App-Based Rehabilitation in Back Pain, a Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madera, M.; Brady, J.; Deily, S.; McGinty, T.; Moroz, L.; Singh, D.; Tipton, G.; Truumees, E. The role of physical therapy and rehabilitation after lumbar fusion surgery for degenerative disease: A systematic review. J. Neurosurg. Spine 2017, 26, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Amankwah-Amoah, J.K.Z.; Wood, G.; Knight, G. COVID-19 and digitalization: The great acceleration. J. Bus. Res. 2021, 136, 602–611. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, S. Smartphone Subscriptions Worldwide 2016–2027. Statista. 2022. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 8 June 2022).
- Dolan, S. How Mobile Users Spend Their Time on Their Smartphones in 2022. eMarketer. 2022. Available online: https://www.insiderintelligence.com/insights/mobile-users-smartphone-usage/#:~:text=Mobile%20usage%20statistics,digital%20media%20time%20per%20day (accessed on 8 June 2022).
- Nathan, J.K.; Rodoni, B.M.; Joseph, J.R.; Smith, B.W.; Park, P. Smartphone Use and Interest in a Spine Surgery Recovery Mobile Application Among Patients in a US Academic Neurosurgery Practice. Oper. Neurosurg. 2020, 18, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.A.J.; Wong, S.J.; Brady, R.R.; Subramanian, A.S. Smartphone apps for spinal surgery: Is technology good or evil? Eur. Spine J. 2016, 25, 1355–1362. [Google Scholar] [CrossRef]
- Petersen, W.; Karpinski, K.; Backhaus, L.; Bierke, S.; Haner, M. A systematic review about telemedicine in orthopedics. Arch. Orthop. Trauma Surg. 2021, 141, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Hou, J.; Yang, R.; Yang, Y.; Tang, Y.; Deng, H.; Chen, Z.; Wu, Y.; Shen, H. The Effectiveness and Safety of Utilizing Mobile Phone–Based Programs for Rehabilitation After Lumbar Spinal Surgery: Multicenter, Prospective Randomized Controlled Trial. JMIR mHealth uHealth 2019, 7, e10201. [Google Scholar] [CrossRef]
- Bailey, J.F.; Agarwal, V.; Zheng, P.; Smuck, M.; Fredericson, M.; Kennedy, D.J.; Krauss, J. Digital Care for Chronic Musculoskeletal Pain: 10,000 Participant Longitudinal Cohort Study. J. Med. Internet Res. 2020, 22, e18250. [Google Scholar] [CrossRef]
- Hasenöhrl, T.; Windschnurer, T.; Dorotka, R.; Ambrozy, C.; Crevenna, R. Prescription of individual therapeutic exercises via smartphone app for patients suffering from non-specific back pain: A qualitative feasibility and quantitative pilot study. Wien. Klin. Wochenschr. 2020, 132, 115–123. [Google Scholar] [CrossRef]
- Toelle, T.R.; Utpadel-Fischler, D.A.; Haas, K.-K.; Priebe, J.A. App-based multidisciplinary back pain treatment versus combined physiotherapy plus online education: A randomized controlled trial. NPJ Digit. Med. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Huber, S.; A Priebe, J.; Baumann, K.-M.; Plidschun, A.; Schiessl, C.; Tölle, T.R. Treatment of Low Back Pain with a Digital Multidisciplinary Pain Treatment App: Short-Term Results. JMIR Rehabil. Assist. Technol. 2017, 4, e11. [Google Scholar] [CrossRef]
- Chhabra, H.S.; Sharma, S.; Verma, S. Smartphone app in self-management of chronic low back pain: A randomized controlled trial. Eur. Spine J. 2018, 27, 2862–2874. [Google Scholar] [CrossRef]
- Amorim, A.B.; Pappas, E.; Simic, M.; Ferreira, M.L.; Tiedemann, A.; Jennings, M.; Ferreira, P. Integrating Mobile health and Physical Activity to reduce the burden of Chronic low back pain Trial (IMPACT): A pilot trial protocol. BMC Musculoskelet. Disord. 2016, 17, 36. [Google Scholar] [CrossRef]
- Irvine, A.B.; Russell, H.; Manocchia, M.; Mino, D.E.; Glassen, T.C.; Morgan, R.; Gau, J.M.; Birney, A.J.; Ary, D.V.; Buhrman, M.; et al. Mobile-Web App to Self-Manage Low Back Pain: Randomized Controlled Trial. J. Med. Internet Res. 2015, 17, e1. [Google Scholar] [CrossRef]
- Yang, J.; Wei, Q.; Ge, Y.; Meng, L.; Zhao, M. Smartphone-Based Remote Self-Management of Chronic Low Back Pain: A Preliminary Study. J. Healthc. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Shebib, R.; Bailey, J.F.; Smittenaar, P.; Perez, D.A.; Mecklenburg, G.; Hunter, S. Randomized controlled trial of a 12-week digital care program in improving low back pain. Npj Digit. Med. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Arnhold, M.; Quade, M.; Kirch, W. Mobile Applications for Diabetics: A Systematic Review and Expert-Based Usability Evaluation Considering the Special Requirements of Diabetes Patients Age 50 Years or Older. J. Med. Internet Res. 2014, 16, e104. [Google Scholar] [CrossRef]
- Mateo, G.F.; Granado-Font, E.; Ferré-Grau, C.; Montaña-Carreras, X. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis. J. Med. Internet Res. 2015, 17, e253. [Google Scholar] [CrossRef]
- Lee, H.; Sullivan, S.J.; Schneiders, A.; Ahmed, O.H.; Balasundaram, A.P.; Williams, D.; Meeuwisse, W.H.; McCrory, P. Smartphone and tablet apps for concussion road warriors (team clinicians): A systematic review for practical users. Br. J. Sports Med. 2014, 49, 499–505. [Google Scholar] [CrossRef]
- Furlong, L.M.; Morris, M.E.; Erickson, S.; Serry, T.A.; Robles-Bykbaev, V.; Amlani, A.M. Quality of Mobile Phone and Tablet Mobile Apps for Speech Sound Disorders: Protocol for an Evidence-Based Appraisal. JMIR Res. Protoc. 2016, 5, e233. [Google Scholar] [CrossRef]
- Santo, K.; Richtering, S.S.; Chalmers, J.; Thiagalingam, A.; Chow, C.K.; Redfern, J. Mobile Phone Apps to Improve Medication Adherence: A Systematic Stepwise Process to Identify High-Quality Apps. JMIR mHealth uHealth 2016, 4, e132. [Google Scholar] [CrossRef]
- Argent, R.; Daly, A.; Caulfield, B. Patient Involvement With Home-Based Exercise Programs: Can Connected Health Interventions Influence Adherence? JMIR mHealth uHealth 2018, 6, e47. [Google Scholar] [CrossRef]
- McGregor, A.H.; Henley, A.; Morris, T.P.; Doré, C.J. An Evaluation of a Postoperative Rehabilitation Program After Spinal Surgery and Its Impact on Outcome. Spine 2012, 37, E417–E422. [Google Scholar] [CrossRef]
- Johnson, R.E.; Jones, G.T.; Wiles, N.J.; Chaddock, C.; Potter, R.G.; Roberts, C.; Symmons, D.; Watson, P.J.; Torgerson, D.; Macfarlane, G. Active exercise, education, and cognitive behavioral therapy for persistent disabling low back pain: A randomized controlled tria. Spine 2007, 32, 1578–1585. [Google Scholar] [CrossRef]
- Machado, G.C.; Pinheiro, M.B.; Lee, H.; Ahmed, O.H.; Hendrick, P.; Williams, C.; Kamper, S.J. Smartphone apps for the self-management of low back pain: A systematic review. Best Pract. Res. Clin. Rheumatol. 2016, 30, 1098–1109. [Google Scholar] [CrossRef]
First Author | Year of Publication | Randomization | Allocation Concealment | Incomplete Outcome Data | Adequate Follow Up | Selective Reporting |
---|---|---|---|---|---|---|
Amorim AB | 2019 | + | - | - | - | - |
Bailey JF | 2020 | - | - | + | - | - |
Chhabra HS | 2018 | + | - | + | - | + |
Hasenöhrl T | 2020 | - | + | + | - | + |
Huber S | 2017 | - | - | - | - | - |
Irvine AB | 2015 | + | - | - | - | + |
Shebib R | 2019 | + | + | + | - | - |
Toelle TR | 2019 | + | + | - | - | - |
Yang J | 2019 | + | - | + | - | + |
First Author | Year of Publication | Intervention | Indication | Number of Patients (n) | Age (Years) | Gender (Female) | Bodyweight (kg) | BMI (kg/m2) | Pain Duration (Months) |
---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Fitbit app | Chronic low back pain | 31 | 59.5 ± 11.9 | 15 | 28.9 ± 6.0 | ||
Control | 24 | 57.1 ± 14.9 | 19 | 27.2 ± 5.1 | |||||
Bailey JF | 2020 | Unspecified app | Neck and Backpain | 6468 | 42.6 ± 10.9 | 4981 | 29.8 ± 7.1 | ||
Chhabra HS | 2018 | Snapcare app | Chronic low back pain | 45 | 41.4 ± 14.2 | 63.4 ± 12.5 | 23.2 ± 4.2 | 22.8 ± 22.0 | |
Control | 48 | 41.0 ± 14.2 | 66.2 ± 11.5 | 23.5 ± 3.8 | 28.0 ± 25.5 | ||||
Hasenöhrl T | 2020 | Unspecified app | Non specific back pain | 27 | 81.7 ± 22.5 | 28.1 ± 7.1 | |||
Huber S | 2017 | Kaya app | Low back pain | 105 | 33.9 ± 10.9 | 105 | More than 12 weeks (73.3%) | ||
Irvine AB | 2015 | Fitback | Low back pain | 199 | 116 | ||||
Alternative care | 199 | 117 | |||||||
Control | 199 | 125 | |||||||
Shebib R | 2019 | Unspecified app | Back pain | 133 | 43.0 ± 11.0 | 37% | 26.0 ± 5.0 | ||
Control | 64 | 43.0 ± 12.0 | 48% | 26.0 ± 4.0 | |||||
Toelle TR | 2019 | Kaya App | Chronic low back pain | 42 | 41.0 ± 10.6 | 35 | 24.4 ± 3.3 | 7.2 ± 3.4 | |
Control | 44 | 43.0 ± 11.0 | 31 | 25.4 ± 4.6 | 6.7 ± 3.1 | ||||
Yang J | 2019 | unspecified app | Chronic low back pain | 5 | 35.0 ± 19.3 | 1 | 64.8 ± 10.3 | 35.8 ± 54.4 | |
Control | 3 | 50.3 ± 9.3 | 3 | 62.0 ± 15.9 | 17.0 ± 17.1 | ||||
Sum | 7636 | 5548 | |||||||
Average | 44.2 ± 7.4 | 67.7 ± 7.2 | 26.3 ± 2.2 | 19.6 ± 11.6 |
First Author | Year of Publication | Intervention | Follow Up | ODI Score Before | ODI Score ST | ODI Score LT | R-VAS | ST | LT | A-VAS | ST | LT | Significances |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Fitbit app | 6 months | 5.3 | 3.8 | p = 0.815 | |||||||
control | 5.1 | 4.0 | |||||||||||
Bailey JF | 2020 | Intervention | 12 weeks | 4.6 | 1.4 | ||||||||
Chhabra HS | 2018 | Snapcare | 12 weeks | 7.3 | 3.3 | p < 0.001 | |||||||
Control | 6.6 | 3.2 | p < 0.05 | ||||||||||
Hasenöhrl T | 2020 | Unspecified app | 4 weeks | 17.1 | 14.4 | 3.2 | 3.2 | ||||||
Huber S | 2017 | Kaya App | 12 weeks | 4.8 | 3.2 | 2.6 | p < 0.001 | ||||||
Irvine AB | 2015 | Fitback | 16 weeks | 3.0 | 3.3 | 3.4 | p < 0.001, between control and treatment | ||||||
Alternative care | 3.0 | 3.3 | 3.5 | ||||||||||
Control | 2.9 | 3.1 | 3.3 | ||||||||||
Shebib R | 2019 | Unspecified app | 12 weeks | 21.7 | 19.7 | 4.6 | 4.4 | 3.9 | 3.7 | ||||
Control | 21.0 | 18.9 | 4.5 | 4.3 | 4.4 | 4.1 | p < 0.05 | ||||||
Toelle TR | 2019 | Kaya App | 12 weeks | 5.1 | 4.3 | 2.7 | |||||||
Control | 5.4 | 4.1 | 3.4 | p = 0.021 | |||||||||
Yang J | 2019 | Unspecified app | 4 weeks | 5.9 | 3.4 | p < 0.05 for vitality | |||||||
Control | 6.0 | 6.0 | |||||||||||
Sum | Intervention | 4.9 ± 1.2 | 3.5 ± 0.5 | 3.1 ± 1.0 | 3.9 | 3.7 | |||||||
Control | 5.2 ± 1.2 | 4.4 ± 1.5 | 3.6 ± 0.5 | 4.4 | 4.1 |
First Author | Year of Publication | Score | Pain | ST | LT | Symptoms/Emotions/Other | ST | LT | Function in ADL | ST | LT | Sport/Recreation | ST | LT | Quality of Life/Vitality | ST | LT | Overall | ST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Likert | 202.20 | 187.70 | 1984.90 | 2065.70 | |||||||||||||
200.50 | 169.20 | 1936.70 | 1941.20 | ||||||||||||||||
Bailey JF | 2020 | PHQ-9/Korff | 15.95 | 7.75 | 4.39 | 3.35 | 11.56 | ||||||||||||
Chhabra HS | 2018 | Current Symptom score/SF-36 | 7.02 | 3.27 | 2.11 | 1.22 | 4.82 | 3.02 | 2.58 | 1.27 | 2.09 | 1.04 | 52.1 | 20.2 | |||||
41.4 | 29.2 | ||||||||||||||||||
Hasenöhrl T | 2020 | SF-36 | 38.78 | 53.59 | 71.26 | 80.25 | 65.15 | 68.41 | 72.78 | 77.78 | 54.44 | 61.67 | |||||||
Huber S | 2017 | VAS | |||||||||||||||||
Irvine AB | 2015 | Multidimensional Pain Inventory Interference Scale. Dartmouth CO-OP. WLQ | 2.96 | 3.32 | 3.38 | 4.02 | 4.59 | 4.90 | 3.83 | 3.27 | 3.03 | 3.14 | 3.38 | 3.51 | |||||
3.01 | 3.30 | 3.47 | 4.07 | 4.48 | 4.65 | 3.93 | 3.45 | 3.31 | 3.10 | 3.34 | 3.37 | ||||||||
2.92 | 3.08 | 3.28 | 4.08 | 4.03 | 4.12 | 4.03 | 3.85 | 3.74 | 3.09 | 3.11 | 3.14 | ||||||||
Shebib R | 2019 | VAS | |||||||||||||||||
Toelle TR | 2019 | SF-36 | 45.53 | 41.65 | 44.38 | 46.53 | 48.69 | 50.58 | |||||||||||
47.32 | 40.78 | 44.56 | 45.56 | 47.64 | 48.64 | ||||||||||||||
Yang J | 2019 | SF-36 | 44.00 | 40.00 | 58.40 | 60.07 | 49.00 | 50.00 | 74.00 | 59.00 | 50.00 | 47.00 | |||||||
63.33 | 56.67 | 66.67 | 44.56 | 58.33 | 65.00 | 46.67 | 51.67 | 63.33 | 65.00 | ||||||||||
Sum | Intervention | 42.77 ± 3.54 | 45.08 ± 7.42 | 58.01 ± 13.44 | 62.28 ± 16.97 | 57.08 ± 11.42 | 59.21 ± 13.02 | 73.39 ± 0.86 | 68.39 ± 13.28 | 51.04 ± 3.01 | 53.08 ± 7.65 | ||||||||
Control | 55.33 ± 11.32 | 48.73 ± 11.25 | 55.62 ± 15.63 | 45.06 ± 0.71 | 58.33 | 65.00 | 46.67 | 51.67 | 55.49 ± 11.09 | 56.82 ± 11.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, C.; Cunningham, J.; Turner, P.; Johnson, M.A.; Bäcker, H.C. App-Based Rehabilitation in Back Pain, a Systematic Review. J. Pers. Med. 2022, 12, 1558. https://doi.org/10.3390/jpm12101558
Stark C, Cunningham J, Turner P, Johnson MA, Bäcker HC. App-Based Rehabilitation in Back Pain, a Systematic Review. Journal of Personalized Medicine. 2022; 12(10):1558. https://doi.org/10.3390/jpm12101558
Chicago/Turabian StyleStark, Claire, John Cunningham, Peter Turner, Michael A. Johnson, and Henrik C. Bäcker. 2022. "App-Based Rehabilitation in Back Pain, a Systematic Review" Journal of Personalized Medicine 12, no. 10: 1558. https://doi.org/10.3390/jpm12101558
APA StyleStark, C., Cunningham, J., Turner, P., Johnson, M. A., & Bäcker, H. C. (2022). App-Based Rehabilitation in Back Pain, a Systematic Review. Journal of Personalized Medicine, 12(10), 1558. https://doi.org/10.3390/jpm12101558