The False Dawn of Polygenic Risk Scores for Human Disease Prediction
Abstract
1. From the Early Days of Human Genetics to the Birth of Polygenic Risk Scores (PRS)
«A relatively important positive or negative association of the HL-A determinant with some well-characterized disease would be of the utmost predictive value, allowing the introduction of preventive treatment, and possibly to the eradication of the disease». [1]
2. From GWAS to PRS
3. The Different Uses of PRS: From Research to Clinics
4. Erroneous Assumptions of PRS
4.1. The Polygenic Additive Liability Model of Common Disease Genetic Architecture
4.2. GWAS and Causal Inference
4.3. PRS as a Tool to Predict Individual Risk of Disease
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dausset, J.; Colombani, J. (Eds.) Histocompatibility Testing 1972; Munksgaard: Copenhagen, Denmark, 1973. [Google Scholar]
- Buhler, S.; Sanchez-Mazas, A. HLA DNA Sequence Variation among Human Populations: Molecular Signatures of Demographic and Selective Events. PLoS ONE 2011, 6, e14643. [Google Scholar] [CrossRef] [PubMed]
- Gourraud, P.-A.; Khankhanian, P.; Cereb, N.; Yang, S.Y.; Feolo, M.; Maiers, M.; Rioux, J.D.; Hauser, S.; Oksenberg, J. HLA Diversity in the 1000 Genomes Dataset. PLoS ONE 2014, 9, e97282. [Google Scholar] [CrossRef] [PubMed]
- Degioanni, A.; Darlu, P.; Raffoux, C. Analysis of the French National Registry of Unrelated Bone Marrow Donors, Using Surnames as a Tool for Improving Geographical Localisation of HLA Haplotypes. Eur. J. Hum. Genet. 2003, 11, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Murci, L. Human Immunology through the Lens of Evolutionary Genetics. Cell 2019, 177, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.A.; Valdes, A.M. Genetics of the HLA Region in the Prediction of Type 1 Diabetes. Curr. Diab. Rep. 2011, 11, 533–542. [Google Scholar] [CrossRef]
- Sollid, L.M.; Markussen, G.; Ek, J.; Gjerde, H.; Vartdal, F.; Thorsby, E. Evidence for a Primary Association of Celiac Disease to a Particular HLA-DQ Alpha/Beta Heterodimer. J. Exp. Med. 1989, 169, 345–350. [Google Scholar] [CrossRef]
- Clerget-Darpoux, F.; Bouguerra, F.; Kastally, R.; Semana, G.; Babron, M.; Debbabi, A.; Bennaceur, B.; Eliaou, J. High Risk Genotypes for Celiac Disease. Comptes Rendus Acad. Sci. III 1994, 317, 931–936. [Google Scholar]
- Bourgey, M.; Calcagno, G.; Tinto, N.; Gennarelli, D.; Margaritte-Jeannin, P.; Greco, L.; Limongelli, M.G.; Esposito, O.; Marano, C.; Troncone, R.; et al. HLA Related Genetic Risk for Coeliac Disease. Gut 2007, 56, 1054–1059. [Google Scholar] [CrossRef]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting Individualized Probabilities of Developing Breast Cancer for White Females Who Are Being Examined Annually. J. Natl. Cancer Inst. 1989, 81, 1879–1886. [Google Scholar] [CrossRef]
- Botstein, D.; Risch, N. Discovering Genotypes Underlying Human Phenotypes: Past Successes for Mendelian Disease, Future Approaches for Complex Disease. Nat. Genet. 2003, 33, 228–237. [Google Scholar] [CrossRef]
- Campion, D.; Dumanchin, C.; Hannequin, D.; Dubois, B.; Belliard, S.; Puel, M.; Thomas-Anterion, C.; Michon, A.; Martin, C.; Charbonnier, F.; et al. Early-Onset Autosomal Dominant Alzheimer Disease: Prevalence, Genetic Heterogeneity, and Mutation Spectrum. Am. J. Hum. Genet. 1999, 65, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Froguel, P.; Vaxillaire, M.; Sun, F.; Velho, G.; Zouali, H.; Butel, M.O.; Lesage, S.; Vionnet, N.; Clément, K.; Fougerousse, F.; et al. Close Linkage of Glucokinase Locus on Chromosome 7p to Early-Onset Non-Insulin-Dependent Diabetes mellitus. Nature 1992, 356, 162–164. [Google Scholar] [CrossRef]
- Hall, J.M.; Lee, M.K.; Newman, B.; Morrow, J.E.; Anderson, L.A.; Huey, B.; King, M.C. Linkage of Early-Onset Familial Breast Cancer to Chromosome 17q21. Science 1990, 250, 1684–1689. [Google Scholar] [CrossRef]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W. A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wooster, R.; Neuhausen, S.L.; Mangion, J.; Quirk, Y.; Ford, D.; Collins, N.; Nguyen, K.; Seal, S.; Tran, T.; Averill, D. Localization of a Breast Cancer Susceptibility Gene, BRCA2, to Chromosome 13q12-13. Science 1994, 265, 2088–2090. [Google Scholar] [CrossRef] [PubMed]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G.; et al. Identification of the Breast Cancer Susceptibility Gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Génin, E.; Feingold, J.; Clerget-Darpoux, F. Identifying Modifier Genes of Monogenic Disease: Strategies and Difficulties. Hum. Genet. 2008, 124, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Margaritte, P.; Bonaiti-Pellie, C.; King, M.C.; Clerget-Darpoux, F. Linkage of Familial Breast Cancer to Chromosome 17q21 May Not Be Restricted to Early-Onset Disease. Am. J. Hum. Genet. 1992, 50, 1231–1234. [Google Scholar]
- Claus, E.B.; Risch, N.; Thompson, W.D. Genetic Analysis of Breast Cancer in the Cancer and Steroid Hormone Study. Am. J. Hum. Genet. 1991, 48, 232–242. [Google Scholar]
- Parmigiani, G.; Berry, D.A.; Aguilar, O. Determining Carrier Probabilities for Breast Cancer–Susceptibility Genes BRCA1 and BRCA2. Am. J. Hum. Genet. 1998, 62, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Risch, H.A.; McLaughlin, J.R.; Cole, D.E.; Rosen, B.; Bradley, L.; Kwan, E.; Jack, E.; Vesprini, D.J.; Kuperstein, G.; Abrahamson, J.L.; et al. Prevalence and Penetrance of Germline BRCA1 and BRCA2 Mutations in a Population Series of 649 Women with Ovarian Cancer. Am. J. Hum. Genet. 2001, 68, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.L.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V.; et al. Sequence Variant Classification and Reporting: Recommendations for Improving the Interpretation of Cancer Susceptibility Genetic Test Results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tokita, M.J.; Chen, E.S.; Ghosh, R.; Chen, T.; Feng, Y.; Gorman, E.; Gibellini, F.; Ward, P.A.; Braxton, A.; et al. A Clinical Survey of Mosaic Single Nucleotide Variants in Disease-Causing Genes Detected by Exome Sequencing. Genome Med. 2019, 11, 48. [Google Scholar] [CrossRef]
- Legrand, A.; Devriese, M.; Dupuis-Girod, S.; Simian, C.; Venisse, A.; Mazzella, J.M.; Auribault, K.; Adham, S.; Frank, M.; Albuisson, J.; et al. Frequency of de Novo Variants and Parental Mosaicism in Vascular Ehlers-Danlos Syndrome. Genet. Med. 2019, 21, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Goddard, M.E.; Visscher, P.M. Prediction of Individual Genetic Risk to Disease from Genome-Wide Association Studies. Genome Res. 2007, 17, 1520–1528. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. Genetics 1990, 124, 743–756. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Fisher, R.A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Génin, E. Missing heritability of complex diseases: Case solved? Human Genetics 2020, 139, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Choi, S.W.; Mak, T.S.-H.; O’Reilly, P.F. Tutorial: A Guide to Performing Polygenic Risk Score Analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M.; Vassos, E. Polygenic Risk Scores: From Research Tools to Clinical Instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Michailidou, K.; Dennis, J.; Lush, M.; Fachal, L.; Lee, A.; Tyrer, J.P.; Chen, T.-H.; Wang, Q.; Bolla, M.K.; et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am. J. Hum. Genet. 2019, 104, 21–34. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; McGuffog, L.; Barrowdale, D.; Lee, A.; Soucy, P.; Dennis, J.; Domchek, S.M.; Robson, M.; Spurdle, A.B.; Ramus, S.J.; et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J. Natl. Cancer Inst. 2017, 109, djw302. [Google Scholar] [CrossRef]
- Muranen, T.A.; Mavaddat, N.; Khan, S.; Fagerholm, R.; Pelttari, L.; Lee, A.; Aittomäki, K.; Blomqvist, C.; Easton, D.F.; Nevanlinna, H. Polygenic Risk Score Is Associated with Increased Disease Risk in 52 Finnish Breast Cancer Families. Breast Cancer Res. Treat. 2016, 158, 463–469. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wand, H.; Lambert, S.A.; Tamburro, C.; Iacocca, M.A.; O’Sullivan, J.W.; Sillari, C.; Kullo, I.J.; Rowley, R.; Dron, J.S.; Brockman, D.; et al. Improving Reporting Standards for Polygenic Scores in Risk Prediction Studies. Nature 2021, 591, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Kemper, K.E.; Hayes, B.J.; Goddard, M.E.; Visscher, P.M. Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans: Genomic Prediction. Genetics 2019, 211, 1131–1141. [Google Scholar] [CrossRef]
- Carter, C.O. The Inheritance of Congenital Pyloric Stenosis. Br. Med. Bull. 1961, 17, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S. The Inheritance of Liability to Certain Diseases, Estimated from the Incidence among Relatives. Ann. Hum. Genet. 1965, 29, 51–76. [Google Scholar] [CrossRef]
- Fraser, F.C. The Multifactorial/Threshold Concept—Uses and Misuses. Teratology 1976, 14, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Gaál, Z.; Balogh, I. Monogenic Forms of Diabetes mellitus. Exp. Suppl. 2019, 111, 385–416. [Google Scholar] [CrossRef]
- Génin, E.; Clerget-Darpoux, F. Revisiting the Polygenic Additive Liability Model through the Example of Diabetes mellitus. Hum. Hered. 2015, 80, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Sotiriou, C. Luminal Breast Cancer: From Biology to Treatment. Nat. Rev. Clin. Oncol. 2013, 10, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
- Bohmanova, J.; Misztal, I.; Tsuruta, S.; Norman, H.D.; Lawlor, T.J. Short Communication: Genotype by Environment Interaction Due to Heat Stress. J. Dairy Sci. 2008, 91, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Hammami, H.; Vandenplas, J.; Vanrobays, M.-L.; Rekik, B.; Bastin, C.; Gengler, N. Genetic Analysis of Heat Stress Effects on Yield Traits, Udder Health, and Fatty Acids of Walloon Holstein Cows. J. Dairy Sci. 2015, 98, 4956–4968. [Google Scholar] [CrossRef] [PubMed]
- Cheruiyot, E.K.; Nguyen, T.T.T.; Haile-Mariam, M.; Cocks, B.G.; Abdelsayed, M.; Pryce, J.E. Genotype-by-Environment (Temperature-Humidity) Interaction of Milk Production Traits in Australian Holstein Cattle. J. Dairy Sci. 2020, 103, 2460–2476. [Google Scholar] [CrossRef]
- Bohlouli, M.; Yin, T.; Hammami, H.; Gengler, N.; König, S. Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows. J. Dairy Sci. 2021, 104, 6847–6860. [Google Scholar] [CrossRef] [PubMed]
- Bohlouli, M.; Alijani, S.; Naderi, S.; Yin, T.; König, S. Prediction Accuracies and Genetic Parameters for Test-Day Traits from Genomic and Pedigree-Based Random Regression Models with or without Heat Stress Interactions. J. Dairy Sci. 2019, 102, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.W.; Lewontin, R.C. The Heritability Hang-Up. Science 1975, 190, 1163–1168. [Google Scholar] [CrossRef]
- Burt, C.H. Heritability Studies: Methodological Flaws, Invalidated Dogmas, and Changing Paradigms. In Genetics, Health and Society; Advances in Medical Sociology; Emerald Group Publishing Limited: Bingley, UK, 2015; Volume 16, pp. 1–44. ISBN 978-1-78350-581-4. [Google Scholar]
- Gottlieb, G. Individual Development and Evolution: The Genesis of Novel Behavior; Psychology Press: London, UK, 2001. [Google Scholar]
- Moore, D.S.; Shenk, D. The Heritability Fallacy. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1400. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Dumitrascu, D.; Capitanescu, B.; Petcu, E.; Surugiu, R.; Fang, W.-H.; Dumbrava, D.-A. Dietary Habits, Lifestyle Factors and Neurodegenerative Diseases. Neural Regen. Res. 2020, 15, 394. [Google Scholar] [CrossRef] [PubMed]
- Munafò, M.R.; Tilling, K.; Taylor, A.E.; Evans, D.M.; Davey Smith, G. Collider Scope: When Selection Bias Can Substantially Influence Observed Associations. Int. J. Epidemiol. 2018, 47, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Hemani, G. Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Fan, S.; Meng, Q.; Gao, B.; Grossman, J.; Yadegari, M.; Goldberg, I.D.; Rosen, E.M. Alcohol Stimulates Estrogen Receptor Signaling in Human Breast Cancer Cell Lines. Cancer Res. 2000, 60, 5635–5639. [Google Scholar]
- Mostafavi, H.; Harpak, A.; Agarwal, I.; Conley, D.; Pritchard, J.K.; Przeworski, M. Variable Prediction Accuracy of Polygenic Scores within an Ancestry Group. Elife 2020, 9, e48376. [Google Scholar] [CrossRef]
- Janssens, A.C.J.W. Validity of Polygenic Risk Scores: Are We Measuring What We Think We Are? Hum. Mol. Genet. 2019, 28, R143–R150. [Google Scholar] [CrossRef] [PubMed]
- Margaritte-Jeannin, P.; Babron, M.C.; Bourgey, M.; Louka, A.S.; Clot, F.; Percopo, S.; Coto, I.; Hugot, J.P.; Ascher, H.; Sollid, L.M.; et al. HLA-DQ Relative Risks for Coeliac Disease in European Populations: A Study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 2004, 63, 562–567. [Google Scholar] [CrossRef]
- Aschard, H.; Chen, J.; Cornelis, M.C.; Chibnik, L.B.; Karlson, E.W.; Kraft, P. Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases. Am. J. Hum. Genet. 2012, 90, 962–972. [Google Scholar] [CrossRef]
- Templeton, A.R.; Weiss, K.M.; Nickerson, D.A.; Boerwinkle, E.; Sing, C.F. Cladistic Structure within the Human Lipoprotein Lipase Gene and Its Implications for Phenotypic Association Studies. Genetics 2000, 156, 1259–1275. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H. The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common Human Diseases. Hum. Hered. 2003, 56, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.F.; Moore, J.H. Why Epistasis Is Important for Tackling Complex Human Disease Genetics. Genome Med. 2014, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Culverhouse, R.; Suarez, B.K.; Lin, J.; Reich, T. A Perspective on Epistasis: Limits of Models Displaying No Main Effect. Am. J. Hum. Genet. 2002, 70, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Babb de Villiers, C.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. BOADICEA: A Comprehensive Breast Cancer Risk Prediction Model Incorporating Genetic and Nongenetic Risk Factors. Genet. Med. 2019, 21, 1708–1718. [Google Scholar] [CrossRef]
- Garcia-Closas, M.; Gunsoy, N.B.; Chatterjee, N. Combined Associations of Genetic and Environmental Risk Factors: Implications for Prevention of Breast Cancer. J. Natl. Cancer Inst. 2014, 106, dju305. [Google Scholar] [CrossRef]
- Oliver, D.; Radua, J.; Reichenberg, A.; Uher, R.; Fusar-Poli, P. Psychosis Polyrisk Score (PPS) for the Detection of Individuals At-Risk and the Prediction of Their Outcomes. Front. Psychiatry 2019, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.A.; Abraham, G.; Inouye, M. Towards Clinical Utility of Polygenic Risk Scores. Hum. Mol. Genet. 2019, 28, R133–R142. [Google Scholar] [CrossRef] [PubMed]
- Wald, N.J.; Old, R. The Illusion of Polygenic Disease Risk Prediction. Genet. Med. 2019, 21, 1705–1707. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-Wide Polygenic Scores for Common Diseases Identify Individuals with Risk Equivalent to Monogenic Mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.C.J.W.; Martens, F.K. Reflection on Modern Methods: Revisiting the Area under the ROC Curve. Int. J. Epidemiol. 2020, 49, 1397–1403. [Google Scholar] [CrossRef]
- Halligan, S.; Altman, D.G.; Mallett, S. Disadvantages of Using the Area under the Receiver Operating Characteristic Curve to Assess Imaging Tests: A Discussion and Proposal for an Alternative Approach. Eur. Radiol. 2015, 25, 932–939. [Google Scholar] [CrossRef]
- Génin, E.; Clerget-Darpoux, F. The Missing Heritability Paradigm: A Dramatic Resurgence of the GIGO Syndrome in Genetics. Hum. Hered. 2015, 79, 1–4. [Google Scholar] [CrossRef]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The Personal and Clinical Utility of Polygenic Risk Scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Murray, G.K.; Visscher, P.M. From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. JAMA Psychiatry 2021, 78, 101–109. [Google Scholar] [CrossRef]
- Treff, N.R.; Zimmerman, R.; Bechor, E.; Hsu, J.; Rana, B.; Jensen, J.; Li, J.; Samoilenko, A.; Mowrey, W.; Van Alstine, J.; et al. Validation of Concurrent Preimplantation Genetic Testing for Polygenic and Monogenic Disorders, Structural Rearrangements, and Whole and Segmental Chromosome Aneuploidy with a Single Universal Platform. Eur. J. Med. Genet. 2019, 62, 103647. [Google Scholar] [CrossRef]
- Treff, N.R.; Eccles, J.; Marin, D.; Messick, E.; Lello, L.; Gerber, J.; Xu, J.; Tellier, L.C.A.M. Preimplantation Genetic Testing for Polygenic Disease Relative Risk Reduction: Evaluation of Genomic Index Performance in 11,883 Adult Sibling Pairs. Genes 2020, 11, 648. [Google Scholar] [CrossRef]
- Lombardo, P.A. The Power of Heredity and the Relevance of Eugenic History. Genet. Med. 2018, 20, 1305–1311. [Google Scholar] [CrossRef]
- Lázaro-Muñoz, G.; Pereira, S.; Carmi, S.; Lencz, T. Screening Embryos for Polygenic Conditions and Traits: Ethical Considerations for an Emerging Technology. Genet. Med. 2021, 23, 432–434. [Google Scholar] [CrossRef]
- Bourgain, C.; Génin, E.; Cox, N.; Clerget-Darpoux, F. Are Genome-Wide Association Studies All That We Need to Dissect the Genetic Component of Complex Human Diseases? Eur. J. Hum. Genet. 2007, 15, 260–263. [Google Scholar] [CrossRef]
- Nelson, R.M.; Pettersson, M.E.; Carlborg, Ö. A Century after Fisher: Time for a New Paradigm in Quantitative Genetics. Trends Genet. 2013, 29, 669–676. [Google Scholar] [CrossRef]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzig, A.F.; Clerget-Darpoux, F.; Génin, E. The False Dawn of Polygenic Risk Scores for Human Disease Prediction. J. Pers. Med. 2022, 12, 1266. https://doi.org/10.3390/jpm12081266
Herzig AF, Clerget-Darpoux F, Génin E. The False Dawn of Polygenic Risk Scores for Human Disease Prediction. Journal of Personalized Medicine. 2022; 12(8):1266. https://doi.org/10.3390/jpm12081266
Chicago/Turabian StyleHerzig, Anthony F., Françoise Clerget-Darpoux, and Emmanuelle Génin. 2022. "The False Dawn of Polygenic Risk Scores for Human Disease Prediction" Journal of Personalized Medicine 12, no. 8: 1266. https://doi.org/10.3390/jpm12081266
APA StyleHerzig, A. F., Clerget-Darpoux, F., & Génin, E. (2022). The False Dawn of Polygenic Risk Scores for Human Disease Prediction. Journal of Personalized Medicine, 12(8), 1266. https://doi.org/10.3390/jpm12081266