COVID-19 and New-Onset Psychosis: A Comprehensive Review
Abstract
:1. Introduction
2. Viral Infections and Risk for Psychosis
3. COVID-19 and New-Onset Psychosis
4. Potential Etiological Pathways Linking SARS-CoV-2 Infection and New-Onset Psychosis
5. COVID-19 and New-Onset Psychosis: Possible Confounders
6. Case Presentation
6.1. Case 1
6.2. Case 2
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radua, J.; Ramella-Cravaro, V.; Ioannidis, J.P.A.; Reichenberg, A.; Phiphopthatsanee, N.; Amir, T.; Yenn Thoo, H.; Oliver, D.; Davies, C.; Morgan, C.; et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry 2018, 17, 49–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arciniegas, D.B. Psychosis. Behav. Neurol. Neuropsychiatry 2015, 21, 715–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, M.; Caroppo, E.; De Berardis, D.; Marano, G.; Avallone, C.; Kotzalidis, G.D.; Janiri, D.; Moccia, L.; Simonetti, A.; Conte, E.; et al. Psychosis in Women: Time for Personalized Treatment. J. Pers. Med. 2021, 11, 1279. [Google Scholar] [CrossRef] [PubMed]
- Moccia, L.; Janiri, D.; Pepe, M.; Dattoli, L.; Molinaro, M.; De Martin, V.; Chieffo, D.; Janiri, L.; Fiorillo, A.; Sani, G.; et al. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: An early report on the Italian general population. Brain Behav. Immun. 2020, 87, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Klaser, K.; Thompson, E.J.; Nguyen, L.H.; Sudre, C.H.; Antonelli, M.; Murray, B.; Canas, L.S.; Molteni, E.; Graham, M.S.; Kerfoot, E.; et al. Anxiety and depression symptoms after COVID-19 infection: Results from the COVID Symptom Study app. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1254–1258. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Zheng, Y.; You, C.; Tan, J.; Hu, L.; Zhang, Z.; Ding, L. Factors related to mental health of inpatients with COVID-19 in Wuhan, China. Brain Behav. Immun. 2020, 89, 587–593. [Google Scholar] [CrossRef]
- Guzick, A.G.; Candelari, A.; Wiese, A.D.; Schneider, S.C.; Goodman, W.K.; Storch, E.A. Obsessive-Compulsive Disorder During the COVID-19 Pandemic: A Systematic Review. Curr. Psychiatry Rep. 2021, 23, 71. [Google Scholar] [CrossRef]
- Janiri, D.; Carfì, A.; Kotzalidis, G.D.; Bernabei, R.; Landi, F.; Sani, G.; Gemelli Against COVID-19 Post-Acute Care Study Group. Posttraumatic Stress Disorder in Patients After Severe COVID-19 Infection. JAMA Psychiatry 2021, 78, 567–569. [Google Scholar] [CrossRef]
- Ceban, F.; Ling, S.; Lui, L.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Schou, T.M.; Joca, S.; Wegener, G.; Bay-Richter, C. Psychiatric and neuropsychiatric sequelae of COVID-19—A systematic review. Brain Behav. Immun. 2021, 97, 328–348. [Google Scholar] [CrossRef]
- Smith, C.M.; Gilbert, E.B.; Riordan, P.A.; Helmke, N.; von Isenburg, M.; Kincaid, B.R.; Shirey, K.G. COVID-19-associated psychosis: A systematic review of case reports. Gen. Hosp. Psychiatry 2021, 73, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.; Thomas, R.H.; Solomon, T.; Michael, B.D.; Nicholson, T.R.; Pollak, T.A. COVID-19 and psychosis risk: Real or delusional concern? Neurosci. Lett. 2021, 741, 135491. [Google Scholar] [CrossRef] [PubMed]
- Menninger, K.A. Psychoses Associated With Influenza: I. General Data: Statistical Analysis. JAMA 1919, 72, 235–241. [Google Scholar] [CrossRef]
- Menninger, K.A. Influenza and schizophrenia: An analysis of post-influenzal “dementia praecox,” as of 1918, and five years later: Further studies of the psychiatric aspects of influenza. Am. J. Psychiatry 1926, 5, 469–529. [Google Scholar] [CrossRef]
- Kępińska, A.P.; Iyegbe, C.O.; Vernon, A.C.; Yolken, R.; Murray, R.M.; Pollak, T.A. Schizophrenia and Influenza at the Centenary of the 1918–1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front. Psychiatry 2020, 11, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Gray, R.; Lo Monaco, S.; O’Donoghue, B.; Nelson, B.; Thompson, A.; Francey, S.; McGorry, P. The potential impact of COVID-19 on psychosis: A rapid review of contemporary epidemic and pandemic research. Schizophr. Res. 2020, 222, 79–87. [Google Scholar] [CrossRef]
- Yolken, R.H.; Torrey, E.F. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol. Psychiatry 2008, 13, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Helleberg, M.; Pedersen, M.G.; Pedersen, C.B.; Mortensen, P.B.; Obel, N. Associations between HIV and schizophrenia and their effect on HIV treatment outcomes: A nationwide population-based cohort study in Denmark. Lancet HIV 2015, 2, e344–e350. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
- Armstrong, S.C.; Cozza, K.L.; Watanabe, K.S. The misdiagnosis of delirium. Psychosomatics 1997, 38, 433–439. [Google Scholar] [CrossRef]
- Chaudhary, A.M.D.; Musavi, N.B.; Saboor, S.; Javed, S.; Khan, S.; Naveed, S. Psychosis during the COVID-19 pandemic: A systematic review of case reports and case series. J. Psychiatr. Res. 2022, 153, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Steardo, L.; Steardo, L., Jr.; Verkhratsky, A. Psychiatric face of COVID-19. Transl. Psychiatry 2020, 10, 261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. 2020, 92, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Lazartigues, E. Angiotensin-converting enzyme 2: Central regulator for cardiovascular function. Curr. Hypertens. Rep. 2010, 12, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Passos-Silva, D.G.; Brandan, E.; Santos, R.A. Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol. Sci. 2015, 36, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020, 92, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Bostancıklıoğlu, M. SARS-CoV2 entry and spread in the lymphatic drainage system of the brain. Brain Behav. Immun. 2020, 87, 122–123. [Google Scholar] [CrossRef]
- Chen, R.; Wang, K.; Yu, J.; Howard, D.; French, L.; Chen, Z.; Wen, C.; Xu, Z. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front. Neurol. 2021, 11, 573095. [Google Scholar] [CrossRef]
- Kulaga, S.S.; Miller, C. Viral respiratory infections and psychosis: A review of the literature and the implications of COVID-19. Neurosci. Biobehav. Rev. 2021, 127, 520–530. [Google Scholar] [CrossRef]
- Sisó, S.; Jeffrey, M.; González, L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010, 120, 689–705. [Google Scholar] [CrossRef]
- Adler, P.; Kolde, R.; Kull, M.; Tkachenko, A.; Peterson, H.; Reimand, J.; Vilo, J. Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods. Genome Biol. 2009, 10, R139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nataf, S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J. Med. Virol. 2020, 92, 1743–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankowski, R.; Mader, S.; Valdés-Ferrer, S.I. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukandala, G.; Tynan, R.; Lanigan, S.; O’Connor, J.J. The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci. 2016, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S.; Gray, J.; Nasca, C. Recognizing Resilience: Learning from the Effects of Stress on the Brain. Neurobiol. Stress 2015, 1, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International journal of infectious diseases. Int. J. Infect. Dis. 2020, 94, 55–58. [Google Scholar] [CrossRef]
- Tripathy, S.; Singh, N.; Singh, A.; Kar, S.K. COVID-19 and Psychotic Symptoms: The View from Psychiatric Immunology. Curr. Behav. Neurosci. Rep. 2021, 8, 172–178. [Google Scholar] [CrossRef]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 2011, 13, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Pruessner, M.; Cullen, A.E.; Aas, M.; Walker, E.F. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci. Biobehav. Rev. 2017, 73, 191–218. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.D.; McCutcheon, R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: A reconceptualization. Transl. Psychiatry 2017, 7, e1024. [Google Scholar] [CrossRef]
- Brisch, R.; Wojtylak, S.; Saniotis, A.; Steiner, J.; Gos, T.; Kumaratilake, J.; Henneberg, M.; Wolf, R. The role of microglia in neuropsychiatric disorders and suicide. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 929–945. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Juanes, A.; Losada, C.P.; Álvarez-Sesmero, S.; Santana, V.D.; Martí, I.; Urricelqui, J.; Rentero, D. Psychotic symptoms in COVID-19 patients. A retrospective descriptive study. Psychiatry Res. 2020, 291, 113254. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Xie, Q.; Fan, F.; Fan, X.P.; Wang, X.J.; Chen, M.J.; Zhong, B.L.; Chiu, H.F. COVID-19 patients managed in psychiatric inpatient settings due to first-episode mental disorders in Wuhan, China: Clinical characteristics, treatments, outcomes, and our experiences. Transl. Psychiatry 2020, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, S.J.; Klepacz, L.; Lynch, S.; Tavakkoli, M.; Dornbush, R.; Baharani, R.; Smolin, Y.; Bartell, A. COVID-19 Psychosis: A Potential New Neuropsychiatric Condition Triggered by Novel Coronavirus Infection and the Inflammatory Response? Psychosomatics 2020, 61, 551–555. [Google Scholar] [CrossRef]
- Pillinger, T.; Osimo, E.F.; Brugger, S.; Mondelli, V.; McCutcheon, R.A.; Howes, O.D. A Meta-analysis of Immune Parameters, Variability, and Assessment of Modal Distribution in Psychosis and Test of the Immune Subgroup Hypothesis. Schizophr. Bull. 2019, 45, 1120–1133. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, S.A.; Jones, P.B.; Nordstrom, T.; Timonen, M.; Mäki, P.; Miettunen, J.; Jääskeläinen, E.; Järvelin, M.R.; Stochl, J.; Murray, G.K.; et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain Behav. Immun. 2017, 59, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Al-Diwani, A.; Pollak, T.A.; Irani, S.R.; Lennox, B.R. Psychosis: An autoimmune disease? Immunology 2017, 152, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Pouget, J.G.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Han, B.; Wu, Y.; Mignot, E.; Ollila, H.M.; Barker, J.; Spain, S.; Dand, N.; Trembath, R.; et al. Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Hum. Mol. Genet. 2019, 28, 3498–3513. [Google Scholar] [CrossRef]
- Benros, M.E.; Nielsen, P.R.; Nordentoft, M.; Eaton, W.W.; Dalton, S.O.; Mortensen, P.B. Autoimmune diseases and severe infections as risk factors for schizophrenia: A 30-year population-based register study. Am. J. Psychiatry 2011, 168, 1303–1310. [Google Scholar] [CrossRef]
- Brun, G.; Hak, J.F.; Coze, S.; Kaphan, E.; Carvelli, J.; Girard, N.; Stellmann, J.P. COVID-19-White matter and globus pallidum lesions: Demyelination or small-vessel vasculitis? Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e777. [Google Scholar] [CrossRef] [PubMed]
- Mighdoll, M.I.; Tao, R.; Kleinman, J.E.; Hyde, T.M. Myelin, myelin-related disorders, and psychosis. Schizophr. Res. 2015, 161, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ellul, M.; Varatharaj, A.; Nicholson, T.R.; Pollak, T.A.; Thomas, N.; Easton, A.; Zandi, M.S.; Manji, H.; Solomon, T.; Carson, A.; et al. Defining causality in COVID-19 and neurological disorders. J. Neurol. Neurosurg. Psychiatry 2020, 91, 811–812. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Tantardini, M.; De Simone, S.; Ramella-Cravaro, V.; Oliver, D.; Kingdon, J.; Kotlicka-Antczak, M.; Valmaggia, L.; Lee, J.; Millan, M.J.; et al. Deconstructing vulnerability for psychosis: Meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. Eur. Psychiatry 2017, 40, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Moccia, L.; Conte, E.; Ambrosecchia, M.; Janiri, D.; Di Pietro, S.; De Martin, V.; Di Nicola, M.; Rinaldi, L.; Sani, G.; Gallese, V.; et al. Anomalous self-experience, body image disturbance, and eating disorder symptomatology in first-onset anorexia nervosa. Eat. Weight. Disord. 2022, 27, 101–108. [Google Scholar] [CrossRef]
- Park, H.; Lee, N.; Lee, J.H.; Lee, D.; Kim, K.A.; Kim, H.S.; Oh, E.; Ha, J.H.; Hyun, S.Y.; Lee, J.; et al. Stress Experience of COVID-19 Patients as Reported by Psychological Supporters in South Korea: A Qualitative Study. Front. Psychiatry 2022, 13, 834965. [Google Scholar] [CrossRef]
- Sani, G.; Janiri, D.; Moccia, L.; Albert, U.; Carrà, G.; Carmassi, C.; Cirulli, F.; Dell’Osso, B.; Menculini, G.; Nanni, M.G.; et al. Psychopathological burden and coping strategies among frontline and second-line Italian healthcare workers facing the COVID-19 emergency: Findings from the COMET collaborative network. J. Affect. Disord. 2022, 311, 78–83. [Google Scholar] [CrossRef]
- Mizrahi, R. Social stress and psychosis risk: Common neurochemical substrates? Neuropsychopharmacology 2016, 41, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, R.; Parvez, S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem. Pharmacol. 2020, 180, 114184. [Google Scholar] [CrossRef]
- Tsay, S.V.; Bartoces, M.; Gouin, K.; Kabbani, S.; Hicks, L.A. Antibiotic Prescriptions Associated With COVID-19 Outpatient Visits Among Medicare Beneficiaries, April 2020 to April 2021. JAMA 2022, 327, 2018–2019. [Google Scholar] [CrossRef]
- Essali, N.; Miller, B.J. Psychosis as an adverse effect of antibiotics. Brain Behav. Immun. Health 2020, 9, 100148. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; Revet, A.; Yrondi, A.; Rousseau, V.; Degboe, Y.; Montastruc, F. Psychiatric Disorders and Hydroxychloroquine for Coronavirus Disease 2019 (COVID-19): A VigiBase Study. Drug Saf. 2020, 43, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.C.E.; Weaver, J.; Kostka, K.; Duarte-Salles, T.; Abrahao, M.T.F.; Alghoul, H.; Alser, O.; Alshammari, T.M.; Areia, C.; Biedermann, P.; et al. Risk of depression, suicide and psychosis with hydroxychloroquine treatment for rheumatoid arthritis: A multinational network cohort study. Rheumatology 2021, 60, 3222–3234. [Google Scholar] [CrossRef] [PubMed]
- Papazisis, G.; Siafis, S.; Cepatyte, D.; Giannis, D.; Stamoula, E.; Tzachanis, D.; Egberts, T. Safety profile of chloroquine and hydroxychloroquine: A disproportionality analysis of the FDA Adverse Event Reporting System database. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6003–6012. [Google Scholar] [CrossRef]
- Talarico, F.; Chakravarty, S.; Liu, Y.S.; Greenshaw, A.J.; Passos, I.C.; Cao, B. Systematic Review of Psychiatric Adverse Effects Induced by Chloroquine and Hydroxychloroquine: Case Reports and Population Studies. Ann. Pharm. 2022, 10600280221113572, Epub ahead of print 2022 Aug 4. [Google Scholar] [CrossRef] [PubMed]
- Brönnimann, D.; Vareil, M.O.; Sibon, I.; Lagier, J.C.; Lepidi, H.; Puges, M.; Haneche, F.; Raoult, D.; Desclaux, A.; Neau, D.; et al. Limbic encephalitis as a relapse of Whipple’s disease with digestive involvement and spondylodiscitis. Infection 2019, 47, 637–641. [Google Scholar] [CrossRef]
- Richardson, P.J.; Ottaviani, S.; Prelle, A.; Stebbing, J.; Casalini, G.; Corbellino, M. CNS penetration of potential anti-COVID-19 drugs. J. Neurol. 2020, 267, 1880–1882. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.Y.; Go, M.L.; Wang, D.Y.; Cheah, I.K.; Halliwell, B. Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications. Mol. Neurobiol. 2021, 58, 106–117. [Google Scholar] [CrossRef]
- Athari, S.Z.; Farajdokht, F.; Sadigh-Eteghad, S.; Mohajeri, D.; Nourazar, M.A.; Mohaddes, G. Hydroxychloroquine attenuated motor impairment and oxidative stress in a rat 6-hydroxydopamine model of Parkinson’s disease. Int. J. Neurosci 2022, 1–10, Epub ahead of print 2022 May 15. [Google Scholar] [CrossRef]
- Hamm, B.S.; Rosenthal, L.J. Psychiatric Aspects of Chloroquine and Hydroxychloroquine Treatment in the Wake of Coronavirus Disease-2019: Psychopharmacological Interactions and Neuropsychiatric Sequelae. Psychosomatics 2020, 61, 597–606. [Google Scholar] [CrossRef]
- Train, G.J.; Winkler, E.G. Homicidal psychosis while under ACTH. Cortico-steroid therapy for pemphigus vulgaris during involution. Psychosomatics 1962, 3, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Holler, G.; Menninger-Lerchenthal, E. Corticosteroidpsychose. Asthma und Geisteskrankheiten. I. Mitteilung: Vom Gesichtspunkt des Nervenarztes [Corticosteroid psychosis. Asthma and mental disorders. I. From the viewpoint of the neurologist]. Wien. Z. Für Nervenheilkd. Und Deren Grenzgeb. 1963, 20, 277–287. [Google Scholar]
- Bräunig, P.; Bleistein, J.; Rao, M.L. Suicidality and corticosteroid-induced psychosis. Biol. Psychiatry 1989, 26, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Perantie, D.C.; Brown, E.S. Corticosteroids, immune suppression, and psychosis. Curr. Psychiatry Rep. 2002, 4, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Benyamin, R.M.; Vallejo, R.; Kramer, J.; Rafeyan, R. Corticosteroid induced psychosis in the pain management setting. Pain Physician 2018, 11, 917–920. [Google Scholar]
- Kazi, S.E.; Hoque, S. Acute Psychosis Following Corticosteroid Administration. Cureus 2021, 13, e18093. [Google Scholar] [CrossRef]
- Fischer, M.; Kim, P.Y. Corticosteroid-Induced Psychosis After a Single Transforaminal Epidural Steroid Injection. Wis. Med. J. 2019, 118, 91–94. [Google Scholar]
- Gable, M.; Depry, D. Sustained corticosteroid- induced mania and psychosis despite cessation: A case study and brief literature review. Int. J. Psychiatry Med. 2015, 50, 398–404. [Google Scholar] [CrossRef]
- Müller, N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr. Bull. 2018, 44, 973–982. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moccia, L.; Kotzalidis, G.D.; Bartolucci, G.; Ruggiero, S.; Monti, L.; Biscosi, M.; Terenzi, B.; Ferrara, O.M.; Mazza, M.; Di Nicola, M.; et al. COVID-19 and New-Onset Psychosis: A Comprehensive Review. J. Pers. Med. 2023, 13, 104. https://doi.org/10.3390/jpm13010104
Moccia L, Kotzalidis GD, Bartolucci G, Ruggiero S, Monti L, Biscosi M, Terenzi B, Ferrara OM, Mazza M, Di Nicola M, et al. COVID-19 and New-Onset Psychosis: A Comprehensive Review. Journal of Personalized Medicine. 2023; 13(1):104. https://doi.org/10.3390/jpm13010104
Chicago/Turabian StyleMoccia, Lorenzo, Georgios D. Kotzalidis, Giovanni Bartolucci, Sara Ruggiero, Laura Monti, Marco Biscosi, Beatrice Terenzi, Ottavia M. Ferrara, Marianna Mazza, Marco Di Nicola, and et al. 2023. "COVID-19 and New-Onset Psychosis: A Comprehensive Review" Journal of Personalized Medicine 13, no. 1: 104. https://doi.org/10.3390/jpm13010104