Detection of Patients with Congenital and Often Concealed Long-QT Syndrome by Novel Deep Learning Models
Abstract
:1. Introduction
2. Methods
2.1. Study Cohort
2.2. Outcomes
2.3. Statistical Analysis
2.4. Machine Learning
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, S.R.; Park, K.; Alweis, R. Long QT Syndrome: A Comprehensive Review of the Literature and Current Evidence. Curr. Probl. Cardiol. 2019, 44, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, C. Diagnosis and clinical management of long-QT syndrome. Curr. Opin. Cardiol. 2018, 33, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M. Long QT syndrome: Reduced repolarization reserve and the genetic link. J. Intern. Med. 2006, 259, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Timothy, K.W.; Vincent, G.M.; Lehmann, M.H.; Fox, J.; Giuli, L.C.; Shen, J.; Splawski, I.; Priori, S.G.; Compton, S.J.; et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 2000, 102, 2849–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerman, M.J.; Khositseth, A.; Tester, D.J.; Hejlik, J.B.; Shen, W.K.; Porter, C.B. Epinephrine-induced QT interval prolongation: A gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin. Proc. 2002, 77, 413–421. [Google Scholar] [CrossRef]
- Sy, R.W.; van der Werf, C.; Chattha, I.S.; Chockalingam, P.; Adler, A.; Healey, J.S.; Perrin, M.; Gollob, M.H.; Skanes, A.C.; Yee, R.; et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation 2011, 124, 2187–2194. [Google Scholar] [CrossRef] [Green Version]
- Churet, M.; Luttoo, K.; Hocini, M.; Haissaguerre, M.; Sacher, F.; Duchateau, J. Diagnostic reproducibility of epinephrine drug challenge interpretation in suspected long QT syndrome. J. Cardiovasc. Electrophysiol. 2019, 30, 896–901. [Google Scholar] [CrossRef]
- Sugrue, A.; Rohatgi, R.K.; Noseworthy, P.A.; Kremen, V.; Bos, J.M.; Qiang, B.; Sapir, Y.; Attia, Z.I.; Scott, C.G.; Brady, P.; et al. Architectural T-Wave Analysis and Identification of On-Therapy Breakthrough Arrhythmic Risk in Type 1 and Type 2 Long-QT Syndrome. Circ. Arrhythm. Electrophysiol. 2017, 10, e005648. [Google Scholar] [CrossRef]
- Sugrue, A.; Noseworthy, P.A.; Kremen, V.; Bos, J.M.; Qiang, B.; Rohatgi, R.K.; Sapir, Y.; Attia, Z.I.; Brady, P.; Caraballo, P.J.; et al. Automated T-wave analysis can differentiate acquired QT prolongation from congenital long QT syndrome. Ann. Noninvasive Electrocardiol. 2017, 22, e12455. [Google Scholar] [CrossRef]
- Postema, P.G.; Wilde, A.A. The measurement of the QT interval. Curr. Cardiol. Rev. 2014, 10, 287–294. [Google Scholar] [CrossRef]
- Garson, A., Jr. How to measure the QT interval—What is normal? Am. J. Cardiol. 1993, 72, 14B–16B. [Google Scholar] [CrossRef]
- Moss, A.J. Measurement of the QT interval and the risk associated with QTc interval prolongation: A review. Am. J. Cardiol. 1993, 72, 23B–25B. [Google Scholar] [CrossRef]
- Sugrue, A.; Noseworthy, P.A.; Kremen, V.; Bos, J.M.; Qiang, B.; Rohatgi, R.K.; Sapir, Y.; Attia, Z.I.; Brady, P.; Asirvatham, S.J.; et al. Identification of Concealed and Manifest Long QT Syndrome Using a Novel T Wave Analysis Program. Circ. Arrhythm. Electrophysiol. 2016, 9, e003830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, C.M.; Bos, J.M.; Rohatgi, R.K.; Ackerman, M.J. Beyond the length and look of repolarization: Defining the non-QTc electrocardiographic profiles of patients with congenital long QT syndrome. Heart Rhythm. 2018, 15, 1413–1419. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017, 28, 162–169. [Google Scholar] [CrossRef]
- Rahimian, E.; Zabihi, S.; Atashzar, S.F.; Asif, A.; Mohammadi, A. XceptionTime: Independent Time-Window Xceptiontime Architecture for Hand Gesture Classification. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1304–1308. [Google Scholar]
- Chaibub Neto, E.; Pratap, A.; Perumal, T.M.; Tummalacherla, M.; Snyder, P.; Bot, B.M.; Trister, A.D.; Friend, S.H.; Mangravite, L.; Omberg, L. Detecting the impact of subject characteristics on machine learning-based diagnostic applications. NPJ Digit. Med. 2019, 2, 99. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, C.; Thalamus, J.; Kristoffersen, D.T.; Svendsen, M.V.; Holla, O.L.; Heldal, K.; Haugaa, K.H.; Hysing, J. QT prolongation predicts short-term mortality independent of comorbidity. Europace 2019, 21, 1254–1260. [Google Scholar] [CrossRef]
- Sawicki, P.T.; Dahne, R.; Bender, R.; Berger, M. Prolonged QT interval as a predictor of mortality in diabetic nephropathy. Diabetologia 1996, 39, 77–81. [Google Scholar] [CrossRef]
- Rohatgi, R.K.; Sugrue, A.; Bos, J.M.; Cannon, B.C.; Asirvatham, S.J.; Moir, C.; Owen, H.J.; Bos, K.M.; Kruisselbrink, T.; Ackerman, M.J. Contemporary Outcomes in Patients With Long QT Syndrome. J. Am. Coll. Cardiol. 2017, 70, 453–462. [Google Scholar] [CrossRef]
- Bos, J.M.; Attia, Z.I.; Albert, D.E.; Noseworthy, P.A.; Friedman, P.A.; Ackerman, M.J. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiol. 2021, 6, 532–538. [Google Scholar] [CrossRef]
- Prifti, E.; Fall, A.; Davogustto, G.; Pulini, A.; Denjoy, I.; Funck-Brentano, C.; Khan, Y.; Durand-Salmon, A.; Badilini, F.; Wells, Q.S.; et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur. Heart J. 2021, 42, 3948–3961. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Tan, H.L. Long QT syndrome, artificial intelligence, and common sense. Eur. Heart J. 2021, 42, 3962–3964. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.H.; Suzuki, F.; Fromm, B.S.; Frankovich, D.; Elko, P.; Steinman, R.T.; Fresard, J.; Baga, J.J.; Taggart, R.T. T wave “humps” as a potential electrocardiographic marker of the long QT syndrome. J. Am. Coll. Cardiol. 1994, 24, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Hermans, B.J.M.; Stoks, J.; Bennis, F.C.; Vink, A.S.; Garde, A.; Wilde, A.A.M.; Pison, L.; Postema, P.G.; Delhaas, T. Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis. Europace 2018, 20, iii113–iii119. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Friedman, P.A.; Noseworthy, P.A.; Lopez-Jimenez, F.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Munger, T.M.; Asirvatham, S.J.; Scott, C.G.; et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ. Arrhythm. Electrophysiol. 2019, 12, e007284. [Google Scholar] [CrossRef]
Control Group | LQTS Group | Matched Control Group | Matched LQTS Group | p Value, Control vs. LQTS Group | p Value, Matched Control vs. Matched LQTS Group | |
---|---|---|---|---|---|---|
Number of Individuals | 161 | 124 | 47 | 50 | ||
ECGs, n | 565 | 165 | 58 | 58 | ||
Age (y), mean ± SD | 60 (±18) | 38 (±15) | 44 (±16) | 44 (±16) | <0.01 | 0.71 |
Male, n (%) | 330 (58) | 48 (29) | 27 (47) | 23 (40) | <0.01 | 0.77 |
Weight (kg) mean ± SD | 84 (±16) | 72 (±17) | 82 (±21) | 71 (±17) | <0.01 | 0.05 |
Height (cm) mean ± SD | 178 (±10) | 171 (±10) | 174 (±12) | 170 (±12) | <0.01 | 0.14 |
QTc (ms) mean ± SD | 453 (±50) | 465 (±32) | 448 (±29) | 449 (±30) | <0.01 | 0.97 |
LVEF (%) mean ± SD | 56 (±11) | 69 (±9) | 54 (±13) | 64 (±9) | <0.01 | <0.01 |
ICM, n (%) | 60 (37) | 1 (1) | 8 (17) | 0 (0) | <0.01 | 0.04 |
NICM, n (%) | 45 (28) | 2 (2) | 4 (9) | 0 (0) | <0.01 | 0.06 |
ATH, n (%) | 91 (56) | 3 (2) | 18 (38) | 3 (6) | <0.01 | <0.01 |
DM, n (%) | 67 (42) | 1 (1) | 6 (13) | 1 (2) | <0.01 | 0.07 |
Classifier (Parameters) | Test Set | AUC | Balanced Accuracy | Specificity | Sensitivity | F1 Score |
---|---|---|---|---|---|---|
SVC (age, QTc, biological sex) | complete | 0.9 (±0.03) | 79.2% (±3.6) | 74.6% (±8.2) | 83.9% (±6.6) | 62.5% (±6.7) |
matched | 0.56 (±0.12) | 53.2% (±10.4) | 35.8% (±12.6) | 70.6% (±15.5) | 59.2% (±11.9) | |
FCN (raw ECG data) | complete | 0.9 (±0.03) | 83.6% (±4.1) | 82.6% (±7.5) | 84.7% (±8.2) | 66% (±12) |
matched | 0.88 (±0.08) | 82.5% (±6.4) | 78.4% (±13.2) | 86.6% (±11.6) | 82.6% (±10.6) | |
XceptionTime (raw ECG data) | complete | 0.97 (±0.02) | 91.8% (±2.8) | 92.9% (±3.9) | 90.8% (±5.7) | 83.2% (±6.5) |
matched | 0.97 (±0.04) | 91.2% (±6.0) | 92.5% (±9.9) | 90.0% (±8.8) | 89.4% (±11.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doldi, F.; Plagwitz, L.; Hoffmann, L.P.; Rath, B.; Frommeyer, G.; Reinke, F.; Leitz, P.; Büscher, A.; Güner, F.; Brix, T.; et al. Detection of Patients with Congenital and Often Concealed Long-QT Syndrome by Novel Deep Learning Models. J. Pers. Med. 2022, 12, 1135. https://doi.org/10.3390/jpm12071135
Doldi F, Plagwitz L, Hoffmann LP, Rath B, Frommeyer G, Reinke F, Leitz P, Büscher A, Güner F, Brix T, et al. Detection of Patients with Congenital and Often Concealed Long-QT Syndrome by Novel Deep Learning Models. Journal of Personalized Medicine. 2022; 12(7):1135. https://doi.org/10.3390/jpm12071135
Chicago/Turabian StyleDoldi, Florian, Lucas Plagwitz, Lea Philine Hoffmann, Benjamin Rath, Gerrit Frommeyer, Florian Reinke, Patrick Leitz, Antonius Büscher, Fatih Güner, Tobias Brix, and et al. 2022. "Detection of Patients with Congenital and Often Concealed Long-QT Syndrome by Novel Deep Learning Models" Journal of Personalized Medicine 12, no. 7: 1135. https://doi.org/10.3390/jpm12071135
APA StyleDoldi, F., Plagwitz, L., Hoffmann, L. P., Rath, B., Frommeyer, G., Reinke, F., Leitz, P., Büscher, A., Güner, F., Brix, T., Wegner, F. K., Willy, K., Hanel, Y., Dittmann, S., Haverkamp, W., Schulze-Bahr, E., Varghese, J., & Eckardt, L. (2022). Detection of Patients with Congenital and Often Concealed Long-QT Syndrome by Novel Deep Learning Models. Journal of Personalized Medicine, 12(7), 1135. https://doi.org/10.3390/jpm12071135