Systems Biology Approach for Personalized Hemostasis Correction
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Laboratory Assays
2.3. Statistical Analysis
2.4. Detailed Model of Blood Coagulation
2.5. Pharmacokinetic (PK) Model
2.6. Simulation Output Parameters
2.7. Comsol Parameters of Simulation and Numeric Methods
3. Results
3.1. Detailed Model of Blood Coagulation: Verification and Evaluation
3.2. PK Model of LMWH: Development and Evaluation
3.3. Pharmacokinetic Model of LMWH
3.4. Personalized Hemostasis Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davie, E.W.; Fujikawa, K.; Kurachi, K.; Kisiel, W. The role of serine proteases in the blood coagulation cascade. Adv. Enzymol. Relat. Areas Mol. Biol. 2006, 48, 277–318. [Google Scholar] [CrossRef]
- Zwaal, R.F.A. Membrane and lipid involvement in blood coagulation. Biochim. Biophys. Acta (BBA) Rev. Biomembr. 1978, 515, 163–205. [Google Scholar] [CrossRef]
- Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991, 30, 10363–10370. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, E.; Khorana, A.A. Cancer and Venous Thromboembolic Disease: A Review. Oncologist 2017, 22, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestri, E.; Scalera, A.; Emmi, G.; Squatrito, D.; Ciucciarelli, L.; Cenci, C.; Tamburini, C.; Emmi, L.; Di Minno, G.; Prisco, D. Thrombosis in Autoimmune Diseases: A Role for Immunosuppressive Treatments? Semin. Thromb. Hemost. 2016, 42, 650–661. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T.; Schultz, M. Infection and Inflammation as Risk Factors for Thrombosis and Atherosclerosis. Semin. Thromb. Hemost. 2012, 38, 506–514. [Google Scholar] [CrossRef]
- Dattani, R.; Smith, C.D.; Patel, V.R. The venous thromboembolic complications of shoulder and elbow surgery. Bone Jt. J. 2013, 95-B, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Zhao, W.; Hao, Q.; Tian, H.; Tian, J.; Li, L.; Jia, W.; Yang, K. Intra-articular clonidine for post-operative analgesia following arthroscopic knee surgery: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2076–2084. [Google Scholar] [CrossRef]
- Wu, O.; Robertson, L.; Langhorne, P.; Twaddle, S.; Lowe, G.D.O.; Clark, P.; Greaves, M.; Walker, I.D.; Brenkel, I.; Regan, L.; et al. Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: A systematic review. Thromb. Haemost. 2005, 94, 17–25. [Google Scholar] [CrossRef]
- Price, E.A.; Jin, J.; Nguyen, H.M.; Krishnan, G.; Bowen, R.; Zehnder, J.L. Discordant aPTT and Anti-Xa Values and Outcomes in Hospitalized Patients Treated with Intravenous Unfractionated Heparin. Ann. Pharmacother. 2013, 47, 151–158. [Google Scholar] [CrossRef]
- Gracheva, M.A.; Urnova, E.S.; Sinauridze, E.I.; Tarandovskiy, I.D.; Orel, E.B.; Poletaev, A.V.; Mendeleeva, L.P.; Ataullakhanov, F.I.; Balandina, A.N. Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma. Leuk. Lymphoma 2015, 56, 3418–3425. [Google Scholar] [CrossRef] [PubMed]
- Balandina, A.N.; Serebriyskiy, I.I.; Poletaev, A.V.; Polokhov, D.M.; Gracheva, M.A.; Koltsova, E.M.; Vardanyan, D.M.; Taranenko, I.A.; Krylov, A.Y.; Urnova, E.S.; et al. Thrombodynamics—A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS ONE 2018, 13, e0199900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockin, M.F.; Jones, K.C.; Everse, S.J.; Mann, K.G. A Model for the Stoichiometric Regulation of Blood Coagulation. J. Biol. Chem. 2002, 277, 18322–18333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danforth, C.M.; Orfeo, T.; Everse, S.J.; Mann, K.G.; Brummel-Ziedins, K.E. Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis. PLoS ONE 2012, 7, e30385. [Google Scholar] [CrossRef]
- Brummel-Ziedins, K.E.; Vossen, C.Y.; Butenas, S.; Mann, K.G.; Rosendaal, F.R. Thrombin generation profiles in deep venous thrombosis. J. Thromb. Haemost. 2005, 3, 2497–2505. [Google Scholar] [CrossRef] [Green Version]
- Gissel, M.; Undas, A.; Slowik, A.; Mann, K.G.; Brummel-Ziedins, K.E. Plasma factor and inhibitor composition contributes to thrombin generation dynamics in patients with acute or previous cerebrovascular events. Thromb. Res. 2010, 126, 262. [Google Scholar] [CrossRef] [Green Version]
- Mitrophanov, A.Y.; Rosendaal, F.R.; Reifman, J. Therapeutic correction of thrombin generation in dilution-induced coagulopathy. J. Trauma Acute Care Surg. 2012, 73, S95–S102. [Google Scholar] [CrossRef] [Green Version]
- Mitrophanov, A.Y.; Rosendaal, F.R.; Reifman, J. Computational Analysis of the Effects of Reduced Temperature on Thrombin Generation. Anesth. Analg. 2013, 117, 565–574. [Google Scholar] [CrossRef]
- Bounameaux, H.; De Moerloose, P. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? No. J. Thromb. Haemost. 2004, 2, 551–554. [Google Scholar] [CrossRef]
- Al Dieri, R.; Alban, S.; Béguin, S.; Hemker, H.C. Fixed dosage of low-molecular-weight heparins causes large individual variation in coagulability, only partly correlated to body weight. J. Thromb. Haemost. 2006, 4, 83–89. [Google Scholar] [CrossRef]
- Fareed, J.; Hoppensteadt, D.; Walenga, J.; Iqbal, O.; Ma, Q.; Jeske, W.; Sheikh, T. Pharmacodynamic and Pharmacokinetic Properties of Enoxaparin. Clin. Pharmacokinet. 2003, 42, 1043–1057. [Google Scholar] [CrossRef]
- Gouin-Thibault, I.; Pautas, E.; Siguret, V. Safety Profile of Different Low-Molecular Weight Heparins Used at Therapeutic Dose. Drug Saf. 2005, 28, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Warkentin, T.E.; Shaughnessy, S.G.; Anand, S.S.; Halperin, J.L.; Raschke, R.; Granger, C.; Ohman, E.M.; Dalen, J.E. Heparin and Low-Molecular-Weight Heparin Mechanisms of Action, Pharmacokinetics, Dosing, Monitoring, Efficacy, and Safety. Chest 2001, 119, 64S–94S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.-P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.C.; Giesen, P.; Aldieri, R.; Regnault, V.; De Smed, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. The Calibrated Automated Thrombogram (CAT): A universal routine test for hyper- and hypocoagulability. Pathophysiol. Haemost. Thromb. 2002, 32, 249–253. [Google Scholar] [CrossRef]
- Dashkevich, N.M.; Ovanesov, M.V.; Balandina, A.N.; Karamzin, S.S.; Shestakov, P.I.; Soshitova, N.P.; Tokarev, A.A.; Panteleev, M.A.; Ataullakhanov, F.I. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys. J. 2012, 103, 2233–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balandina, A.N.; Shibeko, A.M.; Kireev, D.A.; Novikova, A.A.; Shmirev, I.I.; Panteleev, M.A.; Ataullakhanov, F.I. Positive feedback loops for factor v and factor vii activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 2011, 101, 1816–1824. [Google Scholar] [CrossRef] [Green Version]
- Zhalyalov, A.S.; Panteleev, M.A.; Gracheva, M.A.; Ataullakhanov, F.I.; Shibeko, A.M. Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts. PLoS ONE 2017, 12, e0180668. [Google Scholar] [CrossRef] [Green Version]
- Moyer, M.P.; Tracy, R.P.; Tracy, P.B.; van’t Veer, C.; Sparks, C.E.; Mann, K.G. Plasma Lipoproteins Support Prothrombinase and Other Procoagulant Enzymatic Complexes. Arter. Thromb. Vasc. Biol. 1998, 18, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Peraramelli, S.; Thomassen, S.; Heinzmann, A.; Rosing, J.; Hackeng, T.M.; Hartmann, R.; Scheiflinger, F.; Dockal, M. Inhibition of tissue factor:factor VIIa-catalyzed factor IX and factor X activation by TFPI and TFPI constructs. J. Thromb. Haemost. 2014, 12, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.C.; Giesen, P.; Al Dieri, R.; Regnault, V.; De Smedt, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. Calibrated Automated Thrombin Generation Measurement in Clotting Plasma. Pathophysiol. Haemost. Thromb. 2003, 33, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Loeffen, R.; Kleinegris, M.C.; Loubele, S.T.; Pluijmen, P.H.; Fens, D.; Van Oerle, R.; Ten Cate, H.; Spronk, H.M. Preanalytic variables of thrombin generation: Towards a standard procedure and validation of the method. J. Thromb. Haemost. 2012, 10, 2544–2554. [Google Scholar] [CrossRef]
- Kuprash, A.D.; Shibeko, A.M.; Vijay, R.; Nair, S.C.; Srivastava, A.; Ataullakhanov, F.I.; Panteleev, M.A.; Balandina, A.N. Sensitivity and Robustness of Spatially Dependent Thrombin Generation and Fibrin Clot Propagation. Biophys. J. 2018, 115, 2461–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjønnaess, H. Cold promoted activation of factor VII. Thromb. Haemost. 1973, 29, 143–153. [Google Scholar] [CrossRef]
- Naudin, C.; Burillo, E.; Blankenberg, S.; Butler, L.; Renné, T. Factor XII Contact Activation. Semin. Thromb. Hemost. 2013, 43, 814–826. [Google Scholar] [CrossRef]
- Sveshnikova, A.N.; Panteleev, M.A.; Dreval, A.V.; Shestakova, T.P.; Medvedev, O.S.; Dreval, O.A. Theoretical evaluation of the parameters of glucose metabolism on the basis of continuous glycemia monitoring data using mathematical modeling. Biophysics 2017, 62, 842–847. [Google Scholar] [CrossRef]
- Lawrie, A.S.; Kitchen, S.; Efthymiou, M.; Mackie, I.J.; Machin, S.J. Determination of APTT factor sensitivity—The misguiding guideline. Int. J. Lab. Hematol. 2013, 35, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Ng, V.L. Prothrombin Time and Partial Thromboplastin Time Assay Considerations. Clin. Lab. Med. 2009, 29, 253–263. [Google Scholar] [CrossRef]
- Brummel-Ziedins, K.E.; Orfeo, T.; Rosendaal, F.R.; Undas, A.; Rivard, G.E.; Butenas, S.; Mann, K.G. Empirical and theoretical phenotypic discrimination. J. Thromb. Haemost. 2009, 7, 181–186. [Google Scholar] [CrossRef]
- Brummel-Ziedins, K.E.; Orfeo, T.; Gissel, M.; Mann, K.G.; Rosendaal, F.R. Factor Xa Generation by Computational Modeling: An Additional Discriminator to Thrombin Generation Evaluation. PLoS ONE 2012, 7, e29178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brummel-Ziedins, K.E.; Everse, S.J.; Mann, K.G.; Orfeo, T. Modeling thrombin generation: Plasma composition based approach. J. Thromb. Thrombolysis 2014, 37, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Mitrophanov, A.Y.; Rosendaal, F.R.; Reifman, J. Computational analysis of intersubject variability and thrombin generation in dilutional coagulopathy. Transfusion 2012, 52, 2475–2486. [Google Scholar] [CrossRef]
- van der Meer, F.J.M.; Koster, T.; Vandenbroucke, J.P.; Briët, E.; Rosendaal, F.R. The Leiden Thrombophilia Study (LETS). Thromb. Haemost. 1997, 78, 631–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinauridze, E.I.; Vuimo, T.A.; Tarandovskiy, I.D.; Ovsepyan, R.A.; Surov, S.S.; Korotina, N.G.; Serebriyskiy, I.I.; Lutsenko, M.M.; Sokolov, A.L.; Ataullakhanov, F.I. Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency. Talanta 2018, 180, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Chandler, W.L. Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood Coagul. Fibrinolysis 2013, 24, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M. Phase equilibria and structure of dry and hydrated egg lecithin. J. Lipid Res. 1967, 8, 551–557. [Google Scholar] [CrossRef]
- Smith, S.A.; Morrissey, J.H. Properties of recombinant human thromboplastin that determine the International Sensitivity Index (ISI). J. Thromb. Haemost. 2004, 2, 1610–1616. [Google Scholar] [CrossRef]
- Smith, S.A.; Morrissey, J.H. Rapid and efficient incorporation of tissue factor into liposomes. J. Thromb. Haemost. 2004, 2, 1155–1162. [Google Scholar] [CrossRef]
- Patel, J.P.; Green, B.; Patel, R.K.; Marsh, M.S.; Davies, J.G.; Arya, R. Population Pharmacokinetics of Enoxaparin During the Antenatal Period. Circulation 2013, 128, 1462–1469. [Google Scholar] [CrossRef]
- Weitz, J.I. Low-Molecular-Weight Heparins. N. Engl. J. Med. 1997, 337, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Shelburne, F.A.; Quarfordt, S.H. The Interaction of Heparin with an Apoprotein of Human Very Low Density Lipoprotein. J. Clin. Investig. 1977, 60, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obunike, J.C.; Pillarisetti, S.; Paka, L.; Kako, Y.; Butteri, M.J.; Ho, Y.-Y.; Wagner, W.D.; Yamada, N.; Mazzone, T.; Deckelbaum, R.J.; et al. The Heparin-Binding Proteins Apolipoprotein E and Lipoprotein Lipase Enhance Cellular Proteoglycan Production. Arter. Thromb. Vasc. Biol. 2000, 20, 111–118. [Google Scholar] [CrossRef] [PubMed]
(a) | |||||
Deficient Factor | Thrombin Generation Assay | Thrombodynamics-4d | |||
Tmax | Amax | Tlag | V | A | |
min | nM | min | µ/min | nM | |
FII (<2%) | 12 | 15 | 3.2 | 29.1 | 7 |
FV (<1%) | NC | NC | 14.2 | 20.1 | NP |
FVII (<1%) | NC | NC | 17.3 | 26.8 | 24 |
FVIII (<1%) | 18 | 45 | 0.6 | 18.0 | NP |
FIX (<1%) | 10 | 94 | 0.9 | 18.2 | NP |
FX (<1%) | NC | NC | 49.3 | 8.4 | NP |
FXI (<1%) | 10 | 62 | 0.6 | 36.0 | 25 |
(b) | |||||
Deficient Factor | Thrombin Generation Assay | Thrombodynamics-4d | |||
Tmax | Amax | Tlag | V | Apeak | |
min | nM | min | µ/min | nM | |
FII (2%) | 12 | 3 | 1.4 | 34 | 1 |
FV (<1%) | NC | NC | 3.2 | 27.6 | 0.4 |
FVII (<1%) | NC | NC | 5.9 | 42 | 55 |
FVIII (<1%) | 30 | 25 | 0.6 | 7.2 | NP |
FIX (<1%) | 24 | 46 | 0.6 | 8.4 | 10 |
FX (<1%) | NC | NC | 10.3 | 3.6 | NP |
FXI (<1%) | 11.5 | 143 | 0.6 | 34.5 | 25 |
No. | Sex | Age (y) | Weight (kg) | LMWH Drug | Diagnosis | Creatinine (µmol/L) | Total Chole-sterol (mmol/L) | High-Density Lipoproteins (mmol/L) | Low-Density Lipoproteins (mmol/L) | Hematocrit (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | M | 72 | 80 | Clexane | CFH | 32 | 3.36 | 1.08 | 1.32 | 38.8 |
2 | M | 74 | 92 | Clexane | COPD | 38 | 3.12 | 0.75 | 1.94 | 47.7 |
3 | M | 57 | 96 | Clexane | CHD | 79 | 5.67 | 0.87 | 2.78 | 56.3 |
4 | M | 67 | 77 | Clexane | CHD | 90 | 4.96 | 0.82 | 3.21 | 38 |
5 | F | 18 | 53 | Clexane | D t1 | 89 | 32.4 | |||
6 | F | 87 | 78 | Arixtra | CHD | 47 | 4.53 | 0.91 | 2.93 | 47.5 |
7 | M | 79 | 82 | Clexane | CHD | 83 | 3.49 | 0.8 | 2.42 | 23.1 |
8 | M | 62 | 92 | Clexane | ALE | 83 | 3.18 | 0.65 | 2.01 | 19.8 |
9 | M | 64 | 79 | Clexane | CHD | 40 | 3.16 | 0.75 | 1.9 | 51 |
10 | F | 18 | 46 | Clexane | D t1 | 111 | 31.3 | |||
11 | M | 75 | 86 | Clexane | CHD | 51 | 5.39 | 1.42 | 2.6 | 51.1 |
12 | M | 59 | 89 | Clexane | CHD, VT | 55 | 6.87 | 0.94 | 4.62 | 40.7 |
(a) | ||||
Patient | Time Point | In Vitro Tlag (min) | In Silico Tlag (min) | Deviation (%) |
2 | 1 | 1.2 | 0.7 | 42 |
2 | 2 | 1.1 | 0.8 | 27.3 |
2 | 3 | 1.5 | 0.8 | 46.7 |
3 | 1 | 0.9 | 0.9 | 0 |
3 | 2 | 1.1 | 0.8 | 27.3 |
3 | 3 | 1 | 0.8 | 20 |
1 | 1 | 0.9 | 0.7 | 22.2 |
1 | 2 | 0.9 | 0.7 | 22.2 |
(b) | ||||
Patient | Time Point | In Vitro Vi (µm/min) | In Silico Vi (µm/min) | Deviation (%) |
2 | 1 | 64.5 | 69.6 | 7.9 |
2 | 2 | 64.4 | 72.6 | 12.7 |
2 | 3 | 67.2 | 77.4 | 15.2 |
3 | 1 | 64.9 | 63 | 2.9 |
3 | 2 | 66.4 | 67.2 | 1.2 |
3 | 3 | 68.8 | 71.4 | 3.8 |
1 | 1 | 71.2 | 71.4 | 0.3 |
1 | 2 | 81.6 | 75.6 | 7.3 |
(c) | ||||
Patient | Time Point | In Vitro Vst (µm/min) | In Silico Vst (µm/min) | Deviation (%) |
2 | 1 | 27.6 | 31.9 | 15.6 |
2 | 2 | 28.7 | 34.9 | 21.6 |
2 | 3 | 35.6 | 39.2 | 10.1 |
3 | 1 | 27.3 | 27 | 1.1 |
3 | 2 | 29.9 | 29.6 | 1 |
3 | 3 | 32.3 | 33.4 | 3.4 |
1 | 1 | 30.7 | 34.8 | 13.3 |
1 | 2 | 42.6 | 38.3 | 10.1 |
(d) | ||||
Patient | Time Point | In Vitro A (nM) | In Silico A (nM) | Deviation (%) |
2 | 1 | 52.2 | 31 | 40.6 |
2 | 2 | 50.4 | 42 | 16.7 |
2 | 3 | 134 | 55 | 58.9 |
3 | 1 | 33.7 | 15.4 | 54.3 |
3 | 2 | 25.1 | 22.7 | 9.6 |
3 | 3 | 23.9 | 32.5 | 36 |
1 | 1 | 48.3 | 44 | 8.9 |
1 | 2 | - | 55 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisaryuk, A.S.; Povalyaev, N.M.; Poletaev, A.V.; Shibeko, A.M. Systems Biology Approach for Personalized Hemostasis Correction. J. Pers. Med. 2022, 12, 1903. https://doi.org/10.3390/jpm12111903
Pisaryuk AS, Povalyaev NM, Poletaev AV, Shibeko AM. Systems Biology Approach for Personalized Hemostasis Correction. Journal of Personalized Medicine. 2022; 12(11):1903. https://doi.org/10.3390/jpm12111903
Chicago/Turabian StylePisaryuk, Alexandra S., Nikita M. Povalyaev, Alexander V. Poletaev, and Alexey M. Shibeko. 2022. "Systems Biology Approach for Personalized Hemostasis Correction" Journal of Personalized Medicine 12, no. 11: 1903. https://doi.org/10.3390/jpm12111903
APA StylePisaryuk, A. S., Povalyaev, N. M., Poletaev, A. V., & Shibeko, A. M. (2022). Systems Biology Approach for Personalized Hemostasis Correction. Journal of Personalized Medicine, 12(11), 1903. https://doi.org/10.3390/jpm12111903