Molecular Pathways of Breast Cancer in Systemic Sclerosis: Exploratory Immunohistochemical Analysis from the Sclero-Breast Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pathological Features of Breast Cancer in the Study Population
3.2. Systemic Sclerosis and Breast Cancer Correlations in the Study Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medsger Jr., T.A. Systemic sclerosis (scleroderma): Clinical aspect. In Arthritis and Allied Conditions: A Textbook of Rheuma tology; Koopman, W.J., Ed.; Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 1433–1465. [Google Scholar]
- Hachulla, E.; Launay, D. Diagnosis and classification of systemic sclerosis. Clin. Rev. Allergy Immunol. 2011, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khanna, D. Systemic Sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Wan, Y.-N.; Peng, W.-J.; Yan, J.-W.; Li, B.-Z.; Mei, B.; Chen, B.; Yao, H.; Yang, G.-J.; Tao, J.-H.; et al. The risk of cancer development in systemic sclerosis: A meta-analysis. Cancer Epidemiol. 2013, 37, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, M.; Tramacere, I.; Pomponio, G.; Gabrielli, B.; Avvedimento, E.V.; La Vecchia, C.; Negri, E.; Gabrielli, A. Systemic sclerosis (scleroderma) and cancer risk: Systematic review and meta-analysis of observational studies. Rheumatology 2013, 52, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Olesen, A.B.; Svaerke, C.; Sørensen, H.A.T. Systemic sclerosis and the risk of cancer: A nationwide population-based cohort study. Br. J. Dermatol. 2010, 163, 800–806. [Google Scholar] [CrossRef]
- Colaci, M.; Giuggioli, D.; Vacchi, C.; Lumetti, F.; Iachetta, F.; Marcheselli, L.; Federico, M.; Ferri, C. Breast cancer in systemic sclerosis: Results of a cross-linkage of an Italian Rheumatologic Center and a population-based Cancer Registry and review of the literature. Autoimmun. Rev. 2014, 13, 132–137. [Google Scholar] [CrossRef]
- Colaci, M.; Giuggioli, D.; Sebastiani, M.; Manfredi, A.; Vacchi, C.; Spagnolo, P.; Cerri, S.; Luppi, F.; Richeldi, L.; Ferri, C. Lung cancer in scleroderma: Results from an Italian rheumatologic center and review of the literature. Autoimmun. Rev. 2013, 12, 374–379. [Google Scholar] [CrossRef]
- Derk, C.T.; Rasheed, M.; Artlett, C.M.; Jimenez, S.A. A cohort study of cancer incidence in systemic sclerosis. J. Rheumatol. 2006, 33, 1113–1116. [Google Scholar]
- Maria, A.T.J.; Partouche, L.; Goulabchand, R.; Rivière, S.; Rozier, P.; Bourgier, C.; Le Quellec, A.; Morel, J.; Noël, D.; Guilpain, P. Intriguing Relationships Between Cancer and Systemic Sclerosis: Role of the Immune System and Other Contributors. Front. Immunol. 2019, 9, 3112. [Google Scholar] [CrossRef] [Green Version]
- Partouche, L.; Goulabchand, R.; Maria, A.T.J.; Rivière, S.; Jorgensen, C.; Rigau, V.; Bourgier, C.; Bessis, D.; Le Quellec, A.; Quere, I.; et al. Biphasic Temporal Relationship between Cancers and Systemic Sclerosis: A Clinical Series from Montpellier University Hospital and Review of the Literature. J. Clin. Med. 2020, 9, 853. [Google Scholar]
- Shah, A.A.; Casciola-Rosen, L. Mechanistic and clinical insights at the scleroderma-cancer interface. J. Scleroderma Relat. Disord. 2017, 2, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeineddine, N.; Khoury, L.E.; Mosak, J. Systemic Sclerosis and Malignancy: A Review of Current Data. J. Clin. Med. Res. 2016, 8, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Arcangeletti, M.C.; Caselli, E.; Zakrzewska, K.; Maccari, C.; Calderaro, A.; D’Accolti, M.; Soffritti, I.; Arvia, R.; Sighinolfi, G.; et al. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J. Autoimmun. 2021, 124, 102727. [Google Scholar] [CrossRef] [PubMed]
- Scope, A.; Sadetzki, S.; Sidi, Y.; Barzilai, A.; Trau, H.; Kaufman, B.; Catane, R.; Ehrenfeld, M. Breast cancer and scleroderma. Skinmed 2006, 5, 18–24. [Google Scholar] [PubMed]
- Szekanecz, E.; Szamosi, S.; Horváth, Á.; Németh, Á.; Juhász, B.; Szántó, J.; Szücs, G.; Szekanecz, Z. Malignancies associated with systemic sclerosis. Autoimmun. Rev. 2012, 11, 852–855. [Google Scholar] [CrossRef]
- Toss, A.; Spinella, A.; Isca, C.; Vacchi, C.; Ficarra, G.; Fabbiani, L.; Iannone, A.; Magnani, L.; Castrignanò, P.; Macripò, P.; et al. Clinical and Pathological Features of Breast Cancer in Systemic Sclerosis: Results from the Sclero-Breast Study. J. Pers. Med. 2021, 11, 580. [Google Scholar] [CrossRef]
- Van Den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger Jr, T.A.; Carreira, P.E.; et al. 2013 Classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Lv, J.; Chu, H.; Wang, J.; Chen, X.; Zhu, X.; Xue, Y.; Guan, M.; Zou, H. Vertical inhibition of PI3K/Akt/mTOR signaling demonstrates in vitro and in vivo anti-fibrotic activity. J. Dermatol. Sci. 2014, 76, 104–111. [Google Scholar] [CrossRef]
- Toss, A.; Piacentini, F.; Cortesi, L.; Artuso, L.; Bernardis, I.; Parenti, S.; Tenedini, E.; Ficarra, G.; Maiorana, A.; Iannone, A.; et al. Genomic alterations at the basis of treatment resistance in metastatic breast cancer: Clinical applications. Oncotarget 2018, 9, 31606–31619. [Google Scholar] [CrossRef] [Green Version]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar]
- Piccart, M.; Hortobagyi, G.N.; Campone, M.; Pritchard, K.I.; Lebrun, F.; Ito, Y.; Noguchi, S.; Perez, A.; Rugo, H.S.; Deleu, I.; et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Overall survival results from BOLERO-2. Ann. Oncol. 2014, 25, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Abraham, D.J.; Krieg, T.; Distler, J.; Distler, O. Overview of pathogenesis of systemic sclerosis. Rheumatology 2009, 48, iii3–iii7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel-Velázquez, M.; Ostoa-Saloma, P.; Palacios-Arreola, M.I.; Nava-Castro, K.E.; Castro, J.I.; Morales-Montor, J. The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res. 2015, 35, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Weigel, M.T.; Ghazoui, Z.; Dunbier, A.; Pancholi, S.; Dowsett, M.; Martin, L.A. Preclinical and clinical studies of estrogen deprivation support the PDGF/Abl pathway as a novel therapeutic target for overcoming endocrine resistance in breast cancer. Breast Cancer Res. 2012, 14, R78. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Milanezi, F.; Martins, A.; Reis, R.M.; Schmitt, F. Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res. 2005, 7, R788–R795. [Google Scholar] [CrossRef] [Green Version]
- Joglekar-Javadekar, M.; Van Laere, S.; Bourne, M.; Moalwi, M.; Finetti, P.; Vermeulen, P.B.; Birnbaum, D.; Dirix, L.Y.; Ueno, N.; Carter, M.; et al. Characterization and Targeting of Platelet-Derived Growth Factor Receptor alpha (PDGFRA) in Inflammatory Breast Cancer (IBC). Neoplasia 2017, 19, 564–573. [Google Scholar] [CrossRef]
- Distler, J.H.; Gay, S.; Distler, O. Angiogenesis and vasculogenesis in systemic sclerosis. Rheumatology 2006, 45, iii26–iii27. [Google Scholar]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef] [Green Version]
- Dethlefsen, C.; Højfeldt, G.; Hojman, P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 2013, 138, 657–664. [Google Scholar] [CrossRef]
- Vonderheide, R.H.; LoRusso, P.M.; Khalil, M.; Gartner, E.M.; Khaira, D.; Soulieres, D.; Dorazio, P.; Trosko, J.A.; Rüter, J.; Mariani, G.L.; et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010, 16, 3485–3494. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015, 6, 5364–5449. [Google Scholar]
- Muenst, S.; Schaerli, A.R.; Gao, F.; Däster, S.; Trella, E.; Droeser, R.A.; Muraro, M.G.; Zajac, P.; Zanetti, R.; Gillanders, W.E.; et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2014, 146, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 44–59. [Google Scholar]
- Dieci, M.V.; Mathieu, M.C.; Guarneri, V.; Conte, P.; Delaloge, S.; Andre, F.; Goubar, A. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015, 26, 1698–1704. [Google Scholar] [CrossRef]
- Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Hoda, R.S.; Brogi, E.; Dos Anjos, C.H.; Grabenstetter, A.; Ventura, K.; Patil, S.; Selenica, P.; Weigelt, B.; Reis-Filho, J.S.; Traina, T.; et al. Clinical and pathologic features associated with PD-L1 (SP142) expression in stromal tumor-infiltrating immune cells of triple-negative breast carcinoma. Mod. Pathol. 2020, 33, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Muenst, S.; Soysal, S.D.; Gao, F.; Obermann, E.C.; Oertli, D.; Gillanders, W.E. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2013, 139, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Lee, J.; Koo, J.S. Clinicopathological and prognostic significance of programmed death ligand-1 expression in breast cancer: A meta-analysis. BMC Cancer 2017, 17, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.M.; Arteaga, C.L.; Miller, T.W. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front. Oncol. 2012, 2, 145. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.W.; Hennessy, B.T.; González-Angulo, A.M.; Fox, E.M.; Mills, G.B.; Chen, H.; Higham, C.; García-Echeverría, C.; Shyr, Y.; Arteaga, C.L. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Investig. 2010, 120, 2406–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther. 2011, 11, 263–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berns, K.; Horlings, H.M.; Hennessy, B.T.; Madiredjo, M.; Hijmans, E.M.; Beelen, K.; Linn, S.C.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Hauptmann, M.; et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007, 12, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res. Treat. 2018, 169, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Morrisroe, K.; Nikpour, M. Cancer and scleroderma: Recent insights. Curr. Opin. Rheumatol. 2020, 32, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Hoa, S.; Lazizi, S.; Baron, M.; Wang, M.; Fritzler, M.J.; Hudson, M. Canadian Scleroderma Research Group. Association between autoantibodies in systemic sclerosis and cancer in a national registry. Rheumatology 2021, 61, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
Number of Patients: 22 pts n°(%) | |
---|---|
Median age: 61 years | |
Histological examination: DCIS Invasive Carcinoma (Ductal Invasive Carcinoma) (Lobular Invasive Carcinoma) (Tubular Carcinoma) | 2 (9%) 20 (91%) 15 (75%) 4 (20%) 1 (5%) |
Molecular Subtype of invasive BC: Luminal A-like Luminal B-like/Her 2 neg Luminal B-like/Her 2 pos Her 2 enriched-like Triple Negative | 10 (50%) 2 (10%) 3 (15%) 1 (5%) 4 (20%) |
Mib 1: Mib 1 ≤ 20% Mib 1 > 20% | 16 (80%) 4 (20%) |
Clinical Stage: I II III IV Pathological Stage *: 0 (In situ) I II III IV | 14 (64%) 6 (27%) 1 (4.5%) 1 (4.5%) 3 (14%) 12 (54%) 5 (23%) 1 (4.5%) 1 (4.5%) |
p Value | OR (IC 95%) | |
---|---|---|
ANA PI3K PDGFRβ | 0.044 0.031 | 2 (1.185; 3.377) 0.235 (0.100; 0.554) |
ACA PDGFRβ | 0.074 | 0.353 (0.185; 0.672) |
AnoA PI3K | 0.079 | 0.667 (0.379; 1.174) |
PAPs PI3K mTOR | 0.074 0.099 | 8.333 (0.776; 89.470) 4.667 (0.765; 28.466) |
Ulcers PD-L1 mTOR | 0.067 0.059 | 0.563 (0.365; 0.867) 9.000 (0.854; 94.899) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isca, C.; Spinella, A.; Toss, A.; de Pinto, M.; Ficarra, G.; Fabbiani, L.; Iannone, A.; Magnani, L.; Lumetti, F.; Macripò, P.; et al. Molecular Pathways of Breast Cancer in Systemic Sclerosis: Exploratory Immunohistochemical Analysis from the Sclero-Breast Study. J. Pers. Med. 2022, 12, 2007. https://doi.org/10.3390/jpm12122007
Isca C, Spinella A, Toss A, de Pinto M, Ficarra G, Fabbiani L, Iannone A, Magnani L, Lumetti F, Macripò P, et al. Molecular Pathways of Breast Cancer in Systemic Sclerosis: Exploratory Immunohistochemical Analysis from the Sclero-Breast Study. Journal of Personalized Medicine. 2022; 12(12):2007. https://doi.org/10.3390/jpm12122007
Chicago/Turabian StyleIsca, Chrystel, Amelia Spinella, Angela Toss, Marco de Pinto, Guido Ficarra, Luca Fabbiani, Anna Iannone, Luca Magnani, Federica Lumetti, Pierluca Macripò, and et al. 2022. "Molecular Pathways of Breast Cancer in Systemic Sclerosis: Exploratory Immunohistochemical Analysis from the Sclero-Breast Study" Journal of Personalized Medicine 12, no. 12: 2007. https://doi.org/10.3390/jpm12122007
APA StyleIsca, C., Spinella, A., Toss, A., de Pinto, M., Ficarra, G., Fabbiani, L., Iannone, A., Magnani, L., Lumetti, F., Macripò, P., Vacchi, C., Gasparini, E., Piana, S., Cortesi, L., Maiorana, A., Salvarani, C., Dominici, M., & Giuggioli, D. (2022). Molecular Pathways of Breast Cancer in Systemic Sclerosis: Exploratory Immunohistochemical Analysis from the Sclero-Breast Study. Journal of Personalized Medicine, 12(12), 2007. https://doi.org/10.3390/jpm12122007