The Impact of Metabolic Factors and Lipid-Lowering Drugs on Common Bile Duct Stone Recurrence after Endoscopic Sphincterotomy with Following Cholecystectomy
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sultan, S.; Baillie, J. Recurrent bile duct stones after endoscopic sphincterotomy. Gut 2004, 53, 1725–1727. [Google Scholar] [CrossRef] [PubMed]
- Song, M.E.; Chung, M.J.; Lee, D.-J.; Oh, T.G.; Park, J.Y.; Bang, S.; Park, S.W.; Song, S.Y.; Chung, J.B. Cholecystectomy for prevention of recurrence after endoscopic clearance of bile duct stones in Korea. Yonsei Med. J. 2016, 57, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Prat, F.; Malak, N.A.; Pelletier, G.; Buffet, C.; Fritsch, J.; Choury, A.D.; Altman, C.; Liguory, C.; Etienne, J.P. Biliary symptoms and complications more than 8 years after endoscopic sphincterotomy for choledocholithiasis. Gastroenterology 1996, 110, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.S.; Yoo, B.M.; Kim, J.H.; Hwang, J.C.; Yang, M.J.; Lee, K.M.; Kim, S.S.; Noh, C.K. Evaluation of risk factors for recurrent primary common bile duct stone in patients with cholecystectomy. Scand. J. Gastroenterol. 2018, 53, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Tsujino, T.; Kawabe, T.; Komatsu, Y.; Yoshida, H.; Isayama, H.; Sasaki, T.; Kogure, H.; Togawa, O.; Arizumi, T.; Matsubara, S.; et al. Endoscopic papillary balloon dilation for bile duct stone: Immediate and long-term outcomes in 1000 patients. Clin. Gastroenterol. Hepatol. 2007, 5, 130–137. [Google Scholar] [CrossRef]
- Sbeit, W.; Kadah, A.; Simaan, M.; Shahin, A.; Khoury, T. Predictors of recurrent bile duct stone after clearance by endoscopic retrograde cholangiopancreatography: A case-control study. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Zhou, M.; Liu, P.-P.; Hong, J.-B.; Li, G.-H.; Zhou, X.-J.; Chen, Y.-X. Causes associated with recurrent choledocholithiasis following therapeutic endoscopic retrograde cholangiopancreatography: A large sample sized retrospective study. World J. Clin. Cases 2019, 7, 1028. [Google Scholar] [CrossRef]
- Mazer, N.A.; Carey, M.C. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry 1983, 22, 426–442. [Google Scholar] [CrossRef]
- Crawford, J.M.; Möckel, G.; Crawford, A.; Hagen, S.; Hatch, V.; Barnes, S.; Godleski, J.; Carey, M. Imaging biliary lipid secretion in the rat: Ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J. Lipid Res. 1996, 36, 2147–2163. [Google Scholar] [CrossRef]
- Angelico, F.; Del Ben, M.; Barbato, A.; Conti, R.; Urbinati, G. Ten-year incidence and natural history of gallstone disease in a rural population of women in central Italy. The Rome Group for the Epidemiology and Prevention of Cholelithiasis (GREPCO). Ital. J. Gastroenterol. Hepatol. 1997, 29, 249–254. [Google Scholar]
- Ostrow, J.D. The etiology of pigment gallstones. Hepatology 1984, 4, 215S–222S. [Google Scholar] [CrossRef] [PubMed]
- Maki, T. Pathogenesis of calcium bilirubinate gallstone: Role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann. Surg. 1966, 164, 90. [Google Scholar] [CrossRef] [PubMed]
- Cetta, F.M. Bile infection documented as initial event in the pathogenesis of brown pigment biliary stones. Hepatology 1986, 6, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Wang, D.Q.; Portincasa, P. An update on the pathogenesis of cholesterol gallstone disease. Curr. Opin. Gastroenterol. 2018, 34, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.A.; Wittenburg, H. Cholesterol gallstone susceptibility loci: A mouse map, candidate gene evaluation, and guide to human LITH genes. Gastroenterology 2006, 131, 1943–1970. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Cohen, D.E.; Carey, M.C. Biliary lipids and cholesterol gallstone disease. J. Lipid Res. 2009, 50, S406–S411. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Carey, M.C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: Influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J. Lipid Res. 1996, 37, 606–630. [Google Scholar] [PubMed]
- Shabanzadeh, D.M.; Skaaby, T.; Sørensen, L.T.; Eugen-Olsen, J.; Jørgensen, T. Metabolic biomarkers and gallstone disease–a population-based study. Scand. J. Gastroenterol. 2017, 52, 1270–1277. [Google Scholar] [CrossRef]
- Soloway, R.D.; Trotman, B.W.; Ostrow, J.D. Pigment gallstones. Gastroenterology 1977, 72, 167–182. [Google Scholar] [CrossRef]
- Bouchier, I.A. The formation of gallstones. Keio J. Med. 1992, 41, 1–5. [Google Scholar] [CrossRef]
- Hayat, S.; Hassan, Z.; Changazi, S.H.; Zahra, A.; Noman, M.; Zain Ul Abdin, M.; Javed, H.; Ans, A.H. Comparative analysis of serum lipid profiles in patients with and without gallstones: A prospective cross-sectional study. Ann. Med. Surg. 2019, 42, 11–13. [Google Scholar] [CrossRef]
- Batajoo, H.; Hazra, N.K. Analysis of serum lipid profile in cholelithiasis patients. J. Nepal Health Res. Counc. 2013, 11, 53–55. [Google Scholar] [PubMed]
- Saraya, A.; Irshad, M.; Gandhi, B.M.; Tandon, R.K. Plasma lipid profile in gallstone patients from North India. Trop. Gastroenterol. 1995, 16, 16–21. [Google Scholar] [PubMed]
- Wang, J.; Shen, S.; Wang, B.; Ni, X.; Liu, H.; Ni, X.; Yu, R.; Suo, T.; Liu, H. Serum lipid levels are the risk factors of gallbladder stones: A population-based study in China. Lipids Health Dis. 2020, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Beckingham, I.; El Sayed, G.; Gurusamy, K.; Sturgess, R.; Webster, G.; Young, T. Updated guideline on the management of common bile duct stones (CBDS). Gut 2017, 66, 765–782. [Google Scholar] [CrossRef]
- Zhao, H.C.; He, L.; Zhou, D.C.; Geng, X.P.; Pan, F.M. Meta-analysis comparison of endoscopic papillary balloon dilatation and endoscopic sphincteropapillotomy. World J. Gastroenterol. 2013, 19, 3883–3891. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, I.; Fujita, N.; Maguchi, H.; Hasebe, O.; Igarashi, Y.; Murakami, A.; Mukai, H.; Fujii, T.; Yamao, K.; Maeshiro, K.; et al. Long-term outcomes after endoscopic sphincterotomy versus endoscopic papillary balloon dilation for bile duct stones. Gastrointest. Endosc. 2010, 72, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Wu, H.; Huang, Q.; Zeng, A.; Yu, Z.; Zhong, Z. High Levels of Serum Triglyceride, Low-density Lipoprotein Cholesterol, Total Bile Acid, and Total Bilirubin are Risk Factors for Gallstones. Clin. Lab. 2021, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Banim, P.J.; Luben, R.N.; Bulluck, H.; Sharp, S.J.; Wareham, N.J.; Khaw, K.T.; Hart, A.R. The aetiology of symptomatic gallstones quantification of the effects of obesity, alcohol and serum lipids on risk. Epidemiological and biomarker data from a UK prospective cohort study (EPIC-Norfolk). Eur. J. Gastroenterol. Hepatol. 2011, 23, 733–740. [Google Scholar] [CrossRef]
- Janowitz, P.; Wechsler, J.; Kuhn, K.; Kratzer, W.; Tudyka, J.; Swobodnik, W.; Ditschuneit, H. The relationship between serum lipids, nucleation time, and biliary lipids in patients with gallstones. Clin. Investig. 1992, 70, 430–436. [Google Scholar] [CrossRef]
- Thornton, J.; Heaton, K.; Macfarlane, D. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation. Br. Med. J. (Clin. Res. Ed.) 1981, 283, 1352–1354. [Google Scholar] [CrossRef] [PubMed]
- Robins, S.J.; Fasulo, J.M. High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile. J. Clin. Investig. 1997, 99, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.C.; Halloran, L.G.; Vlahcevic, Z.R.; Gregory, D.H.; Swell, L. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man. Science 1978, 200, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Robins, S.J.; Fasulo, J.M. Delineation of a novel hepatic route for the selective transfer of unesterified sterols from high-density lipoproteins to bile: Studies using the perfused rat liver. Hepatology 1999, 29, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mao, M.; Zhang, C.; Hu, F.; Cui, P.; Li, G.; Shi, J.; Wang, X.; Shan, X. Blood lipid metabolism and the risk of gallstone disease: A multi-center study and meta-analysis. Lipids Health Dis. 2022, 21, 26. [Google Scholar] [CrossRef]
- Holzbach, R.T.; Marsh, M.; Olszewski, M.; Holan, K. Cholesterol solubility in bile. Evidence that supersaturated bile is frequent in healthy man. J. Clin. Investig. 1973, 52, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Chiu, T.H.T.; Chang, C.C.; Lin, M.N.; Lin, C.L. Plant-Based Diet, Cholesterol, and Risk of Gallstone Disease: A Prospective Study. Nutrients 2019, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Gong, K.; Shao, X. The relationship between serum lipids, apolipoproteins level and bile lipids level, chemical type of stone. Chin. Med. J. 1995, 75, 656–659, 708. [Google Scholar]
- Atamanalp, S.S.; Keles, M.S.; Atamanalp, R.S.; Acemoglu, H.; Laloglu, E. The effects of serum cholesterol, LDL, and HDL levels on gallstone cholesterol concentration. Pak. J. Med. Sci. 2013, 29, 187. [Google Scholar] [CrossRef]
- Rao, P.J.; Jarari, A.; El-Awami, H.; Patil, T.; El-Saiety, S. Lipid profile in bile and serum of cholelithiasis patients-A comparative study. J. Basic Med. Allied Sci. 2012, 1, 27–39. [Google Scholar]
- Krawczyk, M.; Gruenhage, F.; Mahler, M.; Tirziu, S.; Acalovschi, M.; Lammert, F. The common adiponutrin variant p.I148M does not confer gallstone risk but affects fasting glucose and triglyceride levels. J. Physiol. Pharmacol. 2011, 62, 369–375. [Google Scholar] [PubMed]
- Weerakoon, H.T.; Ranasinghe, S.; Navaratne, A.; Sivakanesan, R.; Galketiya, K.B.; Rosairo, S. Serum lipid concentrations in patients with cholesterol and pigment gallstones. BMC Res. Notes 2014, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, R.; Mohan, H.; Attri, A.K.; Kaur, J.; Punia, R.P. A comparative study of serum lipid profile and gallstone disease. Indian J. Pathol. Microbiol. 2007, 50, 308–312. [Google Scholar] [PubMed]
- Moazeni-Bistgani, M.; Kheiri, S.; Ghorbanpour, K. The effects of cholecystectomy on serum lipids during one year follow-up. Research 2014, 1, 1094. [Google Scholar] [CrossRef]
- Jonkers, I.J.; Smelt, A.H.; Ledeboer, M.; Hollum, M.E.; Biemond, I.; Kuipers, F.; Stellaard, F.; Boverhof, R.; Meinders, A.E.; Lamers, C.H.; et al. Gall bladder dysmotility: A risk factor for gall stone formation in hypertriglyceridaemia and reversal on triglyceride lowering therapy by bezafibrate and fish oil. Gut 2003, 52, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.S.; Magnuson, T.H.; Lillemoe, K.D.; Frasca, P.; Pitt, H.A. The role of bacteria in gallbladder and common duct stone formation. Ann. Surg. 1989, 209, 584. [Google Scholar] [CrossRef] [PubMed]
- Tazuma, S. Epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract. Res. Clin. Gastroenterol. 2006, 20, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, F.; Lombardi, R.; Milone, M.R.; Pucci, B.; De Rienzo, S.; Budillon, A.; Bruzzese, F. Targeting mevalonate pathway in cancer treatment: Repurposing of statins. Recent Pat. Anti-Cancer Drug Discov. 2018, 13, 184–200. [Google Scholar] [CrossRef]
- Swarne, E.; Srikanth, M.; Shreyas, A.; Desai, S.; Mehdi, S.; Gangadharappa, H.; Krishna, K. Recent advances, novel targets and treatments for cholelithiasis; a narrative review. Eur. J. Pharmacol. 2021, 908, 174376. [Google Scholar]
- Kan, H.P.; Guo, W.B.; Tan, Y.F.; Zhou, J.; Liu, C.D.; Huang, Y.Q. Statin use and risk of gallstone disease: A meta-analysis. Hepatol. Res. 2015, 45, 942–948. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, J.W.; Kang, H.S.; Lim, H.; Kim, E.S.; Kim, N.Y.; Choi, H.G.; Kim, M.J. Association between Gallstone Disease and Statin Use: A Nested Case-Control Study in Korea. Pharmaceuticals 2023, 16, 536. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, M.; Brauchli, Y.B.; KrńhenbŘhl, S.; Jick, S.S.; Meier, C.R. Statin use and risk of gallstone disease followed by cholecystectomy. JAMA 2009, 302, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Haal, S.; Guman, M.S.; Bruin, S.; Schouten, R.; van Veen, R.N.; Fockens, P.; Dijkgraaf, M.G.; Hutten, B.A.; Gerdes, V.E.; Voermans, R.P. Risk factors for symptomatic gallstone disease and gallstone formation after bariatric surgery. Obes. Surg. 2022, 32, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Caroli-Bosc, F.; Le Gall, P.; Pugliese, P.; Delabre, B.; Caroli-Bosc, C.; Demarquay, J.; Delmont, J.; Rampal, P.; Montet, J. General Practitioners’ Group of Vidauban. Role of fibrates and HMG-CoA reductase inhibitors in gallstone formation: Epidemiological study in an unselected population. Dig. Dis. Sci. 2001, 46, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Portincasa, P.; de Bari, O.; Liu, K.J.; Garruti, G.; Neuschwander-Tetri, B.A.; Wang, D.Q.H. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol. Eur. J. Clin. Investig. 2013, 43, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Mo, P.; Chen, H.; Jiang, X.; Hu, F.; Zhang, F.; Shan, G.; Chen, W.; Li, S.; Xu, G. Effect of hepatic NPC1L1 on cholesterol gallstone disease and its mechanism. Heliyon 2023, 9, e15757. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Portincasa, P.; Mendez-Sanchez, N.; Uribe, M.; Wang, D.Q. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology 2008, 134, 2101–2110. [Google Scholar] [CrossRef]
- de Bari, O.; Neuschwander-Tetri, B.A.; Liu, M.; Portincasa, P.; Wang, D.Q.-H. Ezetimibe: Its novel effects on the prevention and the treatment of cholesterol gallstones and nonalcoholic fatty liver disease. J. Lipids 2012, 2012, 302847. [Google Scholar] [CrossRef]
- Ahmed, O.; Littmann, K.; Gustafsson, U.; Pramfalk, C.; Öörni, K.; Larsson, L.; Minniti, M.E.; Sahlin, S.; Camejo, G.; Parini, P.; et al. Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. J. Am. Heart Assoc. 2018, 7, e009876. [Google Scholar] [CrossRef]
Overall (N = 303) | with Recurrence (N = 61) | without Recurrence (N = 242) | p Value | |
---|---|---|---|---|
Age (years) | 65 (55–74) | 68 (60–78) | 63 (54–73) | 0.031 * |
Gender | 0.607 | |||
Male | 180 (59.4%) | 38 (62.3%) | 142 (58.7%) | |
Female | 123 (40.6%) | 23 (37.7%) | 100 (41.3%) | |
BW (kg) | 67 (58–75) | 64 (59–70) | 68 (57–75) | 0.138 |
BMI (kg/m2) | 25.0 (23.0–28.0) | 25.0 (23.1–27.3) | 25.0 (23.0–28.0) | 0.894 |
Underlying disease | ||||
HTN | 168 (55.4%) | 38 (62.3%) | 130 (53.7%) | 0.228 |
DM | 104 (34.4%) | 23 (37.7%) | 81 (33.5%) | 0.534 |
CAD | 27 (8.9%) | 4 (6.6%) | 23 (9.5%) | 0.470 |
Stroke | 14 (4.6%) | 4 (6.6%) | 10 (4.1%) | 0.420 |
Fatty liver | 0.692 | |||
No | 124 (40.9%) | 23 (37.7%) | 101 (41.7%) | |
Mild | 93 (30.7%) | 24 (39.3%) | 69 (28.5%) | |
Moderate | 79 (26.1%) | 14 (23.0%) | 65 (26.9%) | |
Severe | 7 (2.3%) | 0 (0.0%) | 7 (2.9%) | |
HbA1C (%) | 6.1 (5.7–6.5) | 6.4 (5.9–6.7) | 6.0 (5.7–6.5) | 0.013 * |
Liver function test upon diagnosis of cholangitis | ||||
AST (U/L) | 101 (41–249) | 62 (31–189) | 107.5 (46.0–274.0) | 0.002 * |
ALT (U/L) | 139 (46–264) | 85 (38–188) | 155 (67–292) | 0.005 * |
Total bilirubin (mg/dL) | 2.0 (0.9–3.6) | 1.6 (0.7–2.6) | 2.0 (0.9–4.0) | 0.021 * |
r-GT (U/L) | 212 (107–304) | 181 (105–228) | 255 (108–308) | 0.011 |
ALK-p (U/L) | 144 (98–220) | 128 (90–195) | 146 (101–229) | 0.103 |
Liver function test upon follow-up | ||||
AST (U/L) | 25 (18–30) | 25 (20–32) | 24 (18–30) | 0.095 |
ALT (U/L) | 23 (15–31) | 24 (17–34) | 23 (15–31) | 0.298 |
Follow-up time (months) | 66.0 (51.1–82.0) | 79.9 (58.6–91.6) | 65.0 (50.1–81.3) | 0.007 * |
Overall (N = 303) | with Recurrence (N = 61) | without Recurrence (N = 242) | Univariate | Multivariate | |||
---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||||
BW (kg) | 67 (58–75) | 64 (59–70) | 68 (57–75) | 0.166 | |||
BMI (kg/m2) | 25.0 (23.0–28.0) | 25.0 (23.1–27.3) | 25.0 (23.0–28.0) | 0.087 | |||
Fatty liver | 0.692 | ||||||
No | 124 (40.9%) | 23 (37.7%) | 101 (41.7%) | ||||
Mild | 93 (30.7%) | 24 (39.3%) | 69 (28.5%) | ||||
Moderate | 79 (26.1%) | 14 (23.0%) | 65 (26.9%) | ||||
Severe | 7 (2.3%) | 0 (0.0%) | 7 (2.9%) | ||||
Lipid profile | |||||||
TG (mg/dL) | 117 (81–165) | 161 (114–222) | 108 (79–149) | 1.005 (1.002–1.008) | 0.004 * | 0.574 | |
TG ≥ 150 | 49 (16.2%) | 20 (32.8%) | 29 (12.0%) | 3.583 (1.851–6.936) | 0.000 * | 0.084 | |
TG < 150 | 254 (83.8%) | 41 (67.2%) | 213 (88.0%) | ||||
LDL (mg/dL) | 97 (76–125) | 107 (81–139) | 92 (74–120) | 1.011 (1.003–1.019) | 0.004 * | 0.756 | |
LDL ≥ 130 | 70 (23.1%) | 22 (36.1%) | 48 (19.8%) | 2.28 (1.238–4.199) | 0.008 * | 0.874 | |
LDL < 130 | 233 (76.9%) | 39 (63.9%) | 194 (80.2%) | ||||
HDL (mg/dL) | 45 (39–53) | 39 (32–49) | 46 (40–54) | 0.95 (0.926–0.975) | 0.000 * | 0.936 (0.908–0.966) | 0.000 * |
HDL ≥ 40 | 226 (74.6%) | 29 (47.5%) | 197 (81.4%) | 0.207 (0.114–0.376) | 0.000 * | 0.199 (0.102–0.388) | 0.000 * |
HDL < 40 | 77 (25.4%) | 32 (52.5%) | 45 (18.6%) | ||||
Cholesterol (mg/dL) | 173.0 ± 42.1 | 186.9 ± 58.4 | 169.5 ± 36.2 | 1.010 (1.003–1.017) | 0.005 * | 0.146 | |
Cholesterol ≥ 200 | 68 (22.4%) | 27 (44.3%) | 41 (16.9%) | 3.893 (2.122–7.141) | 0.000 * | 4.558 (1.625–12.787) | 0.004 * |
Cholesterol < 200 | 235 (77.6%) | 34 (55.7%) | 201 (83.1%) | ||||
HbA1C (%) | 6.1 (5.7–6.5) | 6.4 (5.9–6.7) | 6.0 (5.7–6.5) | 0.120 | 0.454 | ||
HbA1C ≥ 6.5 | 91 (30%) | 25 (41.0%) | 66 (27.3%) | 1.852 (1.033–3.319) | 0.038 * | 0.695 | |
HbA1C < 6.5 | 212 (70%) | 36 (59.0%) | 176 (72.7%) |
Overall (N = 303) | with Recurrence (N = 61) | without Recurrence (N = 242) | Univariate | Multivariate | |||
---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||||
Statin | 104 (34.3%) | 12 (19.7%) | 92 (38.0%) | 0.399 (0.202–0.790) | 0.008 * | 0.297 (0.132–0.665) | 0.003 * |
Fenofibrate | 9 (3.0%) | 2 (3.3%) | 7 (2.9%) | 0.874 | 0.810 | ||
Ezetimibe | 16 (5.3%) | 6 (9.8%) | 10 (4.1%) | 0.084 | 5.618 (1.659–19.025) | 0.006 * | |
Ursodeoxycholic acid | 5 (1.7%) | 3 (4.9%) | 2 (0.8%) | 6.207 (1.014–38.004) | 0.048 * | 8.050 (1.188–54.573) | 0.033 * |
Aspirin | 53 (17.5%) | 7 (11.5%) | 46 (19.0%) | 0.171 | 0.603 |
Overall (N = 61) | HDL ≥ 40 (N = 29) | HDL < 40 (N = 32) | p-Value | |
---|---|---|---|---|
From first ERCP to recurrence (months) | 38.9 ± 36.0 | 39.3 ± 36.0 | 38.5 ± 36.6 | 0.935 |
From cholecystectomy to recurrence (months) | 36.5 ± 47.9 | 37.7 ± 55.9 | 35.4 ± 40.2 | 0.856 |
Overall (N = 61) | Cholesterol ≥ 200 (N = 27) | Cholesterol < 200 (N = 34) | p-Value | |
---|---|---|---|---|
From first ERCP to recurrence (months) | 38.9 ± 36.0 | 36.3 ± 36.2 | 40.9 ± 36.3 | 0.622 |
From cholecystectomy to recurrence (months) | 36.5 ± 47.9 | 34.8 ± 51.6 | 37.9 ± 45.5 | 0.803 |
Overall (N = 61) | with Statin (N = 12) | without Statin (N = 49) | p-Value | |
---|---|---|---|---|
From first ERCP to recurrence (months) | 38.9 ± 36.0 | 38.6 ± 32.9 | 39.0 ± 37.0 | 0.978 |
From cholecystectomy to recurrence (months) | 36.5 ± 47.9 | 25.8 ± 39.4 | 39.1 ± 49.8 | 0.390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-F.; Wu, C.-H.; Sung, K.-F.; Tsou, Y.-K.; Lin, C.-H.; Lee, C.-W.; Lee, M.-H.; Liu, N.-J. The Impact of Metabolic Factors and Lipid-Lowering Drugs on Common Bile Duct Stone Recurrence after Endoscopic Sphincterotomy with Following Cholecystectomy. J. Pers. Med. 2023, 13, 1490. https://doi.org/10.3390/jpm13101490
Wang S-F, Wu C-H, Sung K-F, Tsou Y-K, Lin C-H, Lee C-W, Lee M-H, Liu N-J. The Impact of Metabolic Factors and Lipid-Lowering Drugs on Common Bile Duct Stone Recurrence after Endoscopic Sphincterotomy with Following Cholecystectomy. Journal of Personalized Medicine. 2023; 13(10):1490. https://doi.org/10.3390/jpm13101490
Chicago/Turabian StyleWang, Sheng-Fu, Chi-Huan Wu, Kai-Feng Sung, Yung-Kuan Tsou, Cheng-Hui Lin, Chao-Wei Lee, Mu-Hsien Lee, and Nai-Jen Liu. 2023. "The Impact of Metabolic Factors and Lipid-Lowering Drugs on Common Bile Duct Stone Recurrence after Endoscopic Sphincterotomy with Following Cholecystectomy" Journal of Personalized Medicine 13, no. 10: 1490. https://doi.org/10.3390/jpm13101490
APA StyleWang, S.-F., Wu, C.-H., Sung, K.-F., Tsou, Y.-K., Lin, C.-H., Lee, C.-W., Lee, M.-H., & Liu, N.-J. (2023). The Impact of Metabolic Factors and Lipid-Lowering Drugs on Common Bile Duct Stone Recurrence after Endoscopic Sphincterotomy with Following Cholecystectomy. Journal of Personalized Medicine, 13(10), 1490. https://doi.org/10.3390/jpm13101490