Serially Checked Spherical Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Measurements
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Patients Demographics
3.2. Visual Acuity, Refractions, and Topography
3.3. Higher-Order Aberrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Cho, P. Toric orthokeratology for high myopic and astigmatic subjects for myopic control. Clin. Exp. Optom. 2012, 95, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Hwang, K.Y.; Kim, S.Y.; Na, K.S. Effectiveness of Toric Orthokeratology in the Treatment of Patients with Combined Myopia and Astigmatism. Korean J. Ophthalmol. 2016, 30, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Rah, M.J.; Jackson, J.M.; Jones, L.A.; Marsden, H.J.; Bailey, M.D.; Barr, J.T. Overnight orthokeratology: Preliminary results of the Lenses and Overnight Orthokeratology (LOOK) study. Optom. Vis. Sci. 2002, 79, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.S.; Nguyen, T.T.; Bonanno, J.A. Overnight orthokeratology: Visual and corneal changes. Eye Contact Lens 2003, 29, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Cho, P.; Cheung, S.W. Orthokeratology practice in children in a university clinic in Hong Kong. Clin. Exp. Optom. 2008, 91, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheung, S.W.; Cho, P. Myopia control using toric orthokeratology (TO-SEE study). Investig. Ophthalmol. Vis. Sci. 2013, 54, 6510–6517. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, P. Retardation of myopia in Orthokeratology (ROMIO) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7077–7085. [Google Scholar] [CrossRef]
- Sankaridurg, P. Contact lenses to slow progression of myopia. Clin. Exp. Optom. 2017, 100, 432–437. [Google Scholar] [CrossRef]
- Swarbrick, H.A.; Alharbi, A.; Watt, K.; Lum, E.; Kang, P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology 2015, 122, 620–630. [Google Scholar] [CrossRef]
- Wang, B.; Naidu, R.K.; Qu, X. Factors related to axial length elongation and myopia progression in orthokeratology practice. PLoS ONE 2017, 12, e0175913. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, B.K.; Byun, Y.J. Sustainability of orthokeratology as demonstrated by corneal topography. Korean J. Ophthalmol. 2007, 21, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Shen, M.; Huang, S.; Yuan, Y.; Wang, Y.; Zhu, D.; Jiang, J.; Mao, X.; Wang, J.; Lu, F. Corneal reshaping and wavefront aberrations during overnight orthokeratology. Eye Contact Lens 2014, 40, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Stillitano, I.; Schor, P.; Lipener, C.; Hofling-Lima, A.L. Long-term follow-up of orthokeratology corneal reshaping using wavefront aberrometry and contrast sensitivity. Eye Contact Lens 2008, 34, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.A. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Invest Ophthalmol. Vis. Sci. 2005, 46, 1915–1926. [Google Scholar] [CrossRef]
- Hashemi, H.; Khabazkhoob, M.; Jafarzadehpur, E.; Yekta, A.; Emamian, M.H.; Shariati, M.; Fotouhi, A. Higher order aberrations in a normal adult population. J. Curr. Ophthalmol. 2015, 27, 115–124. [Google Scholar] [CrossRef]
- McKelvie, J.; McArdle, B.; McGhee, C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology 2011, 118, 1724–1731. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, T.; Kim, M.J.; Tchah, H. Changes of higher-order aberrations with the use of various mydriatics. Ophthalmic Physiol. Opt. 2009, 29, 602–605. [Google Scholar] [CrossRef]
- Gifford, P.; Li, M.; Lu, H.; Miu, J.; Panjaya, M.; Swarbrick, H.A. Corneal versus ocular aberrations after overnight orthokeratology. Optom. Vis. Sci. 2013, 90, 439–447. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, F.; Zhao, H.; Dai, Y.; Zhang, Y. Effect of higher-order aberrations and intraocular scatter on contrast sensitivity measured with a single instrument. Biomed. Opt. Express 2017, 8, 2138–2147. [Google Scholar] [CrossRef]
- Adamsons, I.; Rubin, G.S.; Vitale, S.; Taylor, H.R.; Stark, W.J. The effect of early cataracts on glare and contrast sensitivity. A pilot study. Arch. Ophthalmol. 1992, 110, 1081–1086. [Google Scholar] [CrossRef]
- Hiraoka, T.; Mihashi, T.; Okamoto, C.; Okamoto, F.; Hirohara, Y.; Oshika, T. Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function. J. Cataract Refract. Surg. 2009, 35, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, S.J.; Soleimani, M.; Foroutan, A.; Joshaghani, M.; Ghaempanah, M.J.; Jafari, M.E.; Yaseri, M. Ocular higher-order aberrations and mesopic pupil size in individuals screened for refractive surgery. Int. J. Ophthalmol. 2012, 5, 222–225. [Google Scholar] [PubMed]
- Taneri, S.; Oehler, S.; Azar, D.T. Influence of mydriatic eye drops on wavefront sensing with the Zywave aberrometer. J. Refract. Surg. 2011, 27, 678–685. [Google Scholar] [CrossRef] [PubMed]
| Demographics | Data |
|---|---|
| No. of eyes (patients) | 15 (10) |
| Mean age (years, range) | 11.5 (9–15) |
| Sex (male: female) | 2: 13 |
| Laterality (right: left) | 7: 8 |
| UCVA (logMAR) | 0.96 ± 0.12 |
| BCVA (logMAR) | 0.00 ± 0.00 |
| Keratometric mean K (D, mean ± SD) | 43.49 ± 1.03 |
| Keratometric mean astigmatism (D, mean ± SD) | 1.15 ± 0.46 |
| Spherical equivalent * (D, mean ± SD) | −2.88 ± 0.68 |
| Refractive astigmatism † (D, mean ± SD) | −0.45 ± 0.59 |
| Pupil size † (mm, mean ± SD) | 8.13 ± 0.66 |
| Clinical Parameters | Baseline | 1 Month (p *) | 3 Months (p †) | 6 Months (p ‡) | p§ |
|---|---|---|---|---|---|
| UCVA (logMAR) | 0.96 ± 0.12 | 0.02 ± 0.02 (≤0.001) | 0.02 ± 0.03 (≤0.001) | 0.01 ± 0.02 (≤0.001) | ≤0.001 |
| BCVA (logMAR) | 0.00 ± 0.00 | 0.00 ± 0.00 (1.00) | 0.00 ± 0.00 (1.00) | 0.00 ± 0.00 (1.00) | 1.00 |
| Spherical equivalent || (D) | −2.88 ± 0.68 | −0.67 ± 0.37 (≤0.001) | −0.56 ± 0.36 (≤0.001) | −0.59 ± 0.36 (≤0.001) | ≤0.001 |
| Refractive astigmatism (D) | −0.45 ± 0.59 | −0.45 ± 0.50 (1.00) | −0.48 ± 0.38 (0.91) | −0.48 ± 0.36 (0.91) | 0.99 |
| Keratometric steep K (D) | 44.07 ± 1.05 | 42.70 ± 1.64 (≤0.001) | 42.48 ± 1.49 (≤0.001) | 42.47 ± 1.50 (≤0.001) | ≤0.001 |
| Keratometric flat K (D) | 42.92 ± 1.06 | 41.57 ± 1.26 (≤0.001) | 41.32 ± 1.16 (≤0.001) | 41.37 ± 1.25 (≤0.001) | ≤0.001 |
| Keratometric mean K (D) | 43.49 ± 1.03 | 42.13 ± 1.42 (≤0.001) | 41.90 ± 1.30 (≤0.001) | 41.92 ± 1.34 (≤0.001) | ≤0.001 |
| Keratometric astigmatism (D) | 1.15 ± 0.46 | 1.13 ± 0.65 (0.92) | 1.16 ± 0.57 (0.93) | 1.10 ± 0.71 (0.74) | 0.91 |
| Topographic Sim K steep K (D) | 44.08 ± 1.06 | 42.09 ± 1.21 (≤0.001) | 41.99 ± 1.37 (≤0.001) | 42.00 ± 1.37 (≤0.001) | ≤0.001 |
| Topographic Sim K flat K (D) | 42.91 ± 1.01 | 41.31 ± 1.27 (≤0.001) | 41.09 ± 1.14 (≤0.001) | 41.09 ± 1.17 (≤0.001) | ≤0.001 |
| Topographic Sim K mean K (D) | 43.5 ± 1.01 | 41.70 ± 1.19 (≤0.001) | 41.54 ± 1.24 (≤0.001) | 41.54 ± 1.25 (≤0.001) | ≤0.001 |
| Topographic Sim K astigmatism (D) | 1.16 ± 0.43 | 0.78 ± 0.71 (0.08) | 0.90 ± 0.48 (0.02) | 0.91 ± 0.47 (0.02) | 0.10 |
| Topographic 5 mm steep K (D) | 44.19 ± 1.18 | 43.69 ± 1.26 (0.08) | 43.45 ± 1.09 (0.004) | 43.44 ± 1.07 (0.003) | 0.007 |
| Topographic 5 mm flat K (D) | 42.47 ± 1.11 | 41.28 ± 1.04 (≤0.001) | 41.21 ± 1.07 (≤0.001) | 41.20 ± 1.05 (≤0.001) | ≤0.001 |
| Topographic 5 mm mean K (D) | 43.33 ± 1.09 | 42.49 ± 1.07 (≤0.001) | 42.33 ± 1.02 (≤0.001) | 42.32 ± 1.01 (≤0.001) | ≤0.001 |
| Topographic 5 mm astigmatism (D) | 1.72 ± 0.68 | 2.41 ± 0.88 (0.03) | 2.24 ± 0.69 (0.09) | 2.24 ± 0.65 (0.08) | 0.05 |
| Pupil size # (mm) | 8.13 ± 0.66 | 8.12 ± 0.69 (1.00) | 8.27 ± 0.60 (0.92) | 8.34 ± 0.55 (0.79) | 0.72 |
| Parameters | Baseline | 1 Month (p *) | 3 Months (p †) | 6 Months (p ‡) | p § |
|---|---|---|---|---|---|
| Total HOAs | 0.236 ± 0.088 | 0.595 ± 0.205 (≤0.001) | 0.643 ± 0.211 (≤0.001) | 0.654 ± 0.219 (≤0.001) | ≤0.001 |
| Total aberrations | 3.059 ± 0.979 | 1.644 ± 0.624 (≤0.001) | 1.598 ± 0.619 (≤0.001) | 1.623 ± 0.707 (≤0.001) | ≤0.001 |
| Defocus (Z200) | −4.102 ± 1.534 | −3.113 ± 1.532 (0.003) | −2.905 ± 1.427 (≤0.001) | −2.878 ± 1.419 (≤0.001) | ≤0.001 |
| 0° astigmatism (Z220) | 0.401 ± 0.536 | 0.321 ± 0.609 (0.35) | 0.149 ± 0.616 (0.01) | 0.151 ± 0.614 (0.03) | 0.01 |
| 45° astigmatism (Z221) | −0.198 ± 0.416 | −0.031 ± 0.342 (0.25) | 0.033 ± 0.483 (0.20) | 0.036 ± 0.496 (0.29) | 0.16 |
| Horizontal coma (Z310) | −0.033 ± 0.138 | 0.108 ± 0.363 (0.16) | 0.073 ± 0.360 (0.35) | 0.065 ± 0.364 (0.43) | 0.35 |
| Vertical coma (Z311) | −0.114 ± 0.173 | −0.463 ± 0.351 (≤0.001) | −0.086 ± 0.244 (0.78) | −0.094 ± 0.265 (0.73) | 0.01 |
| Trefoil (Z331) | 0.094 ± 0.120 | 0.055 ± 0.100 (0.24) | 0.043 ± 0.071 (0.09) | 0.047 ± 0.079 (0.16) | 0.21 |
| SA (Z400) | 0.159 ± 0.111 | 0.608 ± 0.197 (≤0.001) | 0.640 ± 0.731 (≤0.001) | 0.667 ± 0.825 (0.03) | 0.05 |
| Secondary astigmatism (Z420+Z421) | −0.003 ± 0.049 | 0.041 ± 0.133 (0.33) | 0.012 ± 0.104 (0.59) | 0.005 ± 0.116 (0.83) | 0.42 |
| Quadrafoil (Z440+Z441) | 0.031 ± 0.053 | −0.016 ± 0.039 (0.005) | −0.006 ± 0.035 (0.10) | −0.010 ± 0.022 (0.01) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, I.-K.; Lee, D.; Lee, D.-H.; Lee, H.; Tchah, H.; Kim, J.-Y. Serially Checked Spherical Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in Children. J. Pers. Med. 2022, 12, 1686. https://doi.org/10.3390/jpm12101686
Hahn I-K, Lee D, Lee D-H, Lee H, Tchah H, Kim J-Y. Serially Checked Spherical Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in Children. Journal of Personalized Medicine. 2022; 12(10):1686. https://doi.org/10.3390/jpm12101686
Chicago/Turabian StyleHahn, In-Kyun, Donghan Lee, Dong-Ho Lee, Hun Lee, Hungwon Tchah, and Jae-Yong Kim. 2022. "Serially Checked Spherical Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in Children" Journal of Personalized Medicine 12, no. 10: 1686. https://doi.org/10.3390/jpm12101686
APA StyleHahn, I.-K., Lee, D., Lee, D.-H., Lee, H., Tchah, H., & Kim, J.-Y. (2022). Serially Checked Spherical Aberration Can Evaluate the Anti-Myopia Effect of Orthokeratology Lens in Children. Journal of Personalized Medicine, 12(10), 1686. https://doi.org/10.3390/jpm12101686

