Study of the Association between VEGF Polymorphisms and the Risk of Coronary Artery Disease in Koreans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of Biochemical Factor Concentrations
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Clinical Profiles of Study Subjects
3.2. Comparison of Genotype Frequencies of VEGF Polymorphisms
3.3. Haplotype Analysis and Genotype Combination Analysis
3.4. Synergistic Effect of VEGF Polymorphisms and Clinical Factors
3.5. Clinical Variables in CAD Patients by VEGF Polymorphism Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hinohara, K.; Nakajima, T.; Sasaoka, T.; Sawabe, M.; Lee, B.S.; Ban, J.; Park, J.E.; Izumi, T.; Kimura, A. Replication studies for the association of PSMA6 polymorphism with coronary artery disease in East Asian populations. J. Hum. Genet. 2009, 54, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.E.; Zhou, Y.F.; Zhu, J. Infection and atherosclerosis: Emerging mechanistic paradigms. Circulation 1999, 100, e20–e28. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.G.; Helft, G.; Worthley, S.G.; Badimon, J.J. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000, 149, 251–266. [Google Scholar] [CrossRef]
- Dzau, V.J. Atherosclerosis and hypertension: Mechanisms and interrelationships. J. Cardiovasc. Pharmacol. 1990, 15 (Suppl. 5), S59–S64. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Vlachopoulos, C.; Verveniotis, A.; Limperi, M.; Genimata, V.; Papavassiliou, A.G.; et al. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches. Curr. Med. Chem. 2014, 21, 3936–3948. [Google Scholar] [CrossRef]
- Hurtubise, J.; McLellan, K.; Durr, K.; Onasanya, O.; Nwabuko, D.; Ndisang, J.F. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr. Atheroscler. Rep. 2016, 18, 82. [Google Scholar] [CrossRef]
- Colwell, J.A.; Lopes-Virella, M.; Halushka, P.V. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 1981, 4, 121–133. [Google Scholar] [CrossRef]
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. [Google Scholar] [CrossRef] [Green Version]
- Mudau, M.; Genis, A.; Lochner, A.; Strijdom, H. Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc. J. Afr. 2012, 23, 222–231. [Google Scholar] [CrossRef]
- Halcox, J.P.; Schenke, W.H.; Zalos, G.; Mincemoyer, R.; Prasad, A.; Waclawiw, M.A.; Nour, K.R.; Quyyumi, A.A. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002, 106, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R. Genetics of coronary artery disease. Circ. Res. 2014, 114, 1890–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Schunkert, H. Genetics of coronary artery disease in the post-GWAS era. J. Intern. Med. 2021, 290, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Moreno, P.R.; Purushothaman, K.R.; Sirol, M.; Levy, A.P.; Fuster, V. Neovascularization in human atherosclerosis. Circulation 2006, 113, 2245–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattei, M.G.; Borg, J.P.; Rosnet, O.; Marme, D.; Birnbaum, D. Assignment of vascular endothelial growth factor (VEGF) and placenta growth factor (PLGF) genes to human chromosome 6p12-p21 and 14q24-q31 regions, respectively. Genomics 1996, 32, 168–169. [Google Scholar] [CrossRef]
- Houck, K.A.; Ferrara, N.; Winer, J.; Cachianes, G.; Li, B.; Leung, D.W. The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 1991, 5, 1806–1814. [Google Scholar] [CrossRef]
- Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005, 109, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Sirois, M.G.; Edelman, E.R. VEGF effect on vascular permeability is mediated by synthesis of platelet-activating factor. Am. J. Physiol. 1997, 272, H2746–H2756. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Parra, M.; Verdin, E.; Bassel-Duby, R.; Olson, E.N. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc. Natl. Acad. Sci. USA 2008, 105, 7738–7743. [Google Scholar] [CrossRef] [Green Version]
- Spyridopoulos, I.; Brogi, E.; Kearney, M.; Sullivan, A.B.; Cetrulo, C.; Isner, J.M.; Losordo, D.W. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: Balance between growth and death signals. J. Mol. Cell Cardiol. 1997, 29, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Guangqi, E.; Cao, Y.; Bhattacharya, S.; Dutta, S.; Wang, E.; Mukhopadhyay, D. Endogenous vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell homeostasis by regulating VEGF receptor-2 transcription. J. Biol. Chem. 2012, 287, 3029–3041. [Google Scholar]
- Shibuya, M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 2013, 153, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [Green Version]
- Adamis, A.P.; Miller, J.W.; Bernal, M.T.; D’Amico, D.J.; Folkman, J.; Yeo, T.K.; Yeo, K.T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 1994, 118, 445–450. [Google Scholar] [CrossRef]
- Joussen, A.M.; Poulaki, V.; Qin, W.; Kirchhof, B.; Mitsiades, N.; Wiegand, S.J.; Rudge, J.; Yancopoulos, G.D.; Adamis, A.P. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J. Pathol. 2002, 160, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Chekhonin, V.P.; Shein, S.A.; Korchagina, A.A.; Gurina, O.I. VEGF in tumor progression and targeted therapy. Curr. Cancer Drug Targets 2013, 13, 423–443. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, S.; Anand, V.; Roy, S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J. Neuroimmune Pharmacol. 2014, 9, 142–160. [Google Scholar] [CrossRef] [Green Version]
- Shibata, Y.; Kikuchi, R.; Ishii, H.; Suzuki, S.; Harada, K.; Hirayama, K.; Suzuki, A.; Tatami, Y.; Kondo, K.; Murohara, T. Balance between angiogenic and anti-angiogenic isoforms of VEGF-A is associated with the complexity and severity of coronary artery disease. Clin. Chim. Acta 2018, 478, 114–119. [Google Scholar] [CrossRef]
- Khurana, R.; Zhuang, Z.; Bhardwaj, S.; Murakami, M.; De Muinck, E.; Yla-Herttuala, S.; Ferrara, N.; Martin, J.F.; Zachary, I.; Simons, M. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 2004, 110, 2436–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, H.Y.; Li, L.; Guo, T.; Wang, Y.U.; Ma, T.K.; Xiao, J.M.; Zhao, L.; Fang, Y.; Yang, P.; Zhao, H.U. Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells. Exp. Ther. Med. 2015, 10, 2410–2416. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Joo, H.W.; Park, I.H.; Shen, G.Y.; Lee, Y.; Shin, J.H.; Kim, H.; Kim, K.S. Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS ONE 2017, 12, e0179972. [Google Scholar]
- Metzger, C.S.; Koutsimpelas, D.; Brieger, J. Transcriptional regulation of the VEGF gene in dependence of individual genomic variations. Cytokine 2015, 76, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.; Webb, N.J.; Bottomley, M.J.; Brenchley, P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: Correlation with variation in VEGF protein production. Cytokine 2000, 12, 1232–1235. [Google Scholar] [CrossRef]
- Prakash, S.; Patel, M.R.; Agrawal, S.; Jindal, R.M.; Prasad, N. Vascular endothelial growth factor gene polymorphism is associated with long-term kidney allograft outcomes. Kidney Int. Rep. 2018, 3, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Sa-Nguanraksa, D.; Kooptiwut, S.; Chuangsuwanich, T.; Pongpruttipan, T.; Malasit, P.; O-Charoenrat, P. Vascular endothelial growth factor polymorphisms affect gene expression and tumor aggressiveness in patients with breast cancer. Mol. Med. Rep. 2014, 9, 1044–1048. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Song, D.; Wei, J. Association between vascular endothelial growth factor gene polymorphisms and bladder cancer risk. Mol. Clin. Oncol. 2014, 2, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Paradowska-Gorycka, A.; Pawlik, A.; Romanowska-Prochnicka, K.; Haladyj, E.; Malinowski, D.; Stypinska, B.; Manczak, M.; Olesinska, M. Relationship between VEGF gene polymorphisms and serum VEGF protein levels in patients with rheumatoid arthritis. PLoS ONE 2016, 11, e0160769. [Google Scholar]
- Yadav, B.K.; Yadav, R.; Chang, H.; Choi, K.; Kim, J.T.; Park, M.S.; Kang, H.G.; Choo, I.; Ahn, S.H.; Oh, D.S.; et al. Genetic polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF gene are correlated with extracranial internal carotid artery stenosis and ischemic stroke. Ann. Clin. Lab. Sci. 2017, 47, 144–155. [Google Scholar]
- Li, Z.; Wang, Y.; Liu, C.; Wang, Z.; Wang, D.; Liang, X.; Tian, J. Association between VEGF single nucleotide polymorphism and breast cancer in the Northern China Han population. Breast Cancer Res. Treat 2021, 186, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Bakhshian-Dehkordi, E.; Safaei, M.; Fattahi, S.; Faghani, M.; Deris, F.; Chaleshtori, M.H. The association of VEGF rs833061 and rs2010963 polymorphisms with susceptibility to colorectal cancer in an Iranian population. Cancer Epidemiol. 2021, 75, 102041. [Google Scholar] [CrossRef] [PubMed]
- Scartozzi, M.; Bianconi, M.; Faloppi, L.; Loretelli, C.; Bittoni, A.; Del Prete, M.; Giampieri, R.; Maccaroni, E.; Nicoletti, S.; Burattini, L.; et al. VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib. Br. J. Cancer 2013, 108, 1126–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Xin, Z.; Zhang, W.; Wu, J.; Chen, K.; Wang, H.; Zhu, X.; Pan, L.; Li, Z.; Li, H.; et al. Polymorphisms in the VEGFA promoter are associated with susceptibility to hepatocellular carcinoma by altering promoter activity. Int. J. Cancer 2013, 133, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Renner, W.; Kotschan, S.; Hoffmann, C.; Obermayer-Pietsch, B.; Pilger, E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J. Vasc. Res. 2000, 37, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Y.; Zhang, X.; Li, X.; Liu, J. Association of VEGF gene polymorphisms with susceptibility to diabetic retinopathy: A systematic review and meta-analysis. Horm. Metab. Res. 2020, 52, 264–279. [Google Scholar]
- Zhao, J.; Li, D.; Tang, H.; Tang, L. Association of vascular endothelial growth factor polymorphisms with polycystic ovarian syndrome risk: A meta-analysis. Reprod. Biol. Endocrinol. 2020, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Ballester, S.; Pineda, B.; Rodrigues, P.; Tormo, E.; Terol, M.J.; Eroles, P. Clinical relevance of +936 C>T VEGFA and c.233C>T bFGF polymorphisms in chronic lymphocytic leukemia. Genes 2020, 11, 686. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Chen, Y.; Mao, Q.; Li, S.; Xiong, W.; Lin, Y.; Chen, J.; Ge, J. Genetic variants of VEGF (rs201963 and rs3025039) and KDR (rs7667298, rs2305948, and rs1870377) are associated with glioma risk in a Han Chinese population: A case-control study. Mol. Neurobiol. 2016, 53, 2610–2618. [Google Scholar] [CrossRef]
- Jakubowska, A.; Gronwald, J.; Menkiszak, J.; Gorski, B.; Huzarski, T.; Byrski, T.; Edler, L.; Lubinski, J.; Scott, R.J.; Hamann, U. The VEGF_936_C>T 3′UTR polymorphism reduces BRCA1-associated breast cancer risk in Polish women. Cancer Lett. 2008, 262, 71–76. [Google Scholar] [CrossRef]
- An, H.J.; Kim, J.H.; Ahn, E.H.; Kim, Y.R.; Kim, J.O.; Park, H.S.; Ryu, C.S.; Kim, E.G.; Cho, S.H.; Lee, W.S.; et al. 3′-UTR polymorphisms in the vascular endothelial growth factor gene (VEGF) contribute to susceptibility to recurrent pregnancy loss (RPL). Int. J. Mol. Sci. 2019, 20, 3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.J.; Kim, J.W.; Park, H.M.; Jang, H.G.; Kim, J.O.; Oh, J.; Chong, S.Y.; Kwon, S.W.; Kim, E.J.; Oh, D.; et al. Interplay between 3′-UTR polymorphisms in the vascular endothelial growth factor (VEGF) gene and metabolic syndrome in determining the risk of colorectal cancer in Koreans. BMC Cancer 2014, 14, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.Q.; Wang, Y.; Han, X.Q.; Zhu, Y.; Liu, N.F. Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: A meta-analysis. BMC Med. Genet. 2018, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.; Tybjaerg-Hansen, A. Genetics of coronary artery disease. Circ. Res. 2016, 118, 564–578. [Google Scholar] [CrossRef]
- Huang, J.; Huang, S.; Li, J.; Li, M.; Gong, L.; Li, T.; Gu, L. CALM1 rs3179089 polymorphism might contribute to coronary artery disease susceptibility in Chinese male: A case-control study. Genes Genom. 2022, 44, 415–423. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, S.H.; Cha, D.H.; Lim, S.W.; Moon, J.Y.; Kim, J.O.; Ryu, C.S.; Park, H.S.; Sung, J.H.; Kim, N.K. Association of COX2 -765G>C promoter polymorphism and coronary artery disease in Korean population. Genes Genom. 2019, 41, 1055–1062. [Google Scholar] [CrossRef]
- Eelen, G.; de Zeeuw, P.; Treps, L.; Harjes, U.; Wong, B.W.; Carmeliet, P. Endothelial cell metabolism. Physiol. Rev. 2018, 98, 3–58. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Lerman, A. Endothelial dysfunction and coronary artery disease: Assessment, prognosis, and treatment. Coron. Artery Dis. 2014, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Veerasamy, M.; Bagnall, A.; Neely, D.; Allen, J.; Sinclair, H.; Kunadian, V. Endothelial dysfunction and coronary artery disease: A state of the art review. Cardiol. Rev. 2015, 23, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Domigan, C.K.; Warren, C.M.; Antanesian, V.; Happel, K.; Ziyad, S.; Lee, S.; Krall, A.; Duan, L.; Torres-Collado, A.X.; Castellani, L.W.; et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J. Cell Sci. 2015, 128, 2236–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touyz, R.M.; Herrmann, S.M.S.; Herrmann, J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J. Am. Soc. Hypertens. 2018, 12, 409–425. [Google Scholar] [CrossRef] [PubMed]
- dela Paz, N.G.; Walshe, T.E.; Leach, L.L.; Saint-Geniez, M.; D’Amore, P.A. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 2012, 125, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Amoli, M.M.; Amiri, P.; Alborzi, A.; Larijani, B.; Saba, S.; Tavakkoly-Bazzaz, J. VEGF gene mRNA expression in patients with coronary artery disease. Mol. Biol. Rep. 2012, 39, 8595–8599. [Google Scholar] [CrossRef]
- Nair, J.; Kakkar, V.V.; Shanker, J. Comparative analysis of inflammatory gene expression levels in metabolic syndrome & coronary artery disease. Indian J. Med. Res. 2017, 145, 777–785. [Google Scholar]
- Jin, Y.; Yang, C.J.; Xu, X.; Cao, J.N.; Feng, Q.T.; Yang, J. MiR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF. Mol. Cell Biochem. 2015, 402, 111–122. [Google Scholar] [CrossRef]
- Wang, H.W.; Lo, H.H.; Chiu, Y.L.; Chang, S.J.; Huang, P.H.; Liao, K.H.; Tasi, C.F.; Wu, C.H.; Tsai, T.N.; Cheng, C.C.; et al. Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease. PLoS ONE 2014, 9, e98070. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Xin, Q.; Shi, W.; Liu, W.; Lee, S.M.; Hoi, P.; Li, L.; Zhao, J.; Cong, W.; Chen, K. Vascular endothelial growth factor gene transfer therapy for coronary artery disease: A systematic review and meta-analysis. Cardiovasc. Ther. 2018, 36, e12461. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, Y.; Zhang, J.; Wang, J.; Xing, S. Atorvastatin improves the proliferation and migration of endothelial progenitor cells via the miR-221/VEGFA axis. Biosci. Rep. 2020, 40, BSR20193053. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Ji, X.; Liu, Z.; Cong, M.; Hu, B. Association of genetic polymorphisms on VEGFA and VEGFR2 with risk of coronary heart disease. Medicine 2016, 95, e3413. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, W.; Yin, J.; Chen, S.; Zhang, J.; Gong, J. Methionine sulfoxide reductase A rs10903323 G/A polymorphism is associated with increased risk of coronary artery disease in a Chinese population. Clin. Biochem. 2013, 46, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.T.; Li, Y.; Duan, C.H.; Zhang, W.; Guo, X.L. Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene 2013, 521, 217–221. [Google Scholar] [CrossRef]
- Silander, K.; Alanne, M.; Kristiansson, K.; Saarela, O.; Ripatti, S.; Auro, K.; Karvanen, J.; Kulathinal, S.; Niemela, M.; Ellonen, P.; et al. Gender differences in genetic risk profiles for cardiovascular disease. PLoS ONE 2008, 3, e3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kangas-Kontio, T.; Tapanainen, J.M.; Huikuri, H.; Savolainen, E.R.; Paivansalo, M.; Kauma, H.; Kesaniemi, Y.A.; Savolainen, M.J.; Kakko, S. Variation in the vascular endothelial growth factor gene, carotid intima-media thickness and the risk of acute myocardial infarction. Scand J. Clin. Lab. Investig. 2009, 69, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Zeng, Q.; Zhang, P.; Li, G.; Xie, Q.; Cheng, Y. VEGF promoter polymorphism confers an increased risk of pulmonary arterial hypertension in a Chinese population. Yonsei Med. J. 2017, 58, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Prior, S.J.; Hagberg, J.M.; Paton, C.M.; Douglass, L.W.; Brown, M.D.; McLenithan, J.C.; Roth, S.M. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1848–H1855. [Google Scholar] [CrossRef] [Green Version]
- Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect Biol. 2019, 11, a034728. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE 2011, 6, e18067. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Jin, L.; Weng, Y.; Wang, Y.; Wu, H.; Li, X.; Huang, Y.; Wang, S. A functional variant in the 3′-UTR of VEGF predicts the 90-day outcome of ischemic stroke in Chinese patients. PLoS ONE 2017, 12, e0172709. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Control Subjects (n = 422) | CAD Patients (n = 463) | p |
---|---|---|---|
Age (years, mean ± SD) | 61.1 ± 11.8 | 61.6 ± 11.4 | 0.502 |
Male (%) | 172 (40.8) | 201 (43.4) | 0.425 |
BMI (kg/m2, mean ± SD) | 24.2 ± 3.3 | 25.1 ± 3.4 | 0.0001 |
Hypertension (n, %) | 161 (38.2) | 256 (56.1) | <0.0001 |
Diabetes mellitus (n, %) | 53 (12.6) | 126 (27.6) | <0.0001 |
Fasting blood sugar (mg/dL, mean ± SD) | 114.1 ± 37.3 | 141.5 ± 63.0 | <0.0001 |
Hyperlipidemia (n, %) | 96 (22.7) | 126 (27.4) | 0.113 |
Total cholesterol (mg/dL, mean ± SD) | 192.1 ± 37.4 | 186.8 ± 46.8 | 0.006 |
Triglyceride (mg/dL, mean ± SD) | 146.2 ± 91.1 | 158.6 ± 108.4 | 0.018 |
HDL-cholesterol (mg/dL, mean ± SD) | 46.7 ± 13.8 | 43.9 ± 11.2 | 0.016 |
LDL-cholesterol (mg/dL, mean ± SD) | 117.3 ± 42.1 | 113.0 ± 40.0 | 0.312 |
Smoking (n, %) | 137 (32.5) | 141 (30.7) | 0.608 |
Metabolic syndrome (n, %) | 152 (36.0) | 293 (63.3) | <0.0001 |
Homocysteine (μmol/L, mean ± SD) | 9.8 ± 4.2 | 9.9 ± 5.3 | 0.312 |
Vitamin B12 (pg/mL, mean ± SD) | 677.3 ± 264.3 | 663.4 ± 338.2 | 0.097 |
Folate (nmol/L, mean ± SD) | 8.6 ± 7.3 | 8.7 ± 9.6 | 0.033 |
Creatinine (mg/dL, mean ± SD) | 0.9 ± 0.2 | 1.5 ± 6.7 | 0.0004 |
Genotype | Control Subjects (n = 422) | CAD Patients (n = 463) | COR (95% CI) | p | FDR-p | AOR (95% CI) | p | FDR-p |
---|---|---|---|---|---|---|---|---|
VEGF −1154G>A | ||||||||
GG | 293 (69.4) | 340 (73.4) | 1.000 (reference) | 1.000 (reference) | ||||
GA | 121 (28.7) | 112 (24.2) | 0.798 (0.591–1.078) | 0.141 | 0.846 | 0.823 (0.603–1.123) | 0.219 | 0.778 |
AA | 8 (1.9) | 11 (2.4) | 1.185 (0.470–2.985) | 0.719 | 0.719 | 1.073 (0.405–2.846) | 0.887 | 0.887 |
Dominant (GG vs. GA + AA) | 0.822 (0.613–1.101) | 0.188 | 0.867 | 0.838 (0.619–1.134) | 0.252 | 0.648 | ||
Recessive (GG + GA vs. AA) | 1.259 (0.502–3.162) | 0.623 | 0.623 | 1.111 (0.420–2.939) | 0.833 | 0.833 | ||
HWE-p | 0.264 | 0.624 | ||||||
VEGF −1498T>C | ||||||||
TT | 241 (57.1) | 267 (57.7) | 1.000 (reference) | 1.000 (reference) | ||||
TC | 158 (37.4) | 175 (37.8) | 1.000 (0.758–1.319) | 0.999 | 0.999 | 0.935 (0.701–1.248) | 0.648 | 0.778 |
CC | 23 (5.5) | 21 (4.5) | 0.824 (0.445–1.527) | 0.539 | 0.647 | 0.783 (0.405–1.513) | 0.467 | 0.584 |
Dominant (TT vs. TC + CC) | 0.977 (0.749–1.276) | 0.867 | 0.867 | 0.919 (0.696–1.214) | 0.554 | 0.665 | ||
Recessive (TT + TC vs. CC) | 0.824 (0.449–1.512) | 0.532 | 0.623 | 0.810 (0.425–1.541) | 0.520 | 0.651 | ||
HWE-p | 0.660 | 0.252 | ||||||
VEGF +936C>T | ||||||||
CC | 273 (64.7) | 311 (67.2) | 1.000 (reference) | 1.000 (reference) | ||||
CT | 132 (31.3) | 137 (29.6) | 0.911 (0.682–1.217) | 0.528 | 0.999 | 0.849 (0.629–1.147) | 0.286 | 0.778 |
TT | 17 (4.0) | 15 (3.2) | 0.775 (0.380–1.580) | 0.483 | 0.647 | 0.716 (0.334–1.535) | 0.391 | 0.584 |
Dominant (CC vs. CT + TT) | 0.896 (0.678–1.183) | 0.437 | 0.867 | 0.837 (0.626–1.110) | 0.228 | 0.648 | ||
Recessive (CC + CT vs. TT) | 0.798 (0.393–1.618) | 0.531 | 0.623 | 0.781 (0.368–1.660) | 0.521 | 0.651 | ||
HWE-p | 0.835 | 0.985 | ||||||
VEGF +1451C>T | ||||||||
CC | 283 (67.1) | 315 (68.0) | 1.000 (reference) | 1.000 (reference) | ||||
CT | 119 (28.2) | 133 (28.7) | 1.004 (0.748–1.348) | 0.978 | 0.999 | 0.930 (0.684–1.263) | 0.640 | 0.778 |
TT | 20 (4.7) | 15 (3.2) | 0.674 (0.339–1.341) | 0.261 | 0.653 | 0.639 (0.306–1.334) | 0.233 | 0.583 |
Dominant (CC vs. CT + TT) | 0.957 (0.722–1.268) | 0.758 | 0.867 | 0.892 (0.665–1.197) | 0.448 | 0.665 | ||
Recessive (CC + CT vs. TT) | 0.673 (0.340–1.332) | 0.256 | 0.623 | 0.666 (0.322–1.374) | 0.271 | 0.651 | ||
HWE-p | 0.110 | 0.834 | ||||||
VEGF +1612G>A | ||||||||
GG | 298 (70.6) | 320 (69.1) | 1.000 (reference) | 1.000 (reference) | ||||
GA | 114 (27.0) | 125 (27.0) | 1.021 (0.757–1.377) | 0.891 | 0.999 | 0.979 (0.717–1.336) | 0.892 | 0.892 |
AA | 10 (2.4) | 18 (3.9) | 1.676 (0.762–3.690) | 0.199 | 0.653 | 1.880 (0.835–4.234) | 0.127 | 0.583 |
Dominant (GG vs. GA + AA) | 1.074 (0.806–1.432) | 0.627 | 0.867 | 1.040 (0.771–1.403) | 0.796 | 0.796 | ||
Recessive (GG + GA vs. AA) | 1.667 (0.761–3.652) | 0.202 | 0.623 | 1.778 (0.793–3.986) | 0.162 | 0.651 | ||
HWE-p | 0.816 | 0.195 | ||||||
VEGF +1725G>A | ||||||||
GG | 377 (89.3) | 403 (87.0) | 1.000 (reference) | 1.000 (reference) | ||||
GA | 45 (10.7) | 57 (12.3) | 1.185 (0.782–1.795) | 0.423 | 0.999 | 1.176 (0.765–1.808) | 0.460 | 0.778 |
AA | 0 (0.0) | 3 (0.6) | N/A | N/A | N/A | N/A | N/A | N/A |
Dominant (GG vs. GA + AA) | 1.247 (0.827–1.882) | 0.292 | 0.867 | 1.239 (0.810–1.897) | 0.324 | 0.648 | ||
Recessive (GG + GA vs. AA) | N/A | N/A | N/A | N/A | N/A | N/A | ||
HWE-p | 0.221 | 0.530 |
Genotype | Control Subjects without MetS (n = 270) | CAD Patients without MetS (n = 170) | AOR (95% CI) | p | FDR-p | Control Subjects with MetS (n = 152) | CAD Patients with MetS (n = 293) | AOR (95% CI) | p | FDR-p |
---|---|---|---|---|---|---|---|---|---|---|
VEGF −1154G>A | ||||||||||
GG | 189 (70.0) | 119 (70.0) | 1.000 (reference) | 104 (68.4) | 221 (75.4) | 1.000 (reference) | ||||
GA | 75 (27.8) | 48 (28.2) | 1.072 (0.689–1.669) | 0.758 | 0.816 | 46 (30.3) | 64 (21.8) | 0.669 (0.425–1.054) | 0.083 | 0.249 |
AA | 6 (2.2) | 3 (1.8) | 0.564 (0.109–2.912) | 0.494 | 0.951 | 2 (1.3) | 8 (2.7) | 1.850 (0.375–9.134) | 0.450 | 0.563 |
Dominant (GG vs. GA + AA) | 1.034 (0.670–1.596) | 0.88 | 0.880 | 0.718 (0.461–1.118) | 0.143 | 0.286 | ||||
Recessive (GG + GA vs. AA) | 0.554 (0.107–2.859) | 0.481 | 0.938 | 2.070 (0.421–10.181) | 0.371 | 0.543 | ||||
VEGF −1498T>C | ||||||||||
TT | 154 (57.0) | 93 (54.7) | 1.000 (reference) | 87 (57.2) | 174 (59.4) | 1.000 (reference) | ||||
TC | 100 (37.0) | 69 (40.6) | 1.106 (0.728–1.680) | 0.638 | 0.816 | 58 (38.2) | 106 (36.2) | 0.857 (0.561–1.308) | 0.475 | 0.531 |
CC | 16 (5.9) | 8 (4.7) | 0.647 (0.238–1.759) | 0.393 | 0.951 | 7 (4.6) | 13 (4.4) | 0.881 (0.326–2.382) | 0.802 | 0.802 |
Dominant (TT vs. TC + CC) | 1.041 (0.695–1.559) | 0.846 | 0.880 | 0.862 (0.574–1.296) | 0.476 | 0.476 | ||||
Recessive (TT + TC vs. CC) | 0.604 (0.224–1.632) | 0.320 | 0.938 | 0.946 (0.359–2.492) | 0.911 | 0.911 | ||||
VEGF +936C>T | ||||||||||
CC | 181 (67.0) | 108 (63.5) | 1.000 (reference) | 92 (60.5) | 203 (69.3) | 1.000 (reference) | ||||
CT | 77 (28.5) | 53 (31.2) | 1.054 (0.677–1.640) | 0.816 | 0.816 | 55 (36.2) | 84 (28.7) | 0.643 (0.417–0.991) | 0.045 | 0.249 |
TT | 12 (4.4) | 9 (5.3) | 1.053 (0.406–2.729) | 0.916 | 0.951 | 5 (3.3) | 6 (2.0) | 0.529 (0.149–1.880) | 0.325 | 0.542 |
Dominant (CC vs. CT + TT) | 1.064 (0.698–1.620) | 0.774 | 0.880 | 0.633 (0.415–0.965) | 0.034 | 0.204 | ||||
Recessive (CC + CT vs. TT) | 1.188 (0.464–3.042) | 0.720 | 0.938 | 0.609 (0.176–2.107) | 0.434 | 0.543 | ||||
VEGF +1451C>T | ||||||||||
CC | 185 (68.5) | 110 (64.7) | 1.000 (reference) | 98 (64.5) | 205 (70.0) | 1.000 (reference) | ||||
CT | 71 (26.3) | 51 (30.0) | 1.099 (0.701–1.724) | 0.681 | 0.816 | 48 (31.6) | 82 (28.0) | 0.755 (0.485–1.176) | 0.214 | 0.428 |
TT | 14 (5.2) | 9 (5.3) | 0.972 (0.388–2.437) | 0.951 | 0.951 | 6 (3.9) | 6 (2.0) | 0.441 (0.131–1.480) | 0.185 | 0.463 |
Dominant (CC vs. CT + TT) | 1.084 (0.709–1.658) | 0.709 | 0.880 | 0.723 (0.471–1.111) | 0.139 | 0.286 | ||||
Recessive (CC + CT vs. TT) | 1.011 (0.408–2.509) | 0.981 | 0.981 | 0.507 (0.155–1.651) | 0.259 | 0.543 | ||||
VEGF +1612G>A | ||||||||||
GG | 187 (69.3) | 123 (72.4) | 1.000 (reference) | 111 (73.0) | 197 (67.2) | 1.000 (reference) | ||||
GA | 75 (27.8) | 40 (23.5) | 0.832 (0.525–1.318) | 0.433 | 0.816 | 39 (25.7) | 85 (29.0) | 1.240 (0.780–1.971) | 0.364 | 0.531 |
AA | 8 (3.0) | 7 (4.1) | 1.221 (0.416–3.584) | 0.717 | 0.951 | 2 (1.3) | 11 (3.8) | 4.022 (0.843–19.189) | 0.081 | 0.405 |
Dominant (GG vs. GA + AA) | 0.863 (0.557–1.337) | 0.510 | 0.880 | 1.240 (0.780–1.971) | 0.364 | 0.437 | ||||
Recessive (GG + GA vs. AA) | 1.192 (0.404–3.516) | 0.750 | 0.938 | 3.614 (0.769–16.997) | 0.104 | 0.520 | ||||
VEGF +1725G>A | ||||||||||
GG | 242 (89.6) | 150 (88.2) | 1.000 (reference) | 135 (88.8) | 253 (86.3) | 1.000 (reference) | ||||
GA | 28 (10.4) | 20 (11.8) | 1.118 (0.595–2.102) | 0.729 | 0.816 | 17 (11.2) | 37 (12.6) | 1.224 (0.651–2.300) | 0.531 | 0.531 |
AA | 0 (0.0) | 0 (0.0) | N/A | N/A | N/A | 0 (0.0) | 3 (1.0) | N/A | N/A | N/A |
Dominant (GG vs. GA + AA) | 1.118 (0.595–2.102) | 0.729 | 0.880 | 1.338 (0.717–2.499) | 0.360 | 0.437 | ||||
Recessive (GG + GA vs. AA) | N/A | N/A | N/A | N/A | N/A | N/A |
Haplotype | Control Subjects (2n = 844) | CAD Patients (2n = 926) | OR (95% CI) | p |
---|---|---|---|---|
VEGF −1154G>A/−1498T>C/+936C>T/+1451C>T/+1612G>A/+1725G>A | ||||
G-T-C-C-G-G | 399 (47.2) | 475 (51.3) | 1.000 (reference) | |
G-T-T-C-G-G | 7 (0.9) | 0 (0.0) | 0.056 (0.003–0.984) | 0.004 |
G-C-C-C-A-A | 7 (0.8) | 0 (0.0) | 0.056 (0.003–0.984) | 0.004 |
A-T-C-C-G-G | 24 (2.8) | 1 (0.1) | 0.035 (0.005–0.260) | <0.0001 |
VEGF −1154G>A/−1498T>C/+936C>T/+1451C>T/+1612G>A | ||||
G-T-C-C-G | 397 (47.0) | 474 (51.2) | 1.000 (reference) | |
G-T-T-C-G | 8 (0.9) | 0 (0.0) | 0.049 (0.003–0.857) | 0.002 |
A-T-C-C-G | 24 (2.9) | 1 (0.2) | 0.035 (0.005–0.259) | <0.0001 |
VEGF −1154G>A/−1498T>C/+936C>T/+1451C>T/+1725G>A | ||||
G-T-C-C-G | 474 (56.1) | 551 (59.5) | 1.000 (reference) | |
G-T-C-C-A | 29 (3.5) | 54 (5.8) | 1.602 (1.003–2.557) | 0.047 |
G-C-C-C-A | 7 (0.8) | 0 (0.0) | 0.057 (0.003–1.008) | 0.005 |
A-T-C-C-G | 24 (2.9) | 1 (0.1) | 0.036 (0.005–0.266) | <0.0001 |
VEGF −1154G>A/−1498T>C/+936C>T/+1612G>A/+1725G>A | ||||
G-T-C-G-G | 401 (47.6) | 475 (51.3) | 1.000 (reference) | |
G-C-C-A-A | 8 (0.9) | 0 (0.0) | 0.050 (0.003–0.864) | 0.002 |
A-T-C-G-G | 23 (2.7) | 1 (0.1) | 0.037 (0.005–0.273) | <0.0001 |
A-T-T-G-G | 5 (0.7) | 0 (0.0) | 0.077 (0.004–1.393) | 0.021 |
VEGF −1154G>A/−1498T>C/+1451C>T/+1612G>A/+1725G>A | ||||
G-T-C-G-G | 402 (47.6) | 473 (51.0) | 1.000 (reference) | |
G-C-C-A-A | 7 (0.9) | 0 (0.0) | 0.057 (0.003–0.996) | 0.005 |
A-T-C-G-G | 28 (3.3) | 1 (0.1) | 0.030 (0.004–0.224) | <0.0001 |
VEGF −1498T>C/+936C>T/+1451C>T/+1612G>A/+1725G>A | ||||
T-C-C-G-G | 421 (49.9) | 474 (51.2) | 1.000 (reference) | |
T-C-C-A-A | 32 (3.7) | 57 (6.1) | 1.582 (1.006–2.487) | 0.045 |
T-T-C-G-G | 11 (1.3) | 0 (0.0) | 0.039 (0.002–0.658) | 0.001 |
Haplotype | Control Subjects (2n = 844) | CAD Patients (2n = 926) | OR (95% CI) | p |
---|---|---|---|---|
VEGF −1154G>A/−1498T>C/+936C>T/+1451C>T | ||||
G-T-C-C | 503 (59.6) | 605 (65.4) | 1.000 (reference) | |
G-T-T-C | 10 (1.2) | 3 (0.3) | 0.249 (0.068–0.912) | 0.023 |
G-C-C-C | 69 (8.2) | 52 (5.6) | 0.627 (0.429–0.915) | 0.015 |
A-T-C-C | 24 (2.8) | 2 (0.2) | 0.069 (0.016–0.295) | <0.0001 |
VEGF −1154G>A/−1498T>C/+936C>T/+1612G>A | ||||
G-T-C-G | 398 (47.2) | 474 (51.2) | 1.000 (reference) | |
G-C-C-A | 13 (1.6) | 6 (0.6) | 0.388 (0.146–1.029) | 0.049 |
A-T-C-G | 23 (2.8) | 1 (0.2) | 0.037 (0.005–0.272) | <0.0001 |
A-T-T-G | 5 (0.6) | 0 (0.0) | 0.076 (0.004–1.386) | 0.020 |
VEGF −1154G>A/−1498T>C/+936C>T/+1725G>A | ||||
G-T-C-G | 480 (56.8) | 552 (59.6) | 1.000 (reference) | |
G-T-C-A | 29 (3.5) | 55 (5.9) | 1.649 (1.035–2.629) | 0.034 |
G-T-T-A | 4 (0.4) | 0 (0.0) | 0.097 (0.005–1.801) | 0.047 |
A-T-C-G | 24 (2.8) | 1 (0.1) | 0.036 (0.005–0.269) | <0.0001 |
A-T-T-G | 6 (0.7) | 0 (0.0) | 0.067 (0.004–1.191) | 0.010 |
VEGF −1154G>A/−1498T>C/+1451C>T/+1612G>A | ||||
G-T-C-G | 401 (47.5) | 472 (51.0) | 1.000 (reference) | |
A-T-C-G | 28 (3.3) | 2 (0.2) | 0.061 (0.014–0.256) | <0.0001 |
VEGF −1154G>A/−1498T>C/+1451C>T/+1725G>A | ||||
G-T-C-G | 479 (56.8) | 552 (59.6) | 1.000 (reference) | |
G-C-C-A | 7 (0.9) | 0 (0.0) | 0.058 (0.003–1.016) | 0.005 |
A-T-C-G | 28 (3.3) | 1 (0.1) | 0.031 (0.004–0.229) | <0.0001 |
VEGF −1154G>A/−1498T>C/+1612G>A/+1725G>A | ||||
G-T-G-G | 501 (59.4) | 573 (61.9) | 1.000 (reference) | |
G-C-A-A | 7 (0.9) | 0 (0.0) | 0.058 (0.003–1.024) | 0.005 |
A-T-G-G | 28 (3.4) | 1 (0.1) | 0.031 (0.004–0.230) | <0.0001 |
VEGF −1154G>A/+936C>T/+1451C>T/+1612G>A | ||||
G-C-C-G | 450 (53.3) | 520 (56.2) | 1.000 (reference) | |
G-C-T-G | 7 (0.8) | 1 (0.2) | 0.124 (0.015–1.009) | 0.029 |
VEGF −1154G>A/+936C>T/+1451C>T/+1725G>A | ||||
G-C-C-G | 534 (63.3) | 604 (65.2) | 1.000 (reference) | |
A-T-C-G | 6 (0.7) | 0 (0.0) | 0.068 (0.004–1.211) | 0.011 |
VEGF −1154G>A/+936C>T/+1612G>A/+1725G>A | ||||
G-C-G-G | 453 (53.7) | 522 (56.3) | 1.000 (reference) | |
A-C-A-A | 1 (0.2) | 9 (1.0) | 7.810 (0.985–61.920) | 0.025 |
VEGF −1154G>A/+1451C>T/+1612G>A/+1725G>A | ||||
G-C-G-G | 456 (54.0) | 522 (56.4) | 1.000 (reference) | |
A-C-A-A | 1 (0.2) | 9 (1.0) | 7.862 (0.992–62.320) | 0.024 |
VEGF −1498T>C/+936C>T/+1451C>T/+1612G>A | ||||
T-C-C-G | 418 (49.6) | 474 (51.2) | 1.000 (reference) | |
T-T-C-G | 11 (1.3) | 0 (0.0) | 0.038 (0.002–0.653) | 0.001 |
VEGF −1498T>C/+936C>T/+1451C>T/+1725G>A | ||||
T-C-C-G | 498 (59.0) | 550 (59.4) | 1.000 (reference) | |
T-C-C-A | 29 (3.4) | 57 (6.1) | 1.780 (1.120–2.829) | 0.014 |
T-T-C-G | 11 (1.3) | 3 (0.4) | 0.247 (0.068–0.891) | 0.021 |
VEGF −1498T>C/+936C>T/+1612G>A/+1725G>A | ||||
T-C-G-G | 425 (50.4) | 474 (51.2) | 1.000 (reference) | |
T-C-A-A | 31 (3.7) | 58 (6.3) | 1.678 (1.064–2.645) | 0.025 |
VEGF +936C>T/+1451C>T/+1612G>A/+1725G>A | ||||
C-C-G-G | 537 (63.6) | 600 (64.8) | 1.000 (reference) | |
C-T-G-G | 9 (1.1) | 1 (0.1) | 0.099 (0.013–0.788) | 0.009 |
T-C-G-G | 15 (1.8) | 3 (0.4) | 0.179 (0.052–0.622) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, E.-J.; Kim, I.-J.; Lee, J.-Y.; Park, H.-W.; Park, H.-S.; Kim, S.-H.; Moon, J.-Y.; Sung, J.-H.; Kim, N.-K. Study of the Association between VEGF Polymorphisms and the Risk of Coronary Artery Disease in Koreans. J. Pers. Med. 2022, 12, 761. https://doi.org/10.3390/jpm12050761
Ko E-J, Kim I-J, Lee J-Y, Park H-W, Park H-S, Kim S-H, Moon J-Y, Sung J-H, Kim N-K. Study of the Association between VEGF Polymorphisms and the Risk of Coronary Artery Disease in Koreans. Journal of Personalized Medicine. 2022; 12(5):761. https://doi.org/10.3390/jpm12050761
Chicago/Turabian StyleKo, Eun-Ju, In-Jai Kim, Jeong-Yong Lee, Hyeon-Woo Park, Han-Sung Park, Sang-Hoon Kim, Jae-Youn Moon, Jung-Hoon Sung, and Nam-Keun Kim. 2022. "Study of the Association between VEGF Polymorphisms and the Risk of Coronary Artery Disease in Koreans" Journal of Personalized Medicine 12, no. 5: 761. https://doi.org/10.3390/jpm12050761