Next Article in Journal
CNVs Associated with Different Clinical Phenotypes of Psoriasis and Anti-TNF-Induced Palmoplantar Pustulosis
Next Article in Special Issue
Determinants of Treatment Benefit and Post-Treatment Survival for Patients with Hepatocellular Carcinoma Enrolled in Second-Line Trials after the Failure of Sorafenib Treatment
Previous Article in Journal
Primary Synovial Sarcoma of the Kidney: Diagnostic Approach and Therapeutic Modalities for a Rare Nosological Entity
Previous Article in Special Issue
Clinical and Novel Biomarkers in Penile Carcinoma: A Prospective Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Perspective

Steps towards a Multiple Myeloma Cure?

by
Alessandro Gozzetti
* and
Monica Bocchia
Division of Hematology, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
*
Author to whom correspondence should be addressed.
J. Pers. Med. 2022, 12(9), 1451; https://doi.org/10.3390/jpm12091451
Submission received: 4 August 2022 / Revised: 1 September 2022 / Accepted: 2 September 2022 / Published: 3 September 2022
(This article belongs to the Special Issue The Present and Future of Personalized Medicine in Oncology)

Abstract

:
Multiple myeloma survival has increased in last 20 years because of new treatments, better clinical management due to novel diagnostic tools such as imaging, and better understanding of the disease, biologically and genetically. Novel drugs have been introduced that act with different therapeutic mechanisms, but so have novel therapeutic strategies such as consolidation and maintenance after autologous stem cell transplant. Imaging (such as PET-CT and MRI) has been applied at diagnosis and after therapy for minimal residual disease monitoring. Multiparametric flow and molecular NGS may detect, with high-sensitivity, residual monoclonal plasma cells in the bone marrow. With this novel therapeutic and biological approach, a considerable fraction of multiple myeloma patients can achieve durable remission or even MGUS-like regression, which can ultimately lead to disease disappearance. The big dogma, “Myeloma is an incurable disease”, is hopefully fading.

1. Introduction

1.1. Multiple Myeloma Revolution: New Drugs

Multiple Myeloma (MM) is still considered an incurable disease in the current literature, although quite a “therapeutic and diagnostic revolution” has happened in last 20 years [1,2,3]. This revolution probably started after the pioneer study that found the drug thalidomide to be effective in relapsed/refractory MM patients (RRMM) [4]. Later, the antiapoptotic and immunomodulatory mechanisms of these drugs (IMIDs) were demonstrated [5,6]. A crucial new concept began to enter hematologists’ minds, i.e., the possibility of novel drugs that act differently from chemotherapy in MM. Drugs that can target not only the monoclonal plasma cell but also the bone marrow microenvironment have been shown to be of importance. Then, the proteasome inhibitor (PI) bortezomib, the second- and third-generation IMIDs lenalidomide and pomalidomide, the second-generation PI carfilzomib, and monoclonal antibodies against CD38, SLAM7, and BCMA were added to the therapeutic armamentarium [7,8,9,10,11,12,13,14,15,16,17,18]. These drugs, combined in triplets and quadruplets, can increase the depth of response during induction therapy; this is subsequently consolidated with autologous stem cell transplant (ASCT), leading to complete responses (CR) in more than 80% of the newly diagnosed transplant-eligible patients (NDTE) [19,20,21,22,23,24,25,26,27]. Progression-free and overall survival (PFS and OS) have rapidly increased from a median of 2–3 years to 6–8 years [2]. In addition, particular forms of aggressive myeloma such as extramedullary or high-risk cytogenetic MM can partially benefit from new drugs [28,29,30,31,32,33,34] and MGRS [35]. Patients with high-risk features, i.e., del 17p, t 4;14, and 14;16, may benefit from new compounds. These patients usually achieve CR after initial treatment, but they usually experience early relapse. Triplet and quadruplet combinations have demonstrated significative benefits when used in HR patients in many clinical trials [19,20,21,22,23,24,25,26,27]. Additionally, elderly patients can benefit from novel drugs that increase disease responses irrespective of age, but still have less eradicating potential than ASCT [36,37,38,39,40,41].

1.2. Minimal Residual Disease

The new concept of minimal residual disease (MRD) was introduced in MM by the Spanish group ten years ago with the intent of measuring, with high sensitivity, the disease after therapy [42,43,44,45,46]. It is not enough nowadays, even in clinical practice, to measure responses only using a bone marrow biopsy. Multi-parametric or Next-Generation Flow (NGF) and Next-Generation Sequencing (NGS) are tools recognized by the International Myeloma Working Group (IMWG) to better define CR [47]. Sensitivity has been set by the IMWG at 10−5 but many clinical trials are now moving to 10−6. MRD has been proven to be the best surrogate for PFS and OS. All new clinical trials put MRD as an endpoint that can quickly measure the depth of response without the need to wait longer for a follow-up to measure PFS and OS. Sustained MRD negativity at 1 year after therapy is an even better prognosticator [48,49,50,51,52,53,54,55,56,57,58,59,60,61,62]. A recent meta-analysis was reported on >8000 MM patients enrolled in 44 studies. MRD negativity, measured using NGF or NGS, was a surrogate for increased PFS and OS [59]. In this study, MRD was always predictive of survival at different sensitivity levels of 10−4, 10−5, and 10−6, but the best cut-off was set at 10−6. Outside clinical trials, the standard of care in NDTE patients in Europe has become daratumumab, which is associated with bortezomib thalidomide dexamethasone as an induction regimen to ASCT (Dara-VTD). The study CASSIOPEIA led to its approval. In this study, Dara-VTD was compared to VTD in 1086 patients, and MRD negativity was 64% vs. 44%, respectively [39]. PFS was not reached in the Dara arm vs. 46 months in the VTD arm. Novel triplets and quadruplets are being tested, as is the monoclonal anti-CD38 antibody associated with bortezomib lenalidomide (Dara-VRD, GRIFFIN study, with 51% MRD negativity reported) [60]. Additionally, in other studies MRD-driven therapy is being investigated, with the potential, in the future, to stop or resume therapy based on the absence or the presence of residual disease, respectively [61]. MRD is a predictor of survival irrespective of age. In fact, the best treatment regimen in clinical practice outside trials is now daratumumab plus lenalidomide and dexamethasone (Dara-Rd) from the MAIA trial, which showed MRD negativity in 31% vs. 10% in MM patients with Rd >65 years old who were not eligible for transplant. PFS is not reached at 50 months with Dara-Rd vs. 30 months with Rd [41]. Myeloma is often localized and patchy in the marrow, and limitations may derive from needle aspiration. In the future, peripheral blood could hopefully be considered as a “liquid biopsy” for MRD assessment using new methods such as circulating monoclonal plasma cells, tumor DNA, and mass-spectrometry [62,63,64,65,66,67,68,69,70].

1.3. Imaging

Imaging is very important for disease assessment in MM. In fact, it is essential to detect residual disease outside the bone marrow (extramedullary disease). PET-CT and whole-body MRI have been demonstrated as prognosticators for long-term PFS and OS and have become important tools in routine practice after non-Hodgkin lymphomas lessons [71,72,73,74,75,76,77]. MM plasma cells can persist after therapy as focal lesions or as diffuse infiltration in the bone representing an incomplete response to therapy. This residual disease could also be a cause of relapse in MM patients. It is recommended by the IMWG criteria to evaluate imaging after therapy to assess the response [78]. FDG-PET is a functional imaging technique that detects bone disease in MM, and it is optimal for assessing MRD. Imaging combined with MRD detection using NGF or NGS in the bone marrow can provide an even better prognosis. In fact, these techniques combined, when negative, were independent predictors of longer PFS and OS in different randomized clinical trials. Standardization is needed both for PET-CT and MRI and new recommendations have been proposed [78]. However, new tracers and more sensitive imaging methods are needed since pitfalls may exist.

1.4. Immunotherapy: Bispecific Antibodies and CART

MM is characterized by a high propensity for infections. This is due to a humorally and cellularly defective immune system [79]. Immune response is also determinant in antitumor activity, and novel therapies are being developed, and some approved, for the treatment of multiple myeloma. Bispecific antibodies (BITEs) that bind myeloma antigens and T-cells have shown significant responses in patients and are multi-refractory to other treatments (PI, IMIDs, and CD38). The anti-BCMA antigen teclistamab, given subcutaneously weekly, led to more than very good partial responses (>VGPR) in 55% of the patients treated with acceptable toxicity [80]. Erlanatamab is another BITE-targeting BCMA and CD3 that led to overall responses in 83% of RRMM patients who were heavily pretreated [81]. Talquetamab is an anti-GPRC5D BITE that has been evaluated and gave VGPR in 53% of the patients treated [82]. CART cell therapy is a new cellular immunotherapy that specifically binds to a myeloma antigen (BCMA) and led to a high overall response rate (64–97%) in heavily pretreated MM patients. Manufacturing time and failures of CART infusion are limitations that need to be ameliorated. Strategies that also consider the timing of CART infusion are being studied [83,84,85].

2. Conclusions

The survival progress in MM is evident and patients’ quality of life is being ameliorated. A large number of patients are reaching MRD negativity after therapy. How long this MRD negative status will last is an open question. New therapies and new flow and molecular methods for residual disease detection and imaging will help to better manage patients. Immunotherapies such as BITEs and CART are the new “Kids on the block” and promise to help reach and maintain deep responses. Altogether, these tools will help MM patients to become disease-free and, hopefully, cured.

Author Contributions

A.G., conceptualization and writing; M.B., writing and supervision. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We acknowledge all the patients and staff at the department of Hematology, University of Siena.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Brenner, H.; Gondos, A.; Pulte, D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008, 111, 2521–2526. [Google Scholar] [CrossRef]
  2. Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef]
  3. Gozzetti, A.; Candi, V.; Papini, G.; Bocchia, M. Therapeutic Advancements in Multiple Myeloma. Front. Oncol. 2014, 4, 241. [Google Scholar] [CrossRef] [PubMed]
  4. Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; et al. Antitumor Activity of Thalidomide in Refractory Multiple Myeloma. N. Engl. J. Med. 1999, 341, 1565–1571. [Google Scholar] [CrossRef]
  5. Zhu, Y.X.; Braggio, E.; Shi, C.-X.; Bruins, L.A.; Schmidt, J.E.; Van Wier, S.; Chang, X.-B.; Bjorklund, C.C.; Fonseca, R.; Bergsagel, P.L.; et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011, 118, 4771–4779. [Google Scholar] [CrossRef]
  6. Zhu, Y.X.; Braggio, E.; Shi, C.-X.; Kortuem, K.M.; Bruins, L.A.; Schmidt, J.E.; Chang, X.-B.; Langlais, P.; Luo, M.; Jedlowski, P.; et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 2014, 124, 536–545. [Google Scholar] [CrossRef] [PubMed]
  7. Hideshima, T.; Richardson, P.; Chauhan, D.; Palombella, V.J.; Elliott, P.J.; Adams, J.; Anderson, K.C. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001, 61, 3071–3076. [Google Scholar]
  8. Orlowski, R.Z.; Stinchcombe, T.E.; Mitchell, B.S.; Shea, T.C.; Baldwin, A.S.; Stahl, S.; Adams, J.; Esseltine, D.-L.; Elliott, P.J.; Pien, C.S.; et al. Phase I Trial of the Proteasome Inhibitor PS-341 in Patients With Refractory Hematologic Malignancies. J. Clin. Oncol. 2002, 20, 4420–4427. [Google Scholar] [CrossRef] [PubMed]
  9. Hideshima, T.; Chauhan, D.; Hayashi, T.; Akiyama, M.; Mitsiades, N.; Mitsiades, C.; Podar, K.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003, 22, 8386–8393. [Google Scholar] [CrossRef]
  10. Ocio, E.M.; Richardson, P.G.; Rajkumar, S.V.; Palumbo, A.; Mateos, M.V.; Orlowski, R.; Kumar, S.; Usmani, S.; Roodman, D.; Niesvizky, R.; et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: A report from the International Myeloma Working Group (IMWG). Leukemia 2014, 28, 525–542. [Google Scholar] [CrossRef]
  11. Palumbo, A.; Falco, P.; Falcone, A.; Benevolo, G.; Canepa, L.; Gay, F.; Larocca, A.; Magarotto, V.; Gozzetti, A.; Luraschi, A.; et al. Melphalan, Prednisone, and Lenalidomide for Newly Diagnosed Myeloma: Kinetics of Neutropenia and Thrombocytopenia and Time-to-Event Results. Clin. Lymphoma Myeloma 2009, 9, 145–150. [Google Scholar] [CrossRef] [PubMed]
  12. Durie, B.G.M.; Hoering, A.; Abidi, M.H.; Rajkumar, S.V.; Epstein, J.; Kahanic, S.P.; Thakuri, M.; Reu, F.; Reynolds, C.M.; Sexton, R.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet 2017, 389, 519–527. [Google Scholar] [CrossRef] [PubMed]
  13. Attal, M.; Lauwers-Cances, V.; Marit, G.; Caillot, D.; Moreau, P.; Facon, T.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Garderet, L.; et al. Lenalidomide Maintenance after Stem-Cell Transplantation for Multiple Myeloma. N. Engl. J. Med. 2012, 366, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
  14. McCarthy, P.L.; Owzar, K.; Hofmeister, C.C.; Hurd, D.D.; Hassoun, H.; Richardson, P.G.; Giralt, S.; Stadtmauer, E.A.; Weisdorf, D.J.; Vij, R.; et al. Lenalidomide after Stem-Cell Transplantation for Multiple Myeloma. N. Engl. J. Med. 2012, 366, 1770–1781. [Google Scholar] [CrossRef]
  15. Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.-V. Minimal Residual Disease Status as a Surrogate Endpoint for Progression-free Survival in Newly Diagnosed Multiple Myeloma Studies: A Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [Google Scholar] [CrossRef]
  16. Gandolfi, S.; Prada, C.P.; Richardson, P.G. How I treat the young patient with multiple myeloma. Blood 2018, 132, 1114–1124. [Google Scholar] [CrossRef]
  17. Touzeau, C.; Moreau, P.; Dumontet, C. Monoclonal antibody therapy in multiple myeloma. Leukemia 2017, 31, 1039–1047. [Google Scholar] [CrossRef]
  18. Gozzetti, A.; Bacchiarri, F.; Sammartano, V.; Defina, M.; Sicuranza, A.; Mecacci, B.; Zappone, E.; Cencini, E.; Fabbri, A.; Raspadori, D.; et al. Long-Term Safety of Rapid Daratumumab Infusions in Multiple Myeloma Patients. Front. Oncol. 2020, 10, 570187. [Google Scholar] [CrossRef]
  19. Korde, N.; Roschewski, M.; Zingone, A.; Kwok, M.; Manasanch, E.E.; Bhutani, M.; Tageja, N.; Kazandjian, D.; Mailankody, S.; Wu, P.; et al. Treatment With Carfilzomib-Lenalidomide-Dexamethasone With Lenalidomide Extension in Patients With Smoldering or Newly Diagnosed Multiple Myeloma. JAMA Oncol. 2015, 1, 746–754. [Google Scholar] [CrossRef]
  20. Lonial, S.; Anderson, K.C. Association of response endpoints with survival outcomes in multiple myeloma. Leukemia 2014, 28, 258–268. [Google Scholar] [CrossRef]
  21. Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef] [PubMed]
  23. Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; Masszi, T.; Špička, I.; Oriol, A.; Hájek, R.; Rosiñol, L.; Siegel, D.S.; Mihaylov, G.G.; et al. Carfilzomib, Lenalidomide, and Dexamethasone for Relapsed Multiple Myeloma. N. Engl. J. Med. 2015, 372, 142–152. [Google Scholar] [CrossRef] [PubMed]
  24. Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. IFM 2009 Study. Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef]
  25. Luoma, S.; Anttila, P.; Säily, M.; Lundan, T.; Heiskanen, J.; Siitonen, T.; Kakko, S.; Putkonen, M.; Ollikainen, H.; Terävä, V.; et al. RVD induction and autologous stem cell transplantation followed by lenalidomide maintenance in newly diagnosed multiple myeloma: A phase 2 study of the Finnish Myeloma Group. Ann. Hematol. 2019, 98, 2781–2792. [Google Scholar] [CrossRef]
  26. Roussel, M.; Lauwers-Cances, V.; Robillard, N.; Hulin, C.; Leleu, X.; Benboubker, L.; Marit, G.; Moreau, P.; Pegourie, B.; Caillot, D.; et al. Front-Line Transplantation Program With Lenalidomide, Bortezomib, and Dexamethasone Combination As Induction and Consolidation Followed by Lenalidomide Maintenance in Patients With Multiple Myeloma: A Phase II Study by the Intergroupe Francophone du Myélome. J. Clin. Oncol. 2014, 32, 2712–2717. [Google Scholar] [CrossRef]
  27. Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef]
  28. Gozzetti, A.; Cerase, A.; Lotti, F.; Rossi, D.; Palumbo, A.; Petrucci, M.T.; Patriarca, F.; Nozzoli, C.; Cavo, M.; Offidani, M.; et al. GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto) Myeloma Working Party. Extramedullary intracranial localization of multiple myeloma and treatment with novel agents: A retrospective survey of 50 patients. Cancer 2012, 118, 1574–1584. [Google Scholar] [CrossRef]
  29. Gozzetti, A.; Cerase, A. Novel Agents in CNS Myeloma Treatment. Central Nerv. Syst. Agents Med. Chem. 2014, 14, 23–27. [Google Scholar] [CrossRef]
  30. Sammartano, V.; Cerase, A.; Venanzi, V.; Mazzei, M.A.; Vangone, B.E.; Gentili, F.; Chiarotti, I.; Bocchia, M.; Gozzetti, A. Central Nervous System Myeloma and Unusual Extramedullary Localizations: Real Life Practical Guidance. Front. Oncol. 2022, 12, 934240. [Google Scholar] [CrossRef]
  31. Castillo, J.J.; Jurczyszyn, A.; Brozova, L.; Crusoe, E.; Czepiel, J.; Davila, J.; Dispenzieri, A.; Eveillard, M.; Fiala, M.A.; Ghobrial, I.M.; et al. IgM myeloma: A multicenter retrospective study of 134 patients. Am. J. Hematol. 2017, 92, 746–751. [Google Scholar] [CrossRef] [PubMed]
  32. Jurczyszyn, A.; Olszewska-Szopa, M.; Hungria, V.; Crusoe, E.; Pika, T.; Delforge, M.; Leleu, X.; Rasche, L.; Nooka, A.K.; Druzd-Sitek, A.; et al. Cutaneous involvement in multiple myeloma: A multi-institutional retrospective study of 53 patients. Leuk. Lymphoma 2015, 57, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
  33. Jurczyszyn, A.; Radocha, J.; Davila, J.; Fiala, M.A.; Gozzetti, A.; Grzasko, N.; Robak, P.; Hus, I.; Waszczuk-Gajda, A.; Kazimierczak, R.G.; et al. Prognostic indicators in primary plasma cell leukaemia: A multicentre retrospective study of 117 patients. Br. J. Haematol. 2018, 180, 831–839. [Google Scholar] [CrossRef] [PubMed]
  34. Avivi, I.; Cohen, Y.C.; Suska, A.; Shragai, T.; Mikala, G.; Garderet, L.; Seny, G.M.; Glickman, S.; Jayabalan, D.S.; Niesvizky, R.; et al. Hematogenous extramedullary relapse in multiple myeloma—A multicenter retrospective study in 127 patients. Am. J. Hematol. 2019, 94, 1132–1140. [Google Scholar] [CrossRef]
  35. Gozzetti, A.; Guarnieri, A.; Zamagni, E.; Zakharova, E.; Coriu, D.; Bittrich, M.; Pika, T.; Tovar, N.; Schutz, N.; Ciofini, S.; et al. Monoclonal gammopathy of renal significance (MGRS): Real-world data on outcomes and prognostic factors. Am. J. Hematol. 2022, 97, 877–884. [Google Scholar] [CrossRef] [PubMed]
  36. Martín-Mateos, M.-L.; Oriol, A.; Martinez-Lopez, J.; Teruel, A.-I.; De La Guía, A.L.; López, J.; Bengoechea, E.; Pérez, M.; Martínez, R.; Palomera, L.; et al. GEM2005 trial update comparing VMP/VTP as induction in elderly multiple myeloma patients: Do we still need alkylators? Blood 2014, 124, 1887–1893. [Google Scholar] [CrossRef]
  37. Spencer, A.U.; Lentzsch, S.; Weisel, K.; Avet-Loiseau, H.; Mark, T.M.; Spicka, I.; Masszi, T.; Lauri, B.; Levin, M.-D.; Bosi, A. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of CASTOR. Haematologica 2018, 103, 2079–2087. [Google Scholar] [CrossRef]
  38. Dimopoulos, M.A.; San-Miguel, J.; Belch, A.; White, D.; Benboubker, L.; Cook, G.; Leiba, M.; Morton, J.; Ho, P.J.; Kim, K.; et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of POLLUX. Haematologica 2018, 103, 2088–2096. [Google Scholar] [CrossRef]
  39. Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
  40. Mills, J.R.; Barnidge, D.R.; Dispenzieri, A.; Murray, D.L. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017, 7, e590. [Google Scholar] [CrossRef]
  41. Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef] [PubMed]
  42. Paiva, B.D.L.; Gutierrez, N.; Rosiñol, L.; Vidriales, M.-B.; Montalbán, M.; Martínez-López, J.; Mateos, M.-V.; Cibeira, M.-T.; Cordón, L.; Oriol, A.; et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 2012, 119, 687–691. [Google Scholar] [CrossRef]
  43. Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; Van Der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
  44. Arroz, M.; Came, N.; Lin, P.; Chen, W.; Yuan, C.; Lagoo, A.; Monreal, M.; de Tute, R.; Vergilio, J.-A.; Rawstron, A.C.; et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom. Part B Clin. Cytom. 2015, 90, 31–39. [Google Scholar] [CrossRef] [PubMed]
  45. Gozzetti, A.; Raspadori, D.; Bacchiarri, F.; Sicuranza, A.; Pacelli, P.; Ferrigno, I.; Tocci, D.; Bocchia, M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Applications in Clinical Practice. J. Pers. Med. 2020, 10, 120. [Google Scholar] [CrossRef]
  46. Landgren, O.; Rajkumar, S.V. New Developments in Diagnosis, Prognosis, and Assessment of Response in Multiple Myeloma. Clin. Cancer Res. 2016, 22, 5428–5433. [Google Scholar] [CrossRef]
  47. Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
  48. Bai, Y.; Orfao, A.; Chim, C. Molecular detection of minimal residual disease in multiple myeloma. Br. J. Haematol. 2018, 181, 11–26. [Google Scholar] [CrossRef]
  49. Yao, Q.; Bai, Y.; Orfao, A.; Chim, C. Standardized Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma. Front. Oncol. 2019, 9, 449. [Google Scholar] [CrossRef]
  50. Korde, N.; Mailankody, S.; Roschewski, M.; Faham, M.; Kotwaliwale, C.; Moorhead, M.; Kwok, M.L.; Manasanch, E.E.; Bhutani, M.; Tageja, N.; et al. Minimal Residual Disease (MRD) Testing in Newly Diagnosed Multiple myeloma (MM) Patients: A Prospective Head-to-Head Assessment of Cell-Based, Molecular, and Molecular-Imaging Modalities. Blood 2014, 124, 2105. [Google Scholar] [CrossRef]
  51. Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.-L.; Dejoie, T.; Maheo, S.; Stoppa, A.-M.; Pegourie, B.; et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
  52. Avet-Loiseau, H.; Bene, M.C.; Wuilleme, S.; Corre, J.; Attal, M.; Arnulf, B.; Garderet, L.; Macro, M.; Stoppa, A.-M.; Delforge, M.; et al. Concordance of Post-consolidation Minimal Residual Disease Rates by Multiparametric Flow Cytometry and Next-generation Sequencing in CASSIOPEIA. Clin. Lymphoma Myeloma Leuk. 2019, 19, e3–e4. [Google Scholar] [CrossRef]
  53. Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; González, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.; Paiva, B.D.L.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014, 123, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
  54. Rawstron, A.C.; Orfao, A.; Beksac, M.; Bezdickova, L.; Brooimans, R.A.; Bumbea, H.; Dalva, K.; Fuhler, G.; Gratama, J.; Hose, D.; et al. European Myeloma Network. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008, 93, 431–438. [Google Scholar] [CrossRef]
  55. Gupta, R.; Bhaskar, A.; Kumar, L.; Sharma, A.; Jain, P. Flow Cytometric Immunophenotyping and Minimal Residual Disease Analysis in Multiple Myeloma. Am. J. Clin. Pathol. 2009, 132, 728–732. [Google Scholar] [CrossRef] [PubMed]
  56. Sanoja-Flores, L.; Flores-Montero, J.; Puig, N.; Contreras-Sanfeliciano, T.; Pontes, R.; Corral-Mateos, A.; García-Sánchez, O.; Díez-Campelo, M.; De Magalhães, R.J.P.; García-Martín, L.; et al. Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy. Blood 2019, 134, 2218–2222. [Google Scholar] [CrossRef]
  57. Garcés, J.J.; Cedena, M.T.; Puig, N.; Burgos, L.; Perez, J.J.; Cordon, L.; Flores-Montero, J.; Sanoja-Flores, L.; Calasanz, M.J.; Ortiol, A.; et al. Circulating Tumor Cells for the Staging of Patients With Newly Diagnosed Transplant-Eligible Multiple Myeloma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
  58. Oberle, A.; Brandt, A.; Voigtlaender, M.; Thiele, B.; Radloff, J.; Schulenkorf, A.; Alawi, M.; Akyüz, N.; März, M.; Ford, C.T.; et al. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica 2017, 102, 1105–1111. [Google Scholar] [CrossRef]
  59. Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A meta-analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
  60. Voorhees, P.M.; Kaufman, J.L.; Laubach, J.P.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef]
  61. Landgren, O.; Giralt, S. MRD-driven treatment paradigm for newly diagnosed transplant eligible multiple myeloma patients. Bone Marrow Transplant. 2016, 51, 913–914. [Google Scholar] [CrossRef] [PubMed]
  62. Biancon, G.; Gimondi, S.; Vendramin, A.; Carniti, C.; Corradini, P. Noninvasive Molecular Monitoring in Multiple Myeloma Patients Using Cell-Free Tumor DNA: A pilot study. J. Mol. Diagn. 2018, 20, 859–870. [Google Scholar] [CrossRef]
  63. Mazzotti, C.; Buisson, L.; Maheo, S.; Perrot, A.; Chretien, M.-L.; Leleu, X.; Hulin, C.; Manier, S.; Hébraud, B.; Roussel, M.; et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018, 2, 2811–2813. [Google Scholar] [CrossRef] [PubMed]
  64. Landgren, O.; Owen, R.G. Better therapy requires better response evaluation: Paving the way for minimal residual disease testing for every myeloma patient. Cytom. Part B Clin. Cytom. 2016, 90, 14–20. [Google Scholar] [CrossRef]
  65. Munshi, N.C.; Anderson, K.C. Minimal Residual Disease in Multiple Myeloma. J. Clin. Oncol. 2013, 31, 2523–2526. [Google Scholar] [CrossRef]
  66. Mailankody, S.; Korde, N.; Lesokhin, A.M.; Lendvai, N.; Hassoun, H.; Stetler-Stevenson, M.; Landgren, O. Minimal residual disease in multiple myeloma: Bringing the bench to the bedside. Nat. Rev. Clin. Oncol. 2015, 12, 286–295. [Google Scholar] [CrossRef]
  67. Rawstron, A.C.; De Tute, R.M.; Haughton, J.; Owen, R.G. Measuring disease levels in myeloma using flow cytometry in combination with other laboratory techniques: Lessons from the past 20 years at the Leeds Haematological Malignancy Diagnostic Service. Cytom. Part B Clin. Cytom. 2015, 90, 54–60. [Google Scholar] [CrossRef]
  68. Rawstron, A.C.; Child, J.A.; De Tute, R.M.; Davies, F.E.; Gregory, W.M.; Bell, S.E.; Szubert, A.J.; Navarro-Coy, N.; Drayson, M.T.; Feyler, S.; et al. Minimal Residual Disease Assessed by Multiparameter Flow Cytometry in Multiple Myeloma: Impact on Outcome in the Medical Research Council Myeloma IX Study. J. Clin. Oncol. 2013, 31, 2540–2547. [Google Scholar] [CrossRef]
  69. Chapman, J.R.; Thoren, K.L. Tracking of low disease burden in multiple myeloma: Using mass spectrometry assays in peripheral blood. Best Pract. Res. Clin. Haematol. 2020, 33, 101142. [Google Scholar] [CrossRef]
  70. Usmani, S.Z.; Mitchell, A.; Waheed, S.; Crowley, J.; Hoering, A.; Petty, N.; Brown, T.; Bartel, T.; Anaissie, E.; Van Rhee, F.; et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 2013, 121, 1819–1823. [Google Scholar] [CrossRef]
  71. Bartel, T.B.; Haessler, J.; Brown, T.L.Y.; Shaughnessy, J.D., Jr.; van Rhee, F.; Anaissie, E.; Alpe, T.; Angtuaco, E.; Walker, R.; Epstein, J.; et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009, 114, 2068–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Li, H.; Li, F.; Zhou, X.; Mei, J.; Song, P.; An, Z.; Zhao, Q.; Guo, X.; Wang, X.; Zhai, Y. Achieving minimal residual disease-negative by multiparameter flow cytometry may ameliorate a poor prognosis in MM patients with high-risk cytogenetics: A retrospective single-center analysis. Ann. Hematol. 2019, 98, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
  73. Jamet, B.; Zamagni, E.; Nanni, C.; Bailly, C.; Carlier, T.; Touzeau, C.; Michaud, A.-V.; Moreau, P.; Bodet-Milin, C.; Kraeber-Bodere, F. Functional Imaging for Therapeutic Assessment and Minimal Residual Disease Detection in Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 5406. [Google Scholar] [CrossRef]
  74. Zamagni, E.; Patriarca, F.; Nanni, C.; Zannetti, B.; Englaro, E.; Pezzi, A.; Tacchetti, P.; Buttignol, S.; Perrone, G.; Brioli, A.; et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 2011, 118, 5989–5995. [Google Scholar] [CrossRef] [PubMed]
  75. Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.-M.; et al. Prospective Evaluation of MRI and PET-CT at Diagnosis and Before Maintenance Therapy in Symptomatic Patients with Multiple Myeloma Included in the IFM/DFCI 2009 Trial. J. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef]
  76. Zinzani, P.L.; Zompatori, M.; Bendandi, M.; Battista, G.; Fanti, S.; Barbieri, E.; Gherlinzoni, F.; Rimondi, M.R.; Frezza, G.; Pisi, P.; et al. Monitoring Bulky Mediastinal Disease with Gallium-67, CT-Scan and Magnetic Resonance Imaging in Hodgkin’s Disease and High-Grade Non-Hodgkin’s Lymphoma. Leuk. Lymphoma 1996, 22, 131–135. [Google Scholar] [CrossRef]
  77. Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Bailly, C.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Gamberi, B.; et al. Standardization of 18F-FDG–PET/CT According to Deauville Criteria for Metabolic Complete Response Definition in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 39, 116–125. [Google Scholar] [CrossRef]
  78. Raje, N.S.; Anaissie, E.; Kumar, S.K.; Lonial, S.; Martin, T.; Gertz, M.A.; Krishnan, A.; Hari, P.; Ludwig, H.; O’Donnell, E.; et al. Consensus guidelines and recommendations for infection prevention in multiple myeloma: A report from the International Myeloma Working Group. Lancet Haematol. 2022, 9, e143–e161. [Google Scholar] [CrossRef]
  79. Moreau, P.; Usmani, S.Z.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; et al. Updated Results from MajesTEC-1: Phase 1/2 Study of Teclistamab, a B-Cell Maturation Antigen x CD3 Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma. Blood 2021, 138 (Suppl. S1), 896. [Google Scholar] [CrossRef]
  80. Sebag, M.; Raje, N.S.; Bahlis, N.J.; Costello, C.; Dholaria, B.; Solh, M.; Levy, M.Y.; Tomasson, M.H.; Dube, H.; Damore, M.A.; et al. Elranatamab (PF-06863135), a B-Cell Maturation Antigen (BCMA) Targeted CD3-Engaging Bispecific Molecule, for Patients with Relapsed or Refractory Multiple Myeloma: Results from Magnetismm-1. Blood 2021, 138 (Suppl. S1), 895. [Google Scholar] [CrossRef]
  81. Chari, A.; Berdeja, J.G.; Oriol, A.; Van De Donk, N.W.C.J.; Rodriguez, P.; Askari, E.; Mateos, M.-V.; Minnema, M.C.; Verona, R.; Girgis, S.; et al. A Phase 1, First-in-Human Study of Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D (GPRC5D) x CD3 Bispecific Antibody, in Patients with Relapsed and/or Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 40–41. [Google Scholar] [CrossRef]
  82. Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
  83. Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
  84. Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
  85. McLellan, A.D.; Rad, S.M.A.H. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol. Cell Biol. 2019, 97, 664–674. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gozzetti, A.; Bocchia, M. Steps towards a Multiple Myeloma Cure? J. Pers. Med. 2022, 12, 1451. https://doi.org/10.3390/jpm12091451

AMA Style

Gozzetti A, Bocchia M. Steps towards a Multiple Myeloma Cure? Journal of Personalized Medicine. 2022; 12(9):1451. https://doi.org/10.3390/jpm12091451

Chicago/Turabian Style

Gozzetti, Alessandro, and Monica Bocchia. 2022. "Steps towards a Multiple Myeloma Cure?" Journal of Personalized Medicine 12, no. 9: 1451. https://doi.org/10.3390/jpm12091451

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop