Severe Aortic Valve Stenosis and Pulmonary Hypertension: A Systematic Review of Non-Invasive Ways of Risk Stratification, Especially in Patients Undergoing Transcatheter Aortic Valve Replacement
Abstract
:1. Introduction
1.1. Prevalences
1.2. Pathophysiology
1.3. Definition of PH Using Invasive and Non-Invasive Techniques
1.4. Aim of the Review
2. Methods
3. Results
3.1. Echocardiography
3.2. CT and MRI
3.2.1. CT
3.2.2. MRI
3.3. Biomarkers
4. Discussion and Conclusions
- Which biomarkers have the potential to provide information about the presence of PH in patients with severe AS?
- What cut-off values for the detection of PH do these biomarkers have?
- Should biomarker scores be developed and not only solitary biomarkers be determined in order to detect PH in a non-invasive way?
- How do plasma concentrations of biomarkers change after surgical or interventional valve replacement in patients with additional PH and does this have relevant implications for survival prognosis?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathaniel, S. Aortic stenosis: An update. World J. Cardiol. 2010, 2, 135. [Google Scholar] [CrossRef]
- Osnabrugge, R.L.J.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; Lereun, C.M.; Bogers, A.J.J.C.; Piazza, N.; Kappetein, A.P. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.J.; Wenaweser, P.; Ceylan, O.; Rat-Wirtzler, J.; Stortecky, S.; Heg, D.; Spitzer, E.; Zanchin, T.; Praz, F.; Tuller, D.; et al. Effect of pulmonary hypertension hemodynamic presentation on clinical outcomes in patients with severe symptomatic aortic valve stenosis undergoing transcatheter aortic valve implantation insights from the new proposed pulmonary hypertension classification. Circ. Cardiovasc. Interv. 2015, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alushi, B.; Beckhoff, F.; Leistner, D.; Franz, M.; Reinthaler, M.; Stähli, B.E.; Morguet, A.; Figulla, H.R.; Doenst, T.; Maisano, F.; et al. Pulmonary Hypertension in Patients with Severe Aortic Stenosis: Prognostic Impact After Transcatheter Aortic Valve Replacement: Pulmonary Hypertension in Patients Undergoing TAVR. JACC Cardiovasc. Imaging 2019, 12, 591–601. [Google Scholar] [CrossRef]
- Joseph, J.; Naqvi, S.Y.; Giri, J.; Goldberg, S. Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. Am. J. Med. 2017, 130, 253–263. [Google Scholar] [CrossRef]
- Dweck, M.R.; Boon, N.A.; Newby, D.E. Calcific aortic stenosis: A disease of the valve and the myocardium. J. Am. Coll. Cardiol. 2012, 60, 1854–1863. [Google Scholar] [CrossRef] [Green Version]
- Spaccarotella, C.; Mongiardo, A.; Indolfi, C. Pathophysiology of aortic stenosis and approach to treatment with percutaneous valve implantation. Circ. J. 2011, 75, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Redfors, B.; Furer, A.; Lindman, B.R.; Burkhoff, D.; Marquis-Gravel, G.; Francese, D.P.; Ben-Yehuda, O.; Pibarot, P.; Gillam, L.D.; Leon, M.B.; et al. Biomarkers in Aortic Stenosis: A Systematic Review. Struct. Heart 2017, 1, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Oury, C.; Nchimi, A.; Lancellotti, P.; Bergler-Klein, J. Can Blood Biomarkers Help Predicting Outcome in Transcatheter Aortic Valve Implantation? Front. Cardiovasc. Med. 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Todd, N.; Lai, Y.C. Current Understanding of Circulating Biomarkers in Pulmonary Hypertension Due to Left Heart Disease. Front. Med. 2020, 7, 570016. [Google Scholar] [CrossRef]
- Spampinato, R.A.; Bochen, R.; Sieg, F.; Weiss, S.; Kornej, J.; Haunschild, J.; von Aspern, K.; Strotdrees, E.; Noack, T.; Lehmann, S.; et al. Multi-biomarker mortality prediction in patients with aortic stenosis undergoing valve replacement. J. Cardiol. 2020, 76, 154–162. [Google Scholar] [CrossRef]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef]
- Weber, L.; Rickli, H.; Haager, P.K.; Joerg, L.; Weilenmann, D.; Brenner, R.; Taramasso, M.; Baier, P.; Maisano, F.; Maeder, M.T. Haemodynamic mechanisms and long-term prognostic impact of pulmonary hypertension in patients with severe aortic stenosis undergoing valve replacement. Eur. J. Heart Fail. 2018, 21, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Palazzini, M.; Dardi, F.; Manes, A.; Reggiani, M.L.B.; Gotti, E.; Rinaldi, A.; Albini, A.; Monti, E.; Galiè, N. Pulmonary hypertension due to left heart disease: Analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and insights for future changes. Eur. J. Heart Fail. 2017, 20, 248–255. [Google Scholar] [CrossRef]
- Galiè, N.; McLaughlin, V.V.; Rubin, L.J.; Simonneau, G. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur. Respir. J. 2019, 53, 1802148. [Google Scholar] [CrossRef] [Green Version]
- Janda, S.; Shahidi, N.; Gin, K.; Swiston, J. Diagnostic accuracy of echocardiography for pulmonary hypertension: A systematic review and meta-analysis. Heart 2011, 97, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.R.; Forfia, P.R.; Chamera, E.; Housten-Harris, T.; Champion, H.C.; Girgis, R.E.; Corretti, M.C.; Hassoun, P.M. Accuracy of Doppler Echocardiography in the Hemodynamic Assessment of Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2009, 179, 615–621. [Google Scholar] [CrossRef]
- Habib, G.; Torbicki, A. The role of echocardiography in the diagnosis and management of patients with pulmonary hypertension. Eur. Respir. Rev. 2010, 19, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, F.A.; Gutierrez, F.R.; Telli, F.G.D.; Aravena, S.Y.; Javidan-Nejad, C.; Bhalla, S. Approach to Pulmonary Hypertension: From CT to Clinical Diagnosis. RadioGraphics 2018, 38, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Grosse, C.; Grosse, A. CT Findings in Diseases Associated with Pulmonary Hypertension: A Current Review. RadioGraphics 2010, 30, 1753–1777. [Google Scholar] [CrossRef]
- Johns, C.S.; Kiely, D.G.; Rajaram, S.; Hill, C.; Thomas, S.; Karunasaagarar, K.; Garg, P.; Hamilton, N.; Solanki, R.; Capener, D.A.; et al. Diagnosis of Pulmonary Hypertension with Cardiac MRI: Derivation and Validation of Regression Models. Radiology 2019, 290, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, R.M.; Matsumura, Y.; Yamano, T.; Greenberg, N.; Thomas, J.D.; Shiota, T. Relation of Left Atrial Dysfunction to Pulmonary Artery Hypertension in Patients with Aortic Stenosis and Left Ventricular Systolic Dysfunction. Am. J. Cardiol. 2010, 106, 409–416. [Google Scholar] [CrossRef]
- Ahn, H.-S.; Chang, S.-A.; Kim, H.-K.; Kim, S.J.; Lee, S.-P.; Park, S.-J.; Kim, Y.-J.; Cho, G.-Y.; Sohn, D.-W.; Oh, J.K. Determinants of pulmonary hypertension development in moderate or severe aortic stenosis. Int. J. Cardiovasc. Imaging 2014, 30, 1519–1528. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Conrotto, F.; Salizzoni, S.; Rossi, M.L.; Nijhoff, F.; Gasparetto, V.; Barbanti, M.; Mennuni, M.; Omedè, P.; Marra, W.G.; et al. Incidence, predictors, and impact on prognosis of systolic pulmonary artery pressure and its improvement after transcatheter aortic valve implantation: A multicenter registry. J. Invasive Cardiol. 2015, 27, 114–119. [Google Scholar]
- Schewel, J.; Schlüter, M.; Schmidt, T.; Kuck, K.; Frerker, C.; Schewel, D. Correlation between Doppler echocardiography and right heart catheterization assessment of systolic pulmonary artery pressure in patients with severe aortic stenosis. Echocardiography 2020, 37, 380–387. [Google Scholar] [CrossRef]
- Barasch, E.; Petillo, F.; Pollack, S.; Rhee, P.D.-Y.; Stovold, W.; Reichek, N. Clinical and Echocardiographic Correlates of Mortality in Medically Treated Patients with Severe Isolated Aortic Stenosis and Normal Left Ventricular Ejection Fraction. Circ. J. 2014, 78, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Suarez, D.F.; López-Candales, A. Subclinical Right Ventricular Dysfunction in Patients with Severe Aortic Stenosis: A Retrospective Case Series. Cardiol. Ther. 2017, 6, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Masri, A.; Abdelkarim, I.; Sharbaugh, M.S.; Althouse, A.D.; Xu, J.; Han, W.; Chan, S.Y.; Katz, W.E.; Crock, F.W.; Harinstein, M.E.; et al. Outcomes of persistent pulmonary hypertension following transcatheter aortic valve replacement. Heart 2017, 104, 821–827. [Google Scholar] [CrossRef]
- Weber, L.; Rickli, H.; Haager, P.K.; Joerg, L.; Weilenmann, D.; Chronis, J.; Rigger, J.; Buser, M.; Ehl, N.F.; Maeder, M.T. Hemodynamics Prior to Valve Replacement for Severe Aortic Stenosis and Pulmonary Hypertension during Long-Term Follow-Up. J. Clin. Med. 2021, 10, 3878. [Google Scholar] [CrossRef]
- Mutlak, D.; Aronson, D.; Carasso, S.; Lessick, J.; Reisner, S.A.; Agmon, Y. Frequency, Determinants and Outcome of Pulmonary Hypertension in Patients with Aortic Valve Stenosis. Am. J. Med. Sci. 2012, 343, 397–401. [Google Scholar] [CrossRef]
- Medvedofsky, D.; Klempfner, R.; Fefer, P.; Chernomordik, F.; Hamdan, A.; Hay, I.; Goldenberg, I.; Raanani, E.; Guetta, V.; Segev, A. The significance of pulmonary arterial hypertension pre- and post-transfemoral aortic valve implantation for severe aortic stenosis. J. Cardiol. 2015, 65, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Barbash, I.M.; Escarcega, R.O.; Minha, S.; Ben-Dor, I.; Torguson, R.; Goldstein, S.A.; Wang, Z.; Okubagzi, P.; Satler, L.F.; Pichard, A.D.; et al. Prevalence and Impact of Pulmonary Hypertension on Patients with Aortic Stenosis Who Underwent Transcatheter Aortic Valve Replacement. Am. J. Cardiol. 2015, 115, 1435–1442. [Google Scholar] [CrossRef]
- Mascherbauer, J.; Kammerlander, A.A.; Marzluf, B.A.; Graf, A.; Kocher, A.; Bonderman, D. Prognostic Impact of Tricuspid Regurgitation in Patients Undergoing Aortic Valve Surgery for Aortic Stenosis. PLoS ONE 2015, 10, e013602. [Google Scholar] [CrossRef] [Green Version]
- Rozenbaum, Z.; Topilsky, Y.; Biner, S.; Steinvil, A.; Arbel, Y.; Bazan, S.; Banai, S.; Finkelstein, A.; Halkin, A. Prognostic Implications of Baseline Pulmonary Vascular Resistance Determined by Transthoracic Echocardiography Before Transcatheter Aortic Valve Replacement. J. Am. Soc. Echocardiogr. 2019, 32, 737–743.e1. [Google Scholar] [CrossRef]
- Luçon, A.; Oger, E.; Bedossa, M.; Boulmier, D.; Verhoye, J.P.; Eltchaninoff, H.; Iung, B.; Leguerrier, A.; Laskar, M.; Leprince, P.; et al. Prognostic Implications of Pulmonary Hypertension in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation: Study from the FRANCE 2 Registry. Circ. Cardiovasc. Interv. 2014, 7, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, T.; Ayhan, H.; Keleş, T.; Aslan, A.N.; Kasapkara, H.A.; Sari, C.; Bilen, E.; Bayram, N.A.; Akçay, M.; Bozkurt, E. The Effect of Transcatheter Aortic Valve Implantation on Pulmonary Hypertension. Echocardiography 2014, 32, 1057–1063. [Google Scholar] [CrossRef]
- Nijenhuis, V.; Huitema, M.; Vorselaars, V.; Swaans, M.; de Kroon, T.; van der Heyden, J.; Rensing, B.; Heijmen, R.; Berg, J.T.; Post, M. Echocardiographic pulmonary hypertension probability is associated with clinical outcomes after transcatheter aortic valve implantation. Int. J. Cardiol. 2016, 225, 218–225. [Google Scholar] [CrossRef]
- Kleczynski, P.; Dziewierz, A.; Wiktorowicz, A.; Bagienski, M.; Rzeszutko, L.; Sorysz, D.; Trebacz, J.; Sobczynski, R.; Tomala, M.; Dudek, D. Prognostic value of tricuspid regurgitation velocity and probability of pulmonary hypertension in patients undergoing transcatheter aortic valve implantation. Int. J. Cardiovasc. Imaging 2017, 33, 1931–1938. [Google Scholar] [CrossRef]
- Levy, F.; Bohbot, Y.; Sanhadji, K.; Rusinaru, D.; Ringle, A.; Delpierre, Q.; Smaali, S.; Gun, M.; Marechaux, S.; Tribouilloy, C. Impact of pulmonary hypertension on long-term outcome in patients with severe aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cladellas, M.; Garcia-Ribas, C.; Ble, M.; Gómez, M.; Farre, N.; Mas-Stachurska, A.; Ivern, C.; Vila, J.; Martí-Almor, J. Impact of Preoperative Measurement of Right Heart Chambers in the Evaluation of Pulmonary Hypertension Following Aortic Valve Replacement. Chest 2020, 157, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, N.; Varadarajan, P.; Pai, R.G. Echocardiographic predictors of pulmonary hypertension in patients with severe aortic stenosis. Eur. J. Echocardiogr. 2007, 9, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Pai, R.G.; Varadarajan, P.; Kapoor, N.; Bansal, R.C. Aortic Valve Replacement Improves Survival in Severe Aortic Stenosis Associated with Severe Pulmonary Hypertension. Ann. Thorac. Surg. 2007, 84, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Malouf, J.F.; Enriquez-Sarano, M.; Pellikka, P.A.; Oh, J.K.; Bailey, K.R.; Chandrasekaran, K.; Mullany, C.J.; Tajik, A. Severe pulmonary hypertension in patients with severe aortic valve stenosis: Clinical profile and prognostic implications. J. Am. Coll. Cardiol. 2002, 40, 789–795. [Google Scholar] [CrossRef]
- Kandels, J.; Tayal, B.; Hagendorff, A.; Lavall, D.; Laufs, U.; Sogaard, P.; Andersen, N.H.; Stöbe, S. “Pure” severe aortic stenosis without concomitant valvular heart diseases: Echocardiographic and pathophysiological features. Int. J. Cardiovasc. Imaging 2020, 36, 1917–1929. [Google Scholar] [CrossRef] [PubMed]
- Bishu, K.; Suri, R.M.; Nkomo, V.T.; Kane, G.C.; Greason, K.L.; Reeder, G.S.; Mathew, V.; Holmes, D.R.; Rihal, C.S.; Melduni, R.M. Prognostic Impact of Pulmonary Artery Systolic Pressure in Patients Undergoing Transcatheter Aortic Valve Replacement for Aortic Stenosis. Am. J. Cardiol. 2014, 114, 1562–1567. [Google Scholar] [CrossRef]
- Ujihira, K.; Kohmoto, T.; Gimelli, G.; Raval, A.; Jacobson, K.; Wolff, M.; Osaki, S. The impact of increased pulmonary arterial pressure on outcomes after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2020, 96, E723–E734. [Google Scholar] [CrossRef]
- Strachinaru, M.; Ren, B.; van Dalen, B.M.; Van Mieghem, N.; De Jaegere, P.P.T.; van Gils, L.; Galema, T.W.; Geleijnse, M.L. Determinants of changes in pulmonary artery pressure in patients with severe aortic stenosis treated by transcatheter aortic valve implantation. Acta Cardiol. 2021, 76, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lancellotti, P.; Magne, J.; Donal, E.; O’Connor, K.; Dulgheru, R.; Rosca, M.; Pierard, L.A. Determinants and Prognostic Significance of Exercise Pulmonary Hypertension in Asymptomatic Severe Aortic Stenosis. Circulation 2012, 126, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Salas-Pacheco, J.L.; Ávila-Vanzzini, N.; Eugenia, R.-E.M.; Arias-Godínez, J.A. Left atrium function by 2D speckle tracking in aortic valve disease. Echocardiography 2016, 33, 1828–1834. [Google Scholar] [CrossRef]
- Eberhard, M.; Mastalerz, M.; Pavicevic, J.; Frauenfelder, T.; Nietlispach, F.; Maisano, F.; Tanner, F.C.; Nguyen-Kim, T.D.L. Value of CT signs and measurements as a predictor of pulmonary hypertension and mortality in symptomatic severe aortic valve stenosis. Int. J. Cardiovasc. Imaging 2017, 33, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Baran, T.M.; Ambrosini, R.; Krishnamoorthy, V. Improving CT assessment for pulmonary hypertension in patients with severe aortic stenosis, correlation with right heart catheterization. Clin. Imaging 2021, 77, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Turner, V.L.; Jubran, A.; Kim, J.B.; Maret, E.; Moneghetti, K.J.; Haddad, F.; Amsallem, M.; Codari, M.; Hinostroza, V.; Mastrodicasa, D.; et al. CTA pulmonary artery enlargement in patients with severe aortic stenosis: Prognostic impact after TAVR. J. Cardiovasc. Comput. Tomogr. 2021, 15, 431–440. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.J.; Montalbetti, M.; Zbinden, R.; Kurz, D.J.; Bernheim, A.M.; Liew, A.; Meyer, M.R.; Tuller, D.; Eberli, F.R. Screening for Pulmonary Hypertension with Multidetector Computed Tomography Among Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Implantation. Front. Cardiovasc. Med. 2018, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Sudo, M.; Sugiura, A.; Treiling, L.; Al-Kassou, B.; Shamekhi, J.; Kütting, D.; Wilde, N.; Weber, M.; Zimmer, S.; Nickenig, G.; et al. Baseline PA/BSA ratio in patients undergoing transcatheter aortic valve replacement—A novel CT-based marker for the prediction of pulmonary hypertension and outcome. Int. J. Cardiol. 2021, 348, 26–32. [Google Scholar] [CrossRef]
- Colin, G.C.; Verlynde, G.; Pouleur, A.-C.; Gerber, B.L.; Beauloye, C.; Kefer, J.; Coche, E.; Vachiéry, J.-L.; Gevenois, P.A.; Ghaye, B. Pulmonary hypertension due to left heart disease: Diagnostic value of pulmonary artery distensibility. Eur. Radiol. 2020, 30, 6204–6212. [Google Scholar] [CrossRef]
- Gumauskiene, B.; Padervinskiene, L.; Vaskelyte, J.J.; Vaitiekiene, A.; Lapinskas, T.; Hoppenot, D.; Miliauskas, S.; Galnaitiene, G.; Simkus, P.; Ereminiene, E. Left Ventricular Morphology and Function as a Determinant of Pulmonary Hypertension in Patients with Severe Aortic Stenosis: Cardiovascular Magnetic Resonance Imaging Study. Medicina 2019, 55, 711. [Google Scholar] [CrossRef] [Green Version]
- Gumauskiene, B.; Drebickaite, E.; Pangonyte, D.; Vaskelyte, J.J.; Padervinskiene, L.; Jakuska, P.; Budrikis, A.; Ereminas, R.; Ereminiene, E. The association of left ventricular histologically verified myocardial fibrosis with pulmonary hypertension in severe aortic stenosis. Perfusion, 2021; preprint. advance online publication. [Google Scholar] [CrossRef]
- Panchal, H.B.; Ladia, V.; Desai, S.; Shah, T.; Ramu, V. A Meta-Analysis of Mortality and Major Adverse Cardiovascular and Cerebrovascular Events Following Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement for Severe Aortic Stenosis. Am. J. Cardiol. 2013, 112, 850–860. [Google Scholar] [CrossRef]
- Panchal, H.B.; Ladia, V.; Amin, P.; Patel, P.; Veeranki, S.; Albalbissi, K.; Paul, T. A Meta-Analysis of Mortality and Major Adverse Cardiovascular and Cerebrovascular Events in Patients Undergoing Transfemoral Versus Transapical Transcatheter Aortic Valve Implantation Using Edwards Valve for Severe Aortic Stenosis. Am. J. Cardiol. 2014, 114, 1882–1890. [Google Scholar] [CrossRef]
- Li, Y.M.; Mei, F.-Y.; Yao, Y.-J.; Tsauo, J.-Y.; Peng, Y.; Chen, M. Causes and predictors of readmission after transcatheter aortic valve implantation: A meta-analysis and systematic review. Herz 2021, 46 (Suppl. S1), 1–8. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, W.R.E.; Ely, J.L.; Brink, J.; Pennel, T.; Bannon, P.; Patel, J.; Gupta, R.K.; Rao, P.S.M.; Agrawal, D.; Wiklund, L.; et al. PROSE: Prospective Randomized Trial of the On-X Mechanical Prosthesis and the St Jude Medical Mechanical Prosthesis Evaluation: Part 1(Patient Dynamics): Preoperative demographics and preoperative and operative risk factors. J. Cardiothorac. Surg. 2021, 16, 323. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Safar, M.E.; Blacher, J. Application of a decision tree to establish factors associated with a nomogram of aortic stiffness. J. Clin. Hypertens. 2019, 21, 1484–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iung, B.; Algalarrondo, V. Atrial Fibrillation and Aortic Stenosis. JACC Cardiovasc. Interv. 2020, 13, 2134–2136. [Google Scholar] [CrossRef]
- Fragão-Marques, M.; Miranda, I.; Martins, D.; Barroso, I.; Mendes, C.; Pereira-Neves, A.; Falcão-Pires, I.; Leite-Moreira, A. Atrial matrix remodeling in atrial fibrillation patients with aortic stenosis. BMC Cardiovasc. Disord. 2020, 20, 468. [Google Scholar] [CrossRef]
- Cavender, M.A.; Kolarczyk, L. Pulmonary Hypertension and Aortic Stenosis: Further Evidence That TAVR Is Not SAVR. JACC Cardiovasc. Imaging 2019, 12, 602–604. [Google Scholar] [CrossRef]
- Maeder, M.T.; Weber, L.; Weilenmann, D.; Chronis, J.; Joerg, L.; Pohle, S.; Haager, P.K.; Brutsche, M.; Neumann, T.; Schoch, O.D.; et al. Impact of the new pulmonary hypertension definition on long-term mortality in patients with severe aortic stenosis undergoing valve replacement. Clin. Cardiol. 2021, 44, 1276–1285. [Google Scholar] [CrossRef]
- Banovic, M.; Athithan, L.; McCann, G.P. Aortic stenosis and diabetes mellitus: An ominous combination. Diabetes Vasc. Dis. Res. 2019, 16, 310–323. [Google Scholar] [CrossRef]
- Kaltoft, M.; Langsted, A.; Nordestgaard, B.G. Obesity as a Causal Risk Factor for Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2020, 75, 163–176. [Google Scholar] [CrossRef]
- Ducharme-Smith, A.; Nicolau, S.; Chahal, C.A.A.; Ducharme-Smith, K.; Rehman, S.; Jaliparthy, K.; Khan, N.; Scott, C.G.; Louis, E.K.S.; Liewluck, T.; et al. Cardiac Involvement in Facioscapulohumeral Muscular Dystrophy (FSHD). Front. Neurol. 2021, 12, 668180. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol. Ther. 2021, 227, 107863. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Kuwahara, K.; Nakao, K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol. 2011, 57, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Gallo, G.; Presta, V.; Volpe, M.; Rubattu, S. Molecular and clinical implications of natriuretic peptides in aortic valve stenosis. J. Mol. Cell. Cardiol. 2019, 129, 266–271. [Google Scholar] [CrossRef]
- Boucly, A.; Weatherald, J.; Savale, L.; Jais, X.; Cottin, V.; Prevot, G.; Picard, F.; de Groote, P.; Jevnikar, M.; Bergot, E.; et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur. Respir. J. 2017, 50, 1700889. [Google Scholar] [CrossRef] [Green Version]
- Hemnes, A.; Rothman, A.M.; Swift, A.J.; Zisman, L.S. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm. Circ. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Nakatsuma, K.; Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Kanamori, N.; Murata, K.; Kitai, T.; Kawase, Y.; Izumi, C.; et al. B-type natriuretic peptide in patients with asymptomatic severe aortic stenosis. Heart 2019, 105, 384–390. [Google Scholar] [CrossRef]
- Gotzmann, M.; Czauderna, A.; Aweimer, A.; Hehnen, T.; Bösche, L.; Lind, A.; Kloppe, A.; Mügge, A.; Ewers, A. B-type natriuretic peptide is a strong independent predictor of long-term outcome after transcatheter aortic valve implantation. J. Heart Valve Dis. 2014, 23, 537–544. [Google Scholar]
- Koskinas, K.C.; O’Sullivan, C.J.; Heg, D.; Praz, F.; Stortecky, S.; Pilgrim, T.; Buellesfeld, L.; Jüni, P.; Windecker, S.; Wenaweser, P. Effect of B-type Natriuretic Peptides on Long-Term Outcomes After Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2015, 116, 1560–1565. [Google Scholar] [CrossRef]
- Mizutani, K.; Hara, M.; Iwata, S.; Murakami, T.; Shibata, T.; Yoshiyama, M.; Naganuma, T.; Yamanaka, F.; Higashimori, A.; Tada, N.; et al. Elevation of B-Type Natriuretic Peptide at Discharge is Associated with 2-Year Mortality After Transcatheter Aortic Valve Replacement in Patients with Severe Aortic Stenosis: Insights from a Multicenter Prospective OCEAN-TAVI (Optimized Transcatheter Valvular Intervention—Transcatheter Aortic Valve Implantation) Registry. J. Am. Heart Assoc. 2017, 6, e006112. [Google Scholar] [CrossRef] [PubMed]
- White, M.; Baral, R.; Ryding, A.; Tsampasian, V.; Ravindrarajah, T.; Garg, P.; Koskinas, K.; Clark, A.; Vassiliou, V. Biomarkers Associated with Mortality in Aortic Stenosis: A Systematic Review and Meta-Analysis. Med. Sci. 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Hari, Y.; Kawai, N.; Kuno, T.; Ando, T.; ALICE (All-Literature Investigationof Cardiovascular Evidence) Group. Meta-Analysis of Impact of Baseline N-TerminalPro-Brain Natriuretic Peptide Levels on SurvivalAfter Transcatheter Aortic Valve Implantation for Aortic Stenosis. Am. J. Cardiol. 2019, 123, 820–826. [Google Scholar] [CrossRef]
- Akodad, M.; Roubille, F.; Marin, G.; Lattuca, B.; Macia, J.; Delseny, D.; Gandet, T.; Robert, P.; Schmutz, L.; Piot, C.; et al. Myocardial Injury After Balloon Predilatation Versus Direct Transcatheter Aortic Valve Replacement: Insights from the DIRECTAVI Trial. J. Am. Heart Assoc. 2020, 9, e018405. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Sistach, E.; Lupón, J.; Cediel, G.; Teis, A.; Gual, F.; Serrano, S.; Vallejo, N.; Juncà, G.; López-Ayerbe, J.; Bayés-Genís, A. High-sensitivity troponin T in asymptomatic severe aortic stenosis. Biomarkers 2019, 24, 334–340. [Google Scholar] [CrossRef]
- Chin, C.W.L.; Shah, A.; McAllister, D.; Cowell, S.J.; Alam, S.; Langrish, J.P.; Strachan, F.E.; Hunter, A.L.; Choy, A.M.; Lang, C.; et al. High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur. Heart J. 2014, 35, 2312–2321. [Google Scholar] [CrossRef]
- Dweck, M.R.; Everett, R.J.; Dweck, M.R.; Everett, R.J. Multibiomarker Strategies in Aortic Stenosis. JACC Cardiovasc. Imaging 2018, 11, 948–995. [Google Scholar] [CrossRef]
- Vavuranakis, M.; Kariori, M.; Voudris, V.; Thomopoulou, S.; Aznaouridis, K.; Kalogeras, K.; Vrachatis, D.; Moldovan, C.; Dima, I.; Milkas, A.; et al. Troponin levels after TAVI are related to the development of distinct electrocardiographic changes. Int. J. Cardiol. 2012, 167, 606–608. [Google Scholar] [CrossRef]
- Chorianopoulos, E.; Krumsdorf, U.; Geis, N.; Pleger, S.T.; Giannitsis, E.; Katus, H.A.; Bekeredjian, R. Preserved prognostic value of preinterventional troponin T levels despite successful TAVI in patients with severe aortic stenosis. Clin. Res. Cardiol. 2014, 103, 65–72. [Google Scholar] [CrossRef]
- Köhler, W.M.; Freitag-Wolf, S.; Lambers, M.; Lutz, M.; Niemann, P.M.; Petzina, R.; Lutter, G.; Bramlage, P.; Frey, N.; Frank, D. Preprocedural but not periprocedural high-sensitive Troponin T (hsTNT) levels predict outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Cardiovasc. Ther. 2016, 34, 385–396. [Google Scholar] [CrossRef]
- Paradis, J.-M.; Maniar, H.S.; Lasala, J.M.; Kodali, S.; Williams, M.; Lindman, B.; Damiano, R.J.; Moon, M.R.; Makkar, R.R.; Thourani, V.H.; et al. Clinical and Functional Outcomes Associated with Myocardial Injury After Transfemoral and Transapical Transcatheter Aortic Valve Replacement: A Subanalysis from the PARTNER Trial (Placement of Aortic Transcatheter Valves). JACC Cardiovasc. Interv. 2015, 8, 1468–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seoudy, H.; Lambers, M.; Winkler, V.; Dudlik, L.; Freitag-Wolf, S.; Frank, J.; Kuhn, C.; Rangrez, A.Y.; Puehler, T.; Lutter, G.; et al. Elevated high-sensitivity troponin T levels at 1-year follow-up are associated with increased long-term mortality after TAVR. Clin. Res. Cardiol. 2021, 110, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Hari, Y.; Nakashima, K.; Kuno, T.; Ando, T.; All-Literature Investigation of Cardiovascular Evidence (ALICE) Group. Meta-analysis of impact of troponins on mortality after transcatheter aortic valve implantation. J. Cardiovasc. Surg. 2020, 61, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Rev. Esp. Cardiol. 2018, 71, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaky, A.; Zafar, I.; Masjoan-Juncos, J.X.; Husain, M.; Mariappan, N.; Morgan, C.J.; Hamid, T.; Frölich, M.A.; Ahmad, S.; Ahmad, A. Echocardiographic, Biochemical, and Electrocardiographic Correlates Associated with Progressive Pulmonary Arterial Hypertension. Front. Cardiovasc. Med. 2021, 8, 705666. [Google Scholar] [CrossRef]
- Dautzenberg, L.; Pals, J.E.M.; Lefeber, G.J.; Stella, P.R.; Abawi, M.; Emmelot-Vonk, M.; Koek, H.L. Predictors of clinical outcome following transcatheter aortic valve implantation: A prospective cohort study. Open Heart 2021, 8, e001766. [Google Scholar] [CrossRef]
- Otto, C.M.; Kumbhani, D.J.; Alexander, K.P.; Calhoon, J.H.; Desai, M.Y.; Kaul, S.; Lee, J.C.; Ruiz, C.E.; Vassileva, C.M. 2017 ACC Expert Consensus Decision Pathway for Transcatheter Aortic Valve Replacement in the Management of Adults with Aortic Stenosis: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 2017, 69, 1313–1346. [Google Scholar] [CrossRef]
- Halkin, A.; Steinvil, A.; Witberg, G.; Barsheshet, A.; Barkagan, M.; Assali, A.; Segev, A.; Fefer, P.; Guetta, V.; Barbash, I.M.; et al. Mortality prediction following transcatheter aortic valve replacement: A quantitative comparison of risk scores derived from populations treated with either surgical or percutaneous aortic valve replacement. The Israeli TAVR Registry Risk Model Accuracy Assessment (IRRMA) study. Int. J. Cardiol. 2016, 215, 227–231. [Google Scholar] [CrossRef]
- Sadaba, R.; Martínez-Martínez, E.; Arrieta, V.; Álvarez, V.; Fernández-Celis, A.; Ibarrola, J.; Melero, A.; Rossignol, P.; Cachofeiro, V.; López-Andrés, N. Role for Galectin-3 in Calcific Aortic Valve Stenosis. J. Am. Heart Assoc. 2016, 5, e004360. [Google Scholar] [CrossRef] [Green Version]
- Ibarrola, J.F.; Martínez-Martínez, E.; Sádaba, J.R.; Arrieta, V.; García-Peña, A.; Álvarez, V.; Fernández-Celis, A.; Gainza, A.; Rossignol, P.; Ramos, V.C.; et al. Beneficial Effects of Galectin-3 Blockade in Vascular and Aortic Valve Alterations in an Experimental Pressure Overload Model. Int. J. Mol. Sci. 2017, 18, 1664. [Google Scholar] [CrossRef] [Green Version]
- Ibarrola, J.; Arrieta, V.; Sádaba, R.; Martinez-Martinez, E.; Garcia-Peña, A.; Alvarez, V.; Fernández-Celis, A.; Gainza, A.; Santamaría, E.; Fernández-Irigoyen, J.; et al. Galectin-3 down-regulates antioxidant peroxiredoxin-4 in human cardiac fibroblasts: A new pathway to induce cardiac damage. Clin. Sci. 2018, 132, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, V.; Sádaba, J.R.; Álvarez, V.; Rodríguez, J.A.; López-Andrés, N. Galectin-3 as a novel biotarget in cardiovascular alterations associated to development of severe aortic stenosis. An. Sist. Sanit. Navar. 2019, 42, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrieta, V.; Martinez-Martinez, E.; Ibarrola, J.; Alvarez, V.; Sádaba, R.; Garcia-Peña, A.; Fernández-Celis, A.; Cachofeiro, V.; Rossignol, P.; López-Andrés, N. A role for galectin-3 in the development of early molecular alterations in short-term aortic stenosis. Clin. Sci. 2017, 131, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhou, Y.; Zhao, Y.; Tan, C.; Yuan, Z.; Li, J.; Liao, X.; Gu, L.; Zhou, X. The Relationship between Galectin-3 and Different Patterns of Ventricular Geometry Remodelling in Aortic Valve Stenosis. Heart Lung Circ. 2016, 25, 371–377. [Google Scholar] [CrossRef]
- Agoşton-Coldea, L.; Bheecarry, K.; Petra, C.-V.; Strâmbu, L.; Ober, C.; Revnic, R.; Lupu, S.; Mocan, T.; Fodor, D. The value of global longitudinal strain and galectin-3 for predicting cardiovascular events in patients with severe aortic stenosis. Med. Ultrason. 2018, 20, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Bobrowska, B.; Wieczorek-Surdacka, E.; Kruszelnicka, O.; Chyrchel, B.; Surdacki, A.; Dudek, D. Clinical Correlates and Prognostic Value of Plasma Galectin-3 Levels in Degenerative Aortic Stenosis: A Single-Center Prospective Study of Patients Referred for Invasive Treatment. Int. J. Mol. Sci. 2017, 18, 947. [Google Scholar] [CrossRef]
- Baldenhofer, G.; Zhang, K.; Spethmann, S.; Laule, M.; Eilers, B.; Leonhardt, F.; Sanad, W.; Dreger, H.; Sander, M.; Grubitzsch, H.; et al. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Int. J. Cardiol. 2014, 177, 912–917. [Google Scholar] [CrossRef]
- Rheude, T.; Pellegrini, C.; Núñez, J.; Joner, M.; Trenkwalder, T.; Mayr, N.P.; Holdenrieder, S.; Bodi, V.; Koenig, W.; Kasel, A.M.; et al. Differential Prognostic Value of Galectin-3 According to Carbohydrate Antigen 125 Levels in Transcatheter Aortic Valve Implantation. Rev. Esp. Cardiol. 2018, 72, 907–915. [Google Scholar] [CrossRef]
- Giritharan, S.; Cagampang, F.; Torrens, C.; Salhiyyah, K.; Duggan, S.; Ohri, S. Aortic Stenosis Prognostication in Patients with Type 2 Diabetes: Protocol for Testing and Validation of a Biomarker-Derived Scoring System. JMIR Res. Protoc. 2019, 8, e13186. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Song, G.-Y.; Zhao, J.; Wang, Y.-B.; Wang, M.-Y.; Xu, Y.-L.; Wang, B.-C.; Niu, G.-N.; Liu, Z.-H.; Wu, Y.-J. Preprocedural circulating galectin-3 and the risk of mortality after transcatheter aortic valve replacement: A systematic review and meta-analysis. Biosci. Rep. 2020, 40, BSR20202306. [Google Scholar] [CrossRef]
- Toutouzas, K.; Stathogiannis, K.; Latsios, G.; Synetos, A.; Drakopoulou, M.; Penesopoulou, V.; Michelongona, A.; Tsiamis, E.; Tousoulis, D. Biomarkers in Aortic Valve Stenosis and their Clinical Significance in Transcatheter Aortic Valve Implantation. Curr. Med. Chem. 2019, 26, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.; Djohan, A.H.; Lang, C.C. The role of cardiac biochemical markers in aortic stenosis. Biomarkers 2016, 21, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Kupari, M.; Laine, M.; Turto, H.; Lommi, J.; Werkkala, K. Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. J. Heart Valve Dis. 2013, 22, 166–176. [Google Scholar] [PubMed]
- Piestrzeniewicz, K.; Łuczak, K.; Maciejewski, M.; Jaszewski, R.; Drożdż, J. Clinical outcome, echocardiographic assessment, neurohormonal and collagen turnover markers in low-fl ow severe aortic stenosis with high transvalvular gradient. Pol. Arch. Intern. Med. 2014, 124, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, J.; López, B.; Ravassa, S.; Hermida, N.; José, G.S.; Gallego, I.; Valencia, F.; Gómez-Doblas, J.J.; De Teresa, E.; Díez, J.; et al. MicroRNA-19b is a potential biomarker of increased myocardial collagen cross-linking in patients with aortic stenosis and heart failure. Sci. Rep. 2017, 7, 40696. [Google Scholar] [CrossRef] [Green Version]
- Villar, A.; Garcia, R.; Merino, D.; Llano, M.; Cobo, M.; Montalvo, C.; Martín-Durán, R.; Hurlé, M.A.; Nistal, J.F. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int. J. Cardiol. 2013, 167, 2875–2881. [Google Scholar] [CrossRef] [Green Version]
- Fabiani, I.; Scatena, C.; Mazzanti, C.M.; Conte, L.; Pugliese, N.R.; Franceschi, S.; Lessi, F.; Menicagli, M.; De Martino, A.; Pratali, S.; et al. Micro-RNA-21 (biomarker) and global longitudinal strain (functional marker) in detection of myocardial fibrotic burden in severe aortic valve stenosis: A pilot study. J. Transl. Med. 2016, 14, 248. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Villar, A.V.; Cobo, M.; Llano, M.; Martín-Durán, R.; Hurlé, M.A.; Nistal, J.F. Circulating Levels of miR-133a Predict the Regression Potential of Left Ventricular Hypertrophy After Valve Replacement Surgery in Patients with Aortic Stenosis. J. Am. Heart Assoc. 2013, 2, e000211. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, E.; Shimpo, M.; De Keulenaer, G.; MacGillivray, C.; Tominaga, S.-I.; Solomon, S.D.; Rouleau, J.-L.; Lee, R.T. Expression and Regulation of ST2, an Interleukin-1 Receptor Family Member, in Cardiomyocytes and Myocardial Infarction. Circulation 2002, 106, 2961–2966. [Google Scholar] [CrossRef] [Green Version]
- Matilla, L.; Ibarrola, J.; Arrieta, V.; Garcia-Peña, A.; Martinez-Martinez, E.; Sádaba, R.; Alvarez, V.; Navarro, A.; Fernández-Celis, A.; Gainza, A.; et al. Soluble ST2 promotes oxidative stress and inflammation in cardiac fibroblasts: An in vitro and in vivo study in aortic stenosis. Clin. Sci. 2019, 133, 1537–1548. [Google Scholar] [CrossRef]
- He, Y.-B.; Guo, J.-H.; Wang, C.; Zhu, D.; Lu, L.-M. IL-33 promotes the progression of nonrheumatic aortic valve stenosis via inducing differential phenotypic transition in valvular interstitial cells. J. Cardiol. 2020, 75, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Mebazaa, A.; Di Somma, S. ST2 and Prognosis in Acutely Decompensated Heart Failure: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115 (Suppl. S7), 26B–31B. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; French, B.; McCloskey, K.; Rame, J.E.; McIntosh, E.; Shahi, P.; Dries, D.L.; Tang, W.W.; Wu, A.H.; Fang, J.C.; et al. High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circ. Heart Fail. 2011, 4, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancellotti, P.; Dulgheru, R.; Magne, J.; Henri, C.; Servais, L.; Bouznad, N.; Ancion, A.; Martinez, C.; Davin, L.; Le Goff, C.; et al. Elevated Plasma Soluble ST2 Is Associated with Heart Failure Symptoms and Outcome in Aortic Stenosis. PLoS ONE 2015, 10, e0138940. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, I.; Conte, L.; Pugliese, N.R.; Calogero, E.; Barletta, V.; Di Stefano, R.; Santoni, T.; Scatena, C.; Bortolotti, U.; Naccarato, A.G.; et al. The integrated value of sST2 and global longitudinal strain in the early stratification of patients with severe aortic valve stenosis: A translational imaging approach. Int. J. Cardiovasc. Imaging 2017, 33, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Cai, A.; Miyazawa, A.; Sunderland, N.; Piper, S.E.; Gibbs, T.G.; Wang, D.; Redding, S.; Amin-Youseff, G.; Wendler, O.; Byrne, J.; et al. ST2 in patients with severe aortic stenosis and heart failure. Cardiol. J. 2021, 28, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Sobczak, S.; Sakowicz, A.; Pietrucha, T.; Lelonek, M. Diagnostic utility of biomarkers of left ventricular stress in patients with aortic stenosis and preserved left ventricular ejection fraction. Pol. J. Cardio Thorac. Surg. 2017, 2, 93–98. [Google Scholar] [CrossRef]
- Weber, M.; Jaenisch, M.; Spilker, M.; Pingel, S.; Schueler, R.; Stundl, A.; Sedaghat, A.; Hammerstingl, C.; Mellert, F.; Grube, E.; et al. TAVR outcome after reclassification of aortic valve stenosis by using a hybrid continuity equation that combines computed tomography and echocardiography data. Catheter. Cardiovasc. Interv. 2020, 96, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Schmid, J.; Stojakovic, T.; Zweiker, D.; Scharnagl, H.; Maderthaner, R.D.; Scherr, D.; Maier, R.; Schmidt, A.; März, W.; Binder, J.S.; et al. ST2 predicts survival in patients undergoing transcatheter aortic valve implantation. Int. J. Cardiol. 2017, 244, 87–92. [Google Scholar] [CrossRef]
- Wernly, B.; Lichtenauer, M.; Jirak, P.; Eder, S.; Reiter, C.; Kammler, J.; Kypta, A.; Jung, C.; Franz, M.; Hoppe, U.C.; et al. Soluble ST2 predicts 1-year outcome in patients undergoing transcatheter aortic valve implantation. Eur. J. Clin. Investig. 2017, 47, 149–157. [Google Scholar] [CrossRef]
- Stundl, A.; Lünstedt, N.-S.; Courtz, F.; Freitag-Wolf, S.; Frey, N.; Holdenrieder, S.; Zur, B.; Grube, E.; Nickenig, G.; Werner, N.; et al. Soluble ST2 for Risk Stratification and the Prediction of Mortality in Patients Undergoing Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2017, 120, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Mirna, M.; Wernly, B.; Paar, V.; Jung, C.; Jirak, P.; Figulla, H.-R.; Kretzschmar, D.; Franz, M.; Hoppe, U.C.; Lichtenauer, M.; et al. Multi-biomarker analysis in patients after transcatheter aortic valve implantation (TAVI). Biomarkers 2018, 23, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Breyley, J.G.; Schilling, J.D.; Vatterott, A.M.; Zajarias, A.; Maniar, H.S.; Jr, R.J.D.; Moon, M.R.; Lawton, J.S.; Gage, B.F.; et al. Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement. Heart 2015, 101, 1382–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaterra, G.A.; Zügel, S.; Thogersen, J.; Walter, S.A.; Haberkorn, U.; Strelau, J.; Kinscherf, R. Growth Differentiation Factor-15 Deficiency Inhibits Atherosclerosis Progression by Regulating Interleukin-6–Dependent Inflammatory Response to Vascular Injury. J. Am. Heart Assoc. 2012, 1, e002550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strelau, J.; Böttner, M.; Lingor, P.; Suter-Crazzolara, C.; Galter, D.; Jaszai, J.; Sullivan, A.; Schober, A.; Krieglstein, K.; Unsicker, K. GDF-15/MIC-1 a novel member of the TGF-ß superfamily. In Advances in Research on Neurodegeneration; Springer: Vienna, Austria, 2000; pp. 273–276. [Google Scholar] [CrossRef]
- Fabiani, I.; Santoni, T.; Angelillis, M.; Petricciuolo, S.; Colli, A.; Pellegrini, G.; Mazzei, D.; Pugliese, N.R.; Petronio, A.S.; De Caterina, R. Growth Differentiation Factor 15 in Severe Aortic Valve Stenosis: Relationship with Left Ventricular Remodeling and Frailty. J. Clin. Med. 2020, 9, 2998. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Hofmanis, J.; Tretjakovs, P.; Svirskis, S.; Gersone, G.; Hofmane, D.; Rozenberga, U.; Blumfelds, L.; Bahs, G.; Lejnieks, A.; Mackevics, V. Prognostic Utility of Circulating Growth Factors in Aortic Valve Stenosis: A Pilot Study. Medicina 2021, 57, 78. [Google Scholar] [CrossRef]
- Tretjakovs, P.; Lurins, J.; Svirskis, S.; Gersone, G.; Lurina, D.; Rozenberga, U.; Blumfelds, L.; Bahs, G.; Lejnieks, A.; Mackevics, V. Thioredoxin-1 and Correlations of the Plasma Cytokines Regarding Aortic Valve Stenosis Severity. Biomedicines 2021, 9, 1041. [Google Scholar] [CrossRef]
- Kim, J.B.; Kobayashi, Y.; Moneghetti, K.J.; Brenner, D.A.; O’Malley, R.; Schnittger, I.; Wu, J.C.; Murtagh, G.; Beshiri, A.; Fischbein, M.; et al. GDF-15 (Growth Differentiation Factor 15) Is Associated with Lack of Ventricular Recovery and Mortality After Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2017, 10, e005594. [Google Scholar] [CrossRef]
- Krau, N.-C.; Lünstedt, N.-S.; Freitag-Wolf, S.; Brehm, D.; Petzina, R.; Lutter, G.; Bramlage, P.; Dempfle, A.; Frey, N.; Frank, D. Elevated growth differentiation factor 15 levels predict outcome in patients undergoing transcatheter aortic valve implantation. Eur. J. Heart Fail. 2015, 17, 945–955. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, J.; Janiec, M.; Bergdahl, I.A.; Holmgren, A.; Hultdin, J.; Johansson, B.; Näslund, U.; Siegbahn, A.; Fall, T.; Söderberg, S. Proteomic Biomarkers for Incident Aortic Stenosis Requiring Valvular Replacement. Circulation 2018, 138, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Gumauskienė, B.; Krivickienė, A.; Jonkaitienė, R.; Vaškelytė, J.J.; Siudikas, A.; Ereminienė, E. Impact of Left Ventricular Diastolic Dysfunction and Biomarkers on Pulmonary Hypertension in Patients with Severe Aortic Stenosis. Medicina 2018, 54, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeder, M.T.; Weber, L.; Ammann, P.; Buser, M.; Ehl, N.F.; Gerhard, M.; Brenner, R.; Haager, P.K.; Maisano, F.; Rickli, H. Relationship between B-type natriuretic peptide and invasive haemodynamics in patients with severe aortic valve stenosis. ESC Heart Fail. 2020, 7, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calin, A.; Mateescu, A.D.; Rosca, M.; Beladan, C.C.; Enache, R.; Botezatu, S.; Cosei, I.; Calin, C.; Simion, M.; Ginghina, C.; et al. Left atrial dysfunction as a determinant of pulmonary hypertension in patients with severe aortic stenosis and preserved left ventricular ejection fraction. Int. J. Cardiovasc. Imaging 2017, 33, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
Determination Of PH According to Current ESC Guidelines (2015) | |
PH Subtypes | Hemodynamics |
pre-capillary PH | mPAP ≥ 25 mmHg PCWP ≤ 15 mmHg |
isolated post-capillary PH | mPAP ≥ 25 mmHg PCWP > 15 mmHg PVR ≤ 3 WU DPG < 7 mmHg |
combined pre- and post-capillary PH | mPAP ≥ 25 mmHg PCWP > 15 mmHg PVR > 3 WU DPG ≥ 7 mmHg |
Determination Of PH According To 6th World Symposium On Pulmonary Hypertension (2018) | |
PH Subtypes | Hemodynamics |
pre-capillary PH | mPAP > 20 mmHg PCWP ≤ 15 mmHg PVR ≥ 3 WU |
isolated post-capillary PH | mPAP > 20 mmHg PCWP > 15 mmHg PVR < 3 WU |
combined pre- and post-capillary PH | mPAP > 20 mmHg PCWP > 15 mmHg PVR ≥ 3 WU |
Search Terms | Search Results | Included Results |
---|---|---|
Echocardiography | ||
1. aortic stenosis AND pulmonary hypertension AND echocardiography | 385 | 28 |
Cardiovascular Imaging | ||
1. aortic stenosis AND pulmonary hypertension AND computed tomography | 57 | 6 |
2. aortic stenosis AND pulmonary hypertension AND mri | 46 | 2 |
Biomarkers | ||
1. aortic stenosis AND pulmonary hypertension AND biomarkers | 21 | 1 |
2. aortic stenosis AND pulmonary hypertension AND BNP | 7 | 2 |
3. aortic stenosis AND pulmonary hypertension AND sST2 | 0 | 0 |
4. aortic stenosis AND pulmonary hypertension AND suPAR | 0 | 0 |
5. aortic stenosis AND pulmonary hypertension AND gdf-15 | 1 | 0 |
6. aortic stenosis AND pulmonary hypertension AND gdf-11 | 0 | 0 |
7. aortic stenosis AND pulmonary hypertension AND galectin-3 | 0 | 0 |
8. aortic stenosis AND pulmonary hypertension AND microrna | 1 | 0 |
9. aortic stenosis AND pulmonary hypertension AND h-fabp | 0 | 0 |
10. aortic stenosis AND pulmonary hypertension AND troponin | 7 | 0 |
11. aortic stenosis AND pulmonary hypertension AND ca-125 | 0 | 0 |
Echocardiography | ||||
---|---|---|---|---|
Authors | Year | N | Population | Findings |
Malouf et al. [44] | 2002 | 47 |
|
|
Kapoor et al. [42] | 2007 | 626 |
|
|
Pai et al. [43] | 2007 | 119 |
|
|
Saraiva et al. [23] | 2010 | 70 |
|
|
Lancellotti et al. [49] | 2012 | 105 |
|
|
Mutlak et al. [31] | 2012 | 216 |
|
|
Luçon et al. [36] | 2014 | 2435 |
|
|
Medvedofsky et al. [32] | 2014 | 122 |
|
|
Ahn et al. [24] | 2014 | 189 |
|
|
Barasch et al. [27] | 2014 | 550 |
|
|
Durmaz et al. [37] | 2014 | 70 |
|
|
Bishu et al. [46] | 2014 | 277 |
|
|
Barbash et al. [33] | 2015 | 415 |
|
|
D’Ascenzo et al. [25] | 2015 | 674 |
|
|
Mascherbauer et al. [34] | 2015 | 465 |
|
|
Salas-Pacheco et al. [50] | 2016 | 72 |
|
|
Nijenhuis et al. [38] | 2016 | 591 |
|
|
Hernandez-Suarez et al. [28] | 2017 | 30 |
|
|
Kleczysnki et al. [39] | 2017 | 148 |
|
|
Levy et al. [40] | 2017 | 1019 |
|
|
Masri et al. [29] | 2018 | 407 |
|
|
Kandels et al. [45] | 2018 | 306 |
|
|
Rozenbaum et al. [35] | 2019 | 97 |
|
|
Schewel et al. [26] | 2020 | 1400 |
|
|
Ujihira et al. [47] | 2020 | 242 |
|
|
Strachinaru et al. [48] | 2020 | 170 |
|
|
Cladellas et al. [41] | 2020 | 429 |
|
|
Weber et al. [30] | 2021 | 205 |
|
|
CT and MRI | ||||
---|---|---|---|---|
Authors | Year | N | Population | Findings |
Eberhard et al. [51] | 2017 | 257 |
|
|
O’Sullivan et al. [54] | 2018 | 139 |
|
|
Gumauskiene et al. [57] | 2019 | 30 |
|
|
Colin et al. [56] | 2020 | 100 |
|
|
Turner et al. [53] | 2021 | 402 |
|
|
Chaturvedi et al. [52] | 2021 | 165 |
|
|
Gumauskiene et al. [58] | 2021 | 34 |
|
|
Sudo et al. [55] | 2022 | 770 |
|
|
Biomarkers | ||||
---|---|---|---|---|
Authors | Year | N | Population | Findings |
Gumauskiene et al. [144] | 2018 | 60 |
|
|
Maeder et al. [145] | 2018 | 252 |
|
|
Calin et al. [146] | 2020 | 108 |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boxhammer, E.; Berezin, A.E.; Paar, V.; Bacher, N.; Topf, A.; Pavlov, S.; Hoppe, U.C.; Lichtenauer, M. Severe Aortic Valve Stenosis and Pulmonary Hypertension: A Systematic Review of Non-Invasive Ways of Risk Stratification, Especially in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Pers. Med. 2022, 12, 603. https://doi.org/10.3390/jpm12040603
Boxhammer E, Berezin AE, Paar V, Bacher N, Topf A, Pavlov S, Hoppe UC, Lichtenauer M. Severe Aortic Valve Stenosis and Pulmonary Hypertension: A Systematic Review of Non-Invasive Ways of Risk Stratification, Especially in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of Personalized Medicine. 2022; 12(4):603. https://doi.org/10.3390/jpm12040603
Chicago/Turabian StyleBoxhammer, Elke, Alexander E. Berezin, Vera Paar, Nina Bacher, Albert Topf, Sergii Pavlov, Uta C. Hoppe, and Michael Lichtenauer. 2022. "Severe Aortic Valve Stenosis and Pulmonary Hypertension: A Systematic Review of Non-Invasive Ways of Risk Stratification, Especially in Patients Undergoing Transcatheter Aortic Valve Replacement" Journal of Personalized Medicine 12, no. 4: 603. https://doi.org/10.3390/jpm12040603