.L.; Maisel, A.; Casas, T.; Valdés, M.; Ordóñez-Llanos, J. Soluble ST2 monitoring provides additional risk stratification for outpatients with decompensated heart failure. Rev. Esp. Cardiol. 2010, 63, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Padegimas, A.; Clasen, S.; Ky, B. Cardioprotective strategies to prevent breast cancer therapy-induced cardiotoxicity. Trends Cardiovasc. Med. 2020, 30, 22–28. [Google Scholar] [CrossRef]
- Bosch, X.; Rovira, M.; Sitges, M.; Domènech, A.; Ortiz-Pérez, J.T.; de Caralt, T.M.; Morales-Ruiz, M.; Perea, R.J.; Monzó, M.; Esteve, J. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 2013, 61, 2355–2362. [Google Scholar]
- Kheiri, B.; Abdalla, A.; Osman, M.; Haykal, T.; Chahine, A.; Ahmed, S.; Osman, K.; Hassan, M.; Bachuwa, G.; Bhatt, D.L. Meta-Analysis of Carvedilol for the Prevention of Anthracycline-Induced Cardiotoxicity. Am. J. Cardiol. 2018, 122, 1959–1964. [Google Scholar] [CrossRef]
- Heck, S.L.; Mecinaj, A.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; Røsjø, H.; Steine, K.; Geisler, J.; et al. Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy (PRADA): Extended Follow-Up of a 2 × 2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol. Circulation 2021, 143, 2431–2440. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.S.; Ayub-Ferreira, S.M.; Wanderley, M.R.d.B.; Cruz, F.d.D.; Brandão, S.M.G.; Rigaud, V.O.C.; Higuchi-Dos-Santos, M.H.; Hajjar, L.A.; Filho, R.K.; Hoff, P.M.; et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity. J. Am. Coll. Cardiol. 2018, 71, 2281–2290. [Google Scholar] [CrossRef]
- Boekhout, A.H.; Gietema, J.A.; Kerklaan, B.M.; van Werkhoven, E.D.; Altena, R.; Honkoop, A.; Los, M.; Smit, W.M.; Nieboer, P.; Smorenburg, C.H.; et al. Angiotensin II–Receptor Inhibition with Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients with Early Breast Cancer. JAMA Oncol. 2016, 2, 1030. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Lopez-Fernandez, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar]
Characteristic | Value |
---|---|
Demographics | |
Age | 50 (46–55) |
Height (cm) | 165 (160–167) |
Weight (kg) | 73 (64–86) |
BMI (kg/m2) | 26.6 (23.7–31) |
Race, % | |
White | 25 (80.6) |
Black | 2 (6.5) |
Hispanic | 2 (6.5) |
Comorbidities, % | |
Diabetes | 2 (6.5) |
Hypertension | 10 (32.3) |
Hyperlipidemia | 7 (22.6) |
Social and family medical history | |
Smoking, % | |
Never | 16 (53.3) |
Former (quit > 6 months) | 9 (30) |
Active (current or quit < 6 months) | 5 (16.7) |
Number of pack years | 10 (7.5–20) |
Alcohol abuse, % | 1 (3.2) |
Drug abuse, % | 1 (3.2) |
Family history of coronary artery disease, % | 6 (19.4) |
Family history of breast cancer, % | 4 (12.9) |
Past drug history | |
Chemotherapy regimen, % | |
Dose-dense doxorubicin and cyclophosphamide | 2 (6.5) |
Dose-dense doxorubicin and cyclophosphamide-paclitaxel | 25 (80.6) |
ddAC-T plus trastuzumab | 4 (12.9) |
Anthracycline dose (mg/m2) | 60 |
Cyclophosphamide dose (mg/m2) | 600 |
Paclitaxel (mg/m2) | 80 (80–175) |
Trastuzumab dose (mg/m2) | 8 |
Chemotherapy cycles, % | |
Number = 4 | 27 (90) |
Number = 12 | 3 (10) |
Angiotensin-converting-enzyme inhibitor % | 3 (9.7) |
Angiotensin receptor blocker, % | 3 (9.7) |
Beta-blocker, % | 4 (12.9) |
Metoprolol | 1 (3.2) |
Atenolol | 1 (3.2) |
Carvedilol | 1 (3.2) |
Statin, % | 1 (3.2) |
Noninsulin diabetic medication, % | 1 (3.2) |
Metformin | 1 (3.2) |
DPP-4 inhibitors (sitagliptin) | 1 (3.2) |
Calcium channel blocker, % | 3 (9.7) |
Diltiazem | 2 (6.5) |
Amlodipine | 1 (3.2) |
Hydrochlorothiazide | 3 (9.7) |
Triamterene | 1 (3.2) |
Other lipid-lowering agents, % | 2 (5.26) |
Physical examination | |
Vital signs | |
Systolic blood pressure (mmHg) | 123 (111–140) |
Diastolic blood pressure (mmHg) | 77 (68–84) |
Heart rate, (beats per minute bpm) | 73 (68–84) |
Peripheral edema. % | |
None | 30 (96.8) |
Trace | 1 (3.2) |
EKG | |
QTc (milliseconds ms) | 415 (405–427) |
Left anterior fascicular block, % | 2 (6.7) |
Biochemistry | |
Potassium (millimole mmol/Liter L) | 4.1 (4–4.2) |
Glomerular filtration rate (mL/min/1.73 m2) | 102 (96–107) |
Alanine aminotransferase (international units IU/L) | 16.5 (12.5–25.5) |
Aspartate aminotransferase (IU/L) | 19.5 (16–26) |
Total cholesterol (mg/dL) | 203 (181.5–227) |
Low-density lipoprotein (mg/dL) | 110 (86–123) |
High-density lipoprotein (mg/dL) | 72 (62–81) |
White blood cells (K/uL) | 6 (5.4–7.5) |
Hemoglobin (g/dL) | 12.9 (12.3–13.7) |
Platelets (K/uL) | 253 (215–276) |
Tumor findings, % | |
Tumor classification | |
T1 | 8 (25.8) |
T2 | 15 (48.4) |
T3 | 7 (22.6) |
Lymph node | |
Positive | 25 (80.6) |
Negative | 5 (16.1) |
Node classification | |
N0 | 7 (23.3) |
N1 | 18 (60) |
N2 | 4 (13.3) |
N3 | 1 (3.3) |
Human epidermal growth factor receptor 2 + | 6 (19.4) |
Estrogen receptor + | 23 (74.2) |
Progesterone receptor + | 21 (67.7) |
Ki-67 protein + | 24 (100) |
ECG | Echocardiography | Biomarkers | |
---|---|---|---|
Baseline | 31 | 31 | 31 |
Mid-therapy | N/A | N/A | 30 |
Post-therapy | 29 | 31 | 30 |
Six months | 27 | 27 | 27 |
Characteristic | Baseline (N = 31) | Post-Tx (N = 28) | 6-Month Post (N = 29) | p Value * |
---|---|---|---|---|
Ejection fraction (%) | 63.0 (60.0, 65.0) | 60.0 (58.0, 63.0) | 60.0 (56.0, 63.0) | 0.005 |
LVIDd (cm) | 4.6 (4.3, 4.9) | 4.6 (4.5, 4.8) | 4.6 (4.25, 4.77) | 0.53 |
LV FS (%) | 33.7 (28.4, 36.7) | 34.8 (30.9, 36.3) | 32.6 (27.6, 35.4) | 0.12 |
LV EDV (mL) | 89 (82, 103) | 91 (66, 106) | 87 (77, 101) | 0.18 |
LV ESV (mL) | 33 (30, 40) | 35 (26, 42) | 37 (28, 43) | 0.76 |
LV SV (mL) | 56.1 (41.0, 68.3) | 49.1 (40.2, 57.9) | 49.2 (41.1, 55.9) | 0.018 |
LA diameter (cm) | 3.1 (2.8, 3.6) | 3.3 (2.9, 3.7) | 3.3 (2.8, 3.5) | 0.73 |
LA area (cm2) | 16.5 (13.1, 19.1) | 16.2 (14.5, 18.4) | 14.0 (12.2, 16.4) | 0.014 |
LA volume (mL) | 42.0 (32.0, 56.2) | 43.9 (39.8, 54.6) | 38.4 (29.4, 46.0) | 0.046 |
LV SI (mL/m2) | 32.7 (23.9, 35.8) | 26.3 (22.4, 32.8) | 27.5 (22.9, 30.8) | 0.016 |
LA volume index (mL/m2) | 25.6 (18.5, 29.9) | 26.2 (22.3, 28.9) | 22.0 (16.6, 26.4) | 0.022 |
E velocity (m/s) | 0.8 (0.7, 0.9) | 0.7 (0.7, 0.8) | 0.7 (0.6, 0.8) | 0.005 |
A velocity (m/s) | 0.7 (0.5, 0.9) | 0.7 (0.5, 0.9) | 0.7 (0.5, 0.8) | 0.52 |
E/A | 1.1 (0.9, 1.5) | 1.0 (0.8, 1.3) | 1.2 (0.8, 1.4) | 0.027 |
Deceleration (ms) | 191.5 (170.0, 214.0) | 172.5 (162.5, 191.0) | 170.0 (154.0, 187.5) | 0.088 |
Septal E’ (m/s) | 0.09 (0.07, 0.12) | 0.09 (0.08, 0.10) | 0.08 (0.07, 0.09) | 0.007 |
Lateral E’ (m/s) | 0.12 (0.09, 0.14) | 0.12 (0.09, 0.13) | 0.11 (0.08, 0.12) | 0.001 |
Average E’ (m/s) | 0.10 (0.08, 0.13) | 0.10 (0.09, 0.12) | 0.09 (0.08, 0.10) | 0.001 |
Average E/E’ | 7.6 (6.4, 9.4) | 7.1 (6.0, 8.5) | 7.5 (6.7, 8.4) | 0.52 |
LA pressure (mmHg) | 11.3 (9.8, 13.6) | 10.7 (9.3, 12.5) | 11.2 (10.1, 12.3) | 0.51 |
TR velocity (m/s) | 2.0 (1.9, 2.3) | 2.3 (2.1, 2.5) | 2.2 (2.0, 2.3) | 0.22 |
Estimate PASP (mmHg) | 20.8 (17.0, 24.9) | 23.8 (20.7, 27.2) | 22.0 (18.8, 24.6) | 0.21 |
Global longitudinal strain (%) | −19.6 (−21.0, −17.7) | −19.0 (−17.4, −21.3) | −18.5 (−16.5 −21.2) | 0.32 |
Diastolic dysfunction, N (%) | 0.11 | |||
Normal | 26 (83.9) | 22 (71.0) | 18 (69.0) | |
Mild | 5 (16.1) | 9 (29.0) | 7 (27.0) | |
Impaired | --- | --- | 1 (4.0) |
Biomarker | Baseline | Mid-Tx | Post-Tx | 6-Month Post | p Value * |
---|---|---|---|---|---|
CRP Level | 0.3 (0.0, 0.8) | - | - | 0.25 (0.00, 0.65) | 0.83 |
NT Pro-BNP | 58.5 (37.0, 100.0) | 76.5 (39.0, 163.0) | 99.0 (75.0, 141.0) | 71.0 (38.0, 151.0) | <0.001 |
ST-2 | 21.3 (15.6, 24.9) | 23.3 (16.3, 33.8) | 24.1 (18.6, 30.8) | 22.2 (17.8, 26.4) | 0.10 |
Galectin-3 | 16.3 (14.2, 18.5) | 17.5 (15.5, 19.6) | 16.3 (14.6, 18.8) | 15.6 (13.8, 18.0) | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagat, A.A.; Kalogeropoulos, A.P.; Baer, L.; Lacey, M.; Kort, S.; Skopicki, H.A.; Butler, J.; Bloom, M.W. Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines. J. Pers. Med. 2023, 13, 1710. https://doi.org/10.3390/jpm13121710
Bhagat AA, Kalogeropoulos AP, Baer L, Lacey M, Kort S, Skopicki HA, Butler J, Bloom MW. Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines. Journal of Personalized Medicine. 2023; 13(12):1710. https://doi.org/10.3390/jpm13121710
Chicago/Turabian StyleBhagat, Aditi A., Andreas P. Kalogeropoulos, Lea Baer, Matthew Lacey, Smadar Kort, Hal A. Skopicki, Javed Butler, and Michelle Weisfelner Bloom. 2023. "Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines" Journal of Personalized Medicine 13, no. 12: 1710. https://doi.org/10.3390/jpm13121710
APA StyleBhagat, A. A., Kalogeropoulos, A. P., Baer, L., Lacey, M., Kort, S., Skopicki, H. A., Butler, J., & Bloom, M. W. (2023). Biomarkers and Strain Echocardiography for the Detection of Subclinical Cardiotoxicity in Breast Cancer Patients Receiving Anthracyclines. Journal of Personalized Medicine, 13(12), 1710. https://doi.org/10.3390/jpm13121710