Translating Biospectroscopy Techniques to Clinical Settings: A New Paradigm in Point-of-Care Screening and/or Diagnostics
Funding
Conflicts of Interest
References
- Martin, F.L.; Kelly, J.G.; Llabjani, V.; Martin-Hirsch, P.L.; Patel, I.I.; Trevisan, J.; Fullwood, N.J.; Walsh, M.J. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat. Protoc. 2010, 5, 1748–1760. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, D.C.; Carneiro, M.G.; Rodrigues, R.; Alves, D.C.T.; Goulart, L.R.; Cunha, T.M.; Espindola, F.S.; Vitorino, R.; Sabino-Silva, R. Salivary ATR-FTIR spectroscopy coupled with support vector machine classification for screening of type 2 diabetes mellitus. Diagnostics 2023, 13, 1396. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.; Cameron, J.M.; Butler, H.J.; Jenkinson, M.D.; Hegarty, M.G.; Palmer, D.S.; Brennan, P.M.; Baker, M.J. Early economic evaluation to guide the development of a spectroscopic liquid biopsy for the detection of brain cancer. Int. J. Technol. Assess. Health Care 2021, 37, e41. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; Tafintseva, V.; Nippolainen, E.; Virtanen, V.; Solheim, J.; Zimmermann, B.; Saarakkala, S.; Töyräs, J.; Kohler, A.; Afara, I.O. Characterisation of cartilage damage via fusing mid-infrared, near-infrared, and Raman spectroscopic data. J. Pers. Med. 2023, 13, 1036. [Google Scholar] [CrossRef] [PubMed]
- Schiemer, R.; Furniss, D.; Phang, S.; Seddon, A.B.; Atiomo, W.; Gajjar, K.B. Vibrational spectroscopy: An alternative approach to endometrial cancer diagnosis and screening. Int. J. Mol. Sci. 2022, 23, 4859. [Google Scholar] [CrossRef]
- Guo, S.; Wei, G.; Chen, W.; Lei, C.; Xu, C.; Guan, Y.; Ji, T.; Wang, F.; Liu, H. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract cancers. Biomolecules 2022, 12, 1815. [Google Scholar] [CrossRef]
- Bernardes-Oliveira, E.; de Freitas, D.L.D.; de Morais, C.L.M.; Cornetta, M.D.C.M.; Carnargo, J.D.A.S.; de Lima, K.M.G.; Crispim, J.C.O. Spectrochemical differentiation in gestational diabetes mellitus based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and multivariate analysis. Sci. Rep. 2020, 10, 19259. [Google Scholar] [CrossRef]
- Reddy, R.K.; Walsh, M.J.; Schulmerich, M.V.; Carney, P.S.; Bhargava, R. High-definition infrared spectroscopic imaging. Appl. Spectrosc. 2013, 67, 93–105. [Google Scholar] [CrossRef]
- Shaikh, R.; Daniel, A.; Lyng, F.M. Raman spectroscopy for early detection of cervical cancer, a global women’s health issue-a review. Molecules 2023, 28, 2502. [Google Scholar] [CrossRef]
- Maitra, I.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Bury, D.; Date, R.S.; Martin, F.L. Attenuated total reflection Fourier-transform infrared spectral discrimination in human tissue of oesophageal transformation to adenocarcinoma. J. Pers. Med. 2023, 13, 1277. [Google Scholar] [CrossRef]
- Martin, F.L.; Dickinson, A.W.; Saba, T.; Bongers, T.; Singh, M.N.; Bury, D. ATR-FTIR spectroscopy with chemometrics for analysis of saliva samples obtained in a lung-cancer-screening programme: Application of swabs as a paradigm for high throughput in a clinical setting. J. Pers. Med. 2023, 13, 1039. [Google Scholar] [CrossRef] [PubMed]
- Pirutin, S.K.; Jia, S.; Yusipovich, A.I.; Shank, M.A.; Parshina, E.Y.; Rubin, A.B. Vibrational spectroscopy as a tool for bioanalytical and biomonitoring studies. Int. J. Mol. Sci. 2023, 24, 6947. [Google Scholar] [CrossRef] [PubMed]
- Traynor, D.; Duraipandian, S.; Bhatia, R.; Cuschieri, K.; Martin, C.M.; O’Leary, J.J.; Lyng, F.M. The potential of biobanked liquid based cytology samples for cervical cancer screening using Raman spectroscopy. J. Biophotonics 2019, 12, e201800377. [Google Scholar] [CrossRef] [PubMed]
- Pilling, M.J.; Henderson, A.; Shanks, J.H.; Brown, M.D.; Clarke, N.W.; Gardner, P. Infrared spectral histopathology using haematoxylin and eosin (H&E) stained glass slides: A major step forward towards clinical translation. Analyst 2017, 142, 1258–1268. [Google Scholar]
- Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Snowden, J.S.; Saxon, J.A.; Richardson, A.M.T.; Jones, M.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; et al. Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7929–E7938. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.M.; Conn, J.J.A.; Rinaldi, C.; Sala, A.; Brennan, P.M.; Jenkinson, M.D.; Caldwell, H.; Cinque, G.; Syed, K.; Butler, H.J.; et al. Interrogation of IDH1 status in gliomas by Fourier transform infrared spectroscopy. Cancers 2020, 12, E3682. [Google Scholar] [CrossRef]
- Barauna, V.G.; Singh, M.N.; Barbosa, L.L.; Marcarini, W.D.; Vassallo, P.F.; Mill, J.G.; Ribeiro-Rodrigues, R.; Campos, L.C.G.; Warnke, P.H.; Martin, F.L. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: High sensitivity and specificity. Anal. Chem. 2021, 93, 2950–2958. [Google Scholar] [CrossRef]
- Kelly, J.G.; Cheung, K.T.; Martin, C.; O’Leary, J.J.; Prendeville, W.; Martin-Hirsch, P.L.; Martin, F.L. A spectral phenotype of oncogenic human papillomavirus-infected exfoliative cervical cytology distinguishes women based on age. Clin. Chim. Acta 2010, 411, 1027–1033. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y. Fourier transform infrared spectroscopy in oral cancer diagnosis. Int. J. Mol. Sci. 2021, 22, 1206. [Google Scholar] [CrossRef]
- Ami, D.; Duse, A.; Mereghetti, P.; Cozza, F.; Ambrosio, F.; Ponzini, E.; Grandori, R.; Lunetta, C.; Tavazzi, S.; Pezzoli, F.; et al. Tear-based vibrational spectroscopy applied to myotrophic lateral sclerosis. Anal. Chem. 2021, 93, 16995–17002. [Google Scholar] [CrossRef]
- Bassan, P.; Sachdeva, A.; Lee, J.; Gardner, P. Substrate contributions in micro-ATR of thin samples: Implications for analysis of cells, tissue and biological fluids. Analyst 2013, 138, 4139–4146. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Gajjar, K.B.; Theophilou, G.; Martin, F.L.; Martin-Hirsch, P.L. Vibrational spectroscopy of biofluids for disease screening or diagnosis: Translation from the laboratory to a clinical setting. J. Biophotonics 2014, 7, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Morais, C.L.M.; Paraskevaidi, M.; Cui, L.; Fullwood, N.J.; Isabelle, M.; Lima, K.M.G.; Martin-Hirsch, P.L.; Sreedhar, H.; Trevisan, J.; Walsh, M.J.; et al. Standardisation of complex biologically derived spectrochemical datasets. Nat. Protoc. 2019, 14, 1546–1577. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R. Infrared spectroscopic imaging: The next generation. Appl. Spectrosc. 2012, 66, 1091–1120. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.; Phillips, J.; Harrild, E.; Tidy, R.J.; Hollings, A.L.; Codd, L.; Richardson, K.; Celliers, L.; Takechi, R.; Marno, J.C.L.; et al. Association between ageing, brain chemistry and white matter volume revealed with complementary MRI and FTIR brain imaging. Analyst 2023, 147, 5274–5282. [Google Scholar] [CrossRef]
- Stender, A.S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M.W.; Smith, E.A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J.X.; et al. Single cell optical imaging and spectroscopy. Chem. Rev. 2013, 113, 2469–2527. [Google Scholar] [CrossRef]
- Al Jedani, S.; Smith, C.I.; Ingham, J.; Whitley, C.A.; Ellis, B.G.; Triantafyllou, A.; Gunning, P.J.; Gardner, P.; Risk, J.M.; Shaw, R.J.; et al. Tissue discrimination in head and neck cancer using image fusion of IR and optical microscopy. Analyst 2023, 148, 4189–4194. [Google Scholar] [CrossRef]
- Ellis, B.G.; Ingham, J.; Whitley, C.A.; Al Jedani, S.; Gunning, P.J.; Gardner, P.; Shaw, R.J.; Barrett, S.D.; Triantafyllou, A.; Risk, J.M.; et al. Metric-based analysis of FTIR data to discriminate tissue types in oral cancer. Analyst 2023, 148, 1948–1953. [Google Scholar] [CrossRef]
- Stefanakis, M.; Bassler, M.C.; Walczuch, T.R.; Gerhard-Hartmann, E.; Youssef, A.; Scherzad, A.; Stöth, M.B.; Ostertag, E.; Hagen, R.; Steinke, M.R.; et al. The impact of tissue preparation on salivary gland tumours investigated by Fourier-transform infrared microspectroscopy. J. Clin. Med. 2023, 12, 569. [Google Scholar] [CrossRef]
- Kujdowicz, M.; Mech, B.; Chrabaszcz, K.; Chlosta, P.; Okon, K.; Malek, K. FTIR spectroscopic imaging supports urine cytology for classification of low-and high-grade bladder carcinoma. Cancers 2021, 13, 5734. [Google Scholar] [CrossRef]
- Notarstefanao, V.; Belloni, A.; Sabbatini, S.; Pro, C.; Orilisi, G.; Monterubbianesi, R.; Tosco, V.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Cytotoxic effects of 5-azacytidine on primary tumour cells and cancer stem cells from oral squamous cell carcinoma: An in vitro FTIRM analysis. Cells 2021, 10, 2127. [Google Scholar] [CrossRef]
- Prats-Montalbán, J.M.; de Juan, A.; Ferrer, A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst. 2011, 107, 1–23. [Google Scholar] [CrossRef]
- Haskell, J.; Hubbard, T.; Murray, C.; Gardner, B.; Ives, C.; Ferguson, D.; Stone, N. High wavenumber Raman spectroscopy for intraoperative assessment of breast tumour margins. Analyst 2023, 148, 4373–4385. [Google Scholar] [CrossRef] [PubMed]
- Van Lanschot, C.; Schut, T.B.; Barroso, E.; Sewnaik, A.; Hardillo, J.; Monserez, D.; Meeuwis, C.; Keereweer, S.; de Jong, R.B.; Puppuls, G.; et al. Raman spectroscopy to discriminate laryngeal squamous cell carcinoma from non-cancerous surrounding tissue. Lasers Med. Sci. 2023, 38, 193. [Google Scholar] [CrossRef]
- Jabarkheel, R.; Ho, C.S.; Rodrigues, A.J.; Jin, M.C.; Parker, J.J.; Mensah-Brown, K.; Yecies, D.; Grant, G.A. Rapid intraoperative diagnosis of pediatric brain tumours using Raman spectroscopy: A machine learning approach. Neurooncol. Adv. 2022, 4, vdac118. [Google Scholar] [PubMed]
- Bury, D.; Morais, C.L.M.; Ashton, K.M.; Dawson, T.P.; Martin, F.L. Ex vivo Raman spectrochemical analysis using a handheld probe demonstrates high predictive capability of brain tumour status. Biosensors 2019, 9, E49. [Google Scholar] [CrossRef] [PubMed]
- De Kleijn, B.J.; Heldens, G.T.N.; Herruer, J.M.; Sier, C.F.M.; Piazza, C.; de Bree, R.; Guntinas-Lichius, O.; Kowalski, L.P.; Vander Poorten, V.; Rodrigo, J.P.; et al. Intraoperative imaging techniques to improve surgical resection margins of oropharyngeal squamous cell cancer: A comprehensive review of current literature. Cancers 2023, 15, 896. [Google Scholar] [CrossRef] [PubMed]
- Desroches, J.; Lemoine, E.; Pinto, M.; Marple, E.; Urmey, K.; Diaz, R.; Guiot, M.-C.; Wilson, B.C.; Petrecca, K.; Leblond, F. Development and first in-human use of a Raman spectroscopy guidance system integrated with a brain biopsy needle. J. Biophotonics 2019, 12, e201800396. [Google Scholar] [CrossRef]
- Stevens, A.R.; Stickland, C.A.; Harris, G.; Ahmed, Z.; Goldberg Oppenheimer, P.; Belli, A.; Davies, D.J. Raman spectroscopy as a neuromonitoring tool in traumatic brain injury: A systematic review and clinical perspective. Cells 2022, 11, 1227. [Google Scholar] [CrossRef]
- Livermore, L.J.; Isabelle, M.; Bell, I.M.; Scott, C.; Walsby-Tickle, J.; Gannon, J.; Plaha, P.; Vallance, C.; Ansorge, O. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol. Adv. 2019, 1, vdz008. [Google Scholar] [CrossRef]
- Pioppi, L.; Parvan, R.; Samrend, A.; Silva, G.J.J.; Paolantoni, M.; Sassi, P.; Cataliotti, A. Vibrational spectroscopy identifies myocardial chemical modifications in heart failure with preserved ejection fraction. J. Trans. Med. 2023, 21, 617. [Google Scholar] [CrossRef] [PubMed]
- Agbaria, A.H.; Beck, G.; Lapidot, I.; Rich, D.H.; Kapelushnik, J.; Mordechai, S.; Salman, A.; Huleihel, M. Diagnosis of inaccessible infections using infrared microscopy of white blood cells and machine learning algorithm. Analyst 2020, 145, 6955–6967. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.D.; Morais, C.L.M.; Nascimento, Y.M.; Araujo, J.M.G.; Lima, K.M.G. Spectroscopy with computational analysis in virological studies: A decade (2006–2016). Trends Analyt. Chem. 2017, 97, 244–256. [Google Scholar] [CrossRef]
- Naskar, S.; Gour, N. Realization of amyloid-like aggregation as a common cause for pathogenesis in diseases. Life 2023, 13, 1523. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Bao, H.; Nuguri, S.M.; Yu, L.; Mikulik, Z.; Osuna-Diaz, M.M.; Sebastian, K.R.; Hackshaw, K.V.; Rodriguez-Saona, L. Rapid biomarker-based diagnosis of fibromyalgia disorders by portable FT-IR spectroscopic techniques. Biomedicines 2023, 11, 712. [Google Scholar] [CrossRef]
- Świądro-Pietoń, M.; Morawiec, K.A.; Wójtowicz, A.; Świądro, S.; Kurczab, R.; Dudek, D.; Wietecha-Posluszny, R. Fast and noninvasive hair test for preliminary diagnosis of mood disorders. Molecules 2022, 27, 5318. [Google Scholar] [CrossRef]
Sensor | Spectral Range |
---|---|
Near-infrared spectroscopy | 12,820–4000 cm−1 |
Attenuated total reflection Fourier-transform (ATR-FTIR) spectroscopy | 4000–400 cm−1 (mid-IR) |
Fourier-transform infrared microspectroscopy | 4000–400 cm−1 (mid-IR) |
Hyperspectral imaging | 4000–400 cm−1 (mid-IR) |
Raman spectroscopy | 4000–50 cm−1 |
Fluorescence spectroscopy | 796–1054 nm |
Terahertz (THz) spectroscopy | 0.03–3 mm |
Optical photothermal infrared microscopy | 4000–400 cm−1 (mid-IR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, F.L. Translating Biospectroscopy Techniques to Clinical Settings: A New Paradigm in Point-of-Care Screening and/or Diagnostics. J. Pers. Med. 2023, 13, 1511. https://doi.org/10.3390/jpm13101511
Martin FL. Translating Biospectroscopy Techniques to Clinical Settings: A New Paradigm in Point-of-Care Screening and/or Diagnostics. Journal of Personalized Medicine. 2023; 13(10):1511. https://doi.org/10.3390/jpm13101511
Chicago/Turabian StyleMartin, Francis L. 2023. "Translating Biospectroscopy Techniques to Clinical Settings: A New Paradigm in Point-of-Care Screening and/or Diagnostics" Journal of Personalized Medicine 13, no. 10: 1511. https://doi.org/10.3390/jpm13101511
APA StyleMartin, F. L. (2023). Translating Biospectroscopy Techniques to Clinical Settings: A New Paradigm in Point-of-Care Screening and/or Diagnostics. Journal of Personalized Medicine, 13(10), 1511. https://doi.org/10.3390/jpm13101511