A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Assessment
2.3. Meta-Analysis
3. Results
3.1. Studies of IgG Concentrations in Autism Spectrum Disorder
3.1.1. Studies on IgG Concentrations in ASD
3.1.2. Meta-Analysis of Immunoglobulin G Concentrations in ASD
3.1.3. Summary of Immunoglobulin G Concentrations in ASD
3.2. The Theraputic Use of IVIG in ASD
3.2.1. Prospective, Controlled Studies
3.2.2. Prospective, Uncontrolled Studies
3.2.3. Retrospective, Baseline Controlled Case Series with Prospectively Collected Outcomes
3.2.4. Retrospective, Uncontrolled Case Series
3.2.5. Retrospective, Uncontrolled Case Reports
3.2.6. Meta-Analysis of Behavioral Responses to Intravenous Immunoglobulin
3.3. Adverse Effects
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. Mmwr. Surveill Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef]
- Cakir, J.; Frye, R.E.; Walker, S.J. The lifetime social cost of autism: 1990–2029. Res. Autism Spectr. Disord. 2020, 72, 101502. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, D.A.; Frye, R.E. Psychotropic Medications for Sleep Disorders in Autism Spectrum Disorders. In Handbook on Autism and Pervasive Developmental Disorde—Assessment, Diagnosis and Treatmeny; Matson, J.L., Sturmey, P., Eds.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Vargason, T.; Frye, R.E.; McGuinness, D.L.; Hahn, J. Clustering of co-occurring conditions in autism spectrum disorder during early childhood: A retrospective analysis of medical claims data. Autism Res. Off. J. Int. Soc. Autism Res. 2019, 12, 1272–1285. [Google Scholar] [CrossRef] [PubMed]
- Holingue, C.; Newill, C.; Lee, L.C.; Pasricha, P.J.; Daniele Fallin, M. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. Off. J. Int. Soc. Autism Res. 2018, 11, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, J.; Wang, H.; Li, Y. Microglia mediated neuroinflammation in autism spectrum disorder. J. Psychiatr. Res. 2020, 130, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Anukirthiga, B.; Mishra, D.; Pandey, S.; Juneja, M.; Sharma, N. Prevalence of Epilepsy and Inter-Ictal Epileptiform Discharges in Children with Autism and Attention-Deficit Hyperactivity Disorder. Indian J. Pediatr. 2019, 86, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Tilford, J.M.; Payakachat, N.; Kuhlthau, K.A.; Pyne, J.M.; Kovacs, E.; Bellando, J.; Williams, D.K.; Brouwer, W.B.; Frye, R.E. Treatment for Sleep Problems in Children with Autism and Caregiver Spillover Effects. J. Autism Dev. Disord. 2015, 45, 3613–3623. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, D.A.; Frye, R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 2012, 17, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Croen, L.A.; Qian, Y.; Ashwood, P.; Daniels, J.L.; Fallin, D.; Schendel, D.; Schieve, L.A.; Singer, A.B.; Zerbo, O. Family history of immune conditions and autism spectrum and developmental disorders: Findings from the study to explore early development. Autism Res. Off. J. Int. Soc. Autism Res. 2019, 12, 123–135. [Google Scholar] [CrossRef]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Xie, G.; Hou, J.; Mao, P. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2015, 55, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Celis, A.; Becker, M.; Nuño, M.; Schauer, J.; Aghaeepour, N.; Van de Water, J. Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): A subtype of autism. Mol. Psychiatry 2021. [Google Scholar] [CrossRef]
- Gumusoglu, S.B.; Stevens, H.E. Maternal Inflammation and Neurodevelopmental Programming: A Review of Preclinical Outcomes and Implications for Translational Psychiatry. Biol. Psychiatry 2019, 85, 107–121. [Google Scholar] [CrossRef]
- Harville, T.; Rhodes-Clark, B.; Bennuri, S.C.; Delhey, L.; Slattery, J.; Tippett, M.; Wynne, R.; Rose, S.; Kahler, S.; Frye, R.E. Inheritance of HLA-Cw7 Associated With Autism Spectrum Disorder (ASD). Front. Psychiatry 2019, 10, 612. [Google Scholar] [CrossRef]
- Jyonouchi, H.; Geng, L.; Rose, S.; Bennuri, S.C.; Frye, R.E. Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders. Front. Psychiatry 2019, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Jyonouchi, H.; Geng, L.; Streck, D.L.; Dermody, J.J.; Toruner, G.A. MicroRNA expression changes in association with changes in interleukin-1ß/interleukin10 ratios produced by monocytes in autism spectrum disorders: Their association with neuropsychiatric symptoms and comorbid conditions (observational study). J Neuroinflamm. 2017, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Connery, K.; Tippett, M.; Delhey, L.M.; Rose, S.; Slattery, J.C.; Kahler, S.G.; Hahn, J.; Kruger, U.; Cunningham, M.W.; Shimasaki, C.; et al. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry 2018, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D.A. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 2013, 18, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Samra, D.; Agrawal, S. Adaptive and Innate Immune Responses in Autism: Rationale for Therapeutic Use of Intravenous Immunoglobulin. J. Clin. Immunol. 2010, 30 (Suppl. S1), S90–S96. [Google Scholar] [CrossRef]
- Jyonouchi, H.; Geng, L.; Kapoor, S.; Streck, D.; Toruner, G.J.J.o.A.; Immunology, C. Characterization Of Children With Autism Spectrum Disorders (asd) Requiring Intravenous Immunoglobulin (ivig) For Specific Polysaccharide Antibody Deficiency (spad)/hypogammaglobulinemia-Distinct Patterns Of Cytokine Production And Gene Expression Profiles. J. Allergy Clin. Immunol. 2011, 127, AB231. [Google Scholar] [CrossRef]
- Heuer, L.; Ashwood, P.; Schauer, J.; Goines, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Croen, L.A.; Pessah, I.N.; Van de Water, J. Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res. Off. J. Int. Soc. Autism Res. 2008, 1, 275–283. [Google Scholar] [CrossRef]
- Hausman-Kedem, M.; Menascu, S.; Greenstein, Y.; Fattal-Valevski, A. Immunotherapy for GRIN2A and GRIN2D-related epileptic encephalopathy. Epilepsy Res. 2020, 163, 106325. [Google Scholar] [CrossRef]
- Geva-Dayan, K.; Shorer, Z.; Menascu, S.; Linder, I.; Goldberg-Stern, H.; Heyman, E.; Lerman-Sagie, T.; Ben Zeev, B.; Kramer, U. Immunoglobulin treatment for severe childhood epilepsy. Pediatr. Neurol. 2012, 46, 375–381. [Google Scholar] [CrossRef]
- Gross-Tsur, V.; Shalev, R.S.; Kazir, E.; Engelhard, D.; Amir, N. Intravenous high-dose gammaglobulins for intractable childhood epilepsy. Acta Neurol. Scand. 1993, 88, 204–209. [Google Scholar] [CrossRef]
- Schwab, I.; Nimmerjahn, F. Intravenous immunoglobulin therapy: How does IgG modulate the immune system? Nat. Rev. Immunol. 2013, 13, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Tha-In, T.; Bayry, J.; Metselaar, H.J.; Kaveri, S.V.; Kwekkeboom, J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008, 29, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Nimmerjahn, F.; Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006, 313, 670–673. [Google Scholar] [CrossRef] [Green Version]
- Kazatchkine, M.D.; Kaveri, S.V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 2001, 345, 747–755. [Google Scholar] [CrossRef]
- Negi, V.S.; Elluru, S.; Siberil, S.; Graff-Dubois, S.; Mouthon, L.; Kazatchkine, M.D.; Lacroix-Desmazes, S.; Bayry, J.; Kaveri, S.V. Intravenous immunoglobulin: An update on the clinical use and mechanisms of action. J. Clin. Immunol. 2007, 27, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clin. Res. Ed.) 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Sterne, J.A.C. Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 ed.; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Schneider, C.K.; Melmed, R.D.; Barstow, L.E.; Enriquez, F.J.; Ranger-Moore, J.; Ostrem, J.A. Oral human immunoglobulin for children with autism and gastrointestinal dysfunction: A prospective, open-label study. J. Autism Dev. Disord. 2006, 36, 1053–1064. [Google Scholar] [CrossRef]
- Handen, B.L.; Melmed, R.D.; Hansen, R.L.; Aman, M.G.; Burnham, D.L.; Bruss, J.B.; McDougle, C.J. A double-blind, placebo-controlled trial of oral human immunoglobulin for gastrointestinal dysfunction in children with autistic disorder. J. Autism Dev. Disord. 2009, 39, 796–805. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S. Immunological treatments for autism. J. Autism Dev. Disord. 2000, 30, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Machin, D.; Bryant, T.N.; Gardner, M.J. Statistics with Confidence, 2nd ed.; BMJ Books: Oxford, UK, 2000. [Google Scholar]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Doi, S.A.; Barendregt, J.J.; Khan, S.; Thalib, L.; Williams, G.M. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp. Clin. Trials 2015, 45, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Barendregt, J.J.; Doi, S.A.; Lee, Y.Y.; Norman, R.E.; Vos, T. Meta-analysis of prevalence. J. Epidemiol. Community Health 2013, 67, 974–978. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Barendregt, J.J.; Doi, S.A.R. A new improved graphical and quantitative method for detecting bias in meta-analysis. Int. J. Evid. Based Healthc. 2018, 16, 195–203. [Google Scholar] [CrossRef]
- Lipsey, M.; Wilson, D.B. The way in which intervention studies have "personality" and why it is important to meta-analysis. Eval. Health Prof. 2001, 24, 236–254. [Google Scholar]
- Senn, S. Trying to be precise about vagueness. Stat Med. 2007, 26, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Croonenberghs, J.; Wauters, A.; Devreese, K.; Verkerk, R.; Scharpe, S.; Bosmans, E.; Egyed, B.; Deboutte, D.; Maes, M. Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol. Med. 2002, 32, 1457–1463. [Google Scholar] [CrossRef]
- Trajkovski, V.; Ajdinski, L.; Spiroski, M. Plasma concentration of immunoglobulin classes and subclasses in children with autism in the Republic of Macedonia: Retrospective study. Croat. Med. J. 2004, 45, 746–749. [Google Scholar] [PubMed]
- Enstrom, A.; Krakowiak, P.; Onore, C.; Pessah, I.N.; Hertz-Picciotto, I.; Hansen, R.L.; Van de Water, J.A.; Ashwood, P. Increased IgG4 levels in children with autism disorder. Brain Behav. Immun. 2009, 23, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Spiroski, M.; Trajkovski, V.; Trajkov, D.; Petlichkovski, A.; Efinska-Mladenovska, O.; Hristomanova, S.; Djulejic, E.; Paneva, M.; Bozhikov, J. Family analysis of immunoglobulin classes and subclasses in children with autistic disorder. Bosn. J. Basic Med. Sci. 2009, 9, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasilewska, J.; Kaczmarski, M.; Stasiak-Barmuta, A.; Tobolczyk, J.; Kowalewska, E. Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Arch. Med. Sci. 2012, 8, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Aggarwal, S.; Heads, C. Dysregulated immune system in children with autism: Beneficial effects of intravenous immune globulin on autistic characteristics. J. Autism Dev. Disord. 1996, 26, 439–452. [Google Scholar] [CrossRef]
- Stern, L.; Francoeur, M.J.; Primeau, M.N.; Sommerville, W.; Fombonne, E.; Mazer, B.D. Immune function in autistic children. Ann. Allergy Asthma Immunol. 2005, 95, 558–565. [Google Scholar] [CrossRef]
- Grether, J.K.; Croen, L.A.; Anderson, M.C.; Nelson, K.B.; Yolken, R.H. Neonatally measured immunoglobulins and risk of autism. Autism Res. Off. J. Int. Soc. Autism Res. 2010, 3, 323–332. [Google Scholar] [CrossRef]
- Grether, J.K.; Ashwood, P.; Van de Water, J.; Yolken, R.H.; Anderson, M.C.; Torres, A.R.; Westover, J.B.; Sweeten, T.; Hansen, R.L.; Kharrazi, M.; et al. Prenatal and Newborn Immunoglobulin Levels from Mother-Child Pairs and Risk of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Young, J.G.; Caparulo, B.K.; Shaywitz, B.A.; Johnson, W.T.; Cohen, D.J. Childhood autism. Cerebrospinal fluid examination and immunoglobulin levels. J. Am. Acad. Child Psychiatry 1977, 16, 174–179. [Google Scholar] [CrossRef]
- Runge, K.; Tebartz van Elst, L.; Maier, S.; Nickel, K.; Denzel, D.; Matysik, M.; Kuzior, H.; Robinson, T.; Blank, T.; Dersch, R.; et al. Cerebrospinal Fluid Findings of 36 Adult Patients with Autism Spectrum Disorder. Brain Sci. 2020, 10, 355. [Google Scholar] [CrossRef]
- Niederhofer, H.; Staffen, W.; Mair, A. Immunoglobulins as an alternative strategy of psychopharmacological treatment of children with autistic disorder. Neuropsychopharmacology 2003, 28, 1014–1015. [Google Scholar] [CrossRef]
- Jyonouchi, H.; Geng, L.; Streck, D.L.; Toruner, G.A. Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. J. Neuroimmunol. 2011, 238, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, D.; Yevtushenko, S.J.I.N.J. High-Dose Intravenous Immunoglobulin Therapy Efficiency in Children with Autism Spectrum Disorders Associated with Genetic Deficiency of Folate Cycle Enzymes. Int. Neurol. J. 2016, 2, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Plioplys, A.V. Intravenous immunoglobulin treatment of children with autism. J. Child Neurol. 1998, 13, 79–82. [Google Scholar] [CrossRef] [PubMed]
- DelGiudice-Asch, G.; Simon, L.; Schmeidler, J.; Cunningham-Rundles, C.; Hollander, E. Brief report: A pilot open clinical trial of intravenous immunoglobulin in childhood autism. J. Autism. Dev. Disord. 1999, 29, 157–160. [Google Scholar] [CrossRef]
- Oleske, J. Another view of autism. UMDNJ Res. 2004, Winter, 22–23. [Google Scholar]
- Melamed, I.; McDonald, A.; Gonzalez, M.J.C.I. Sa. 46. Autism as a Neuro-Immune Disease-the Benefit Effect of IVIG. Clin. Immunol. 2006, 119, S121. [Google Scholar] [CrossRef]
- Melamed, I.R.; Heffron, M.; Testori, A.; Lipe, K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Res. Off. J. Int. Soc. Autism Res. 2018, 11, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Boris, M.; Goldblatt, A.; Edelson, S.M. Improvement in children with autism treated with intravenous gamma globulin. J. Nutr. Environ. Med. 2005, 15, 169–176. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Fenton, G. High-dose intravenous immunoglobulin therapy in three children with seizure disorders and autistic features. Pediatr. Asthma Allergy Immunol. 1998, 12, 213–216. [Google Scholar] [CrossRef]
- Jyonouchi, H.; Geng, L.; Streck, D.L.; Toruner, G.A. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): Case study. J. Neuroinflamm. 2012, 9, 4. [Google Scholar] [CrossRef]
- Fadeyi, M.; Li, T.J.J.o.D.A. Evaluating possible use of IVIG in autism spectrum disorder (ASD). J. Drug Assess. 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Akcakaya, N.H.; Tekturk, P.; Cagatay, A.; Tur, E.K.; Yapici, Z. Atypical enterovirus encephalitis causing behavioral changes and autism-like clinical manifestations: Case report. Acta Neurol. Belg. 2016, 116, 679–681. [Google Scholar] [CrossRef]
- Akcakaya, H.; Tekturk, P.; Tur, E.K.; Eraksoy, M.; Yapici, Z. P103—2340: Atypical enterovirus encephalitis causing behavioral changes and autism-like clinical manifestations: Case report. Eur. J. Paediatr. Neurol. 2015, 19, S123. [Google Scholar] [CrossRef]
- Suez, D.; Scharnwebber, K. Intravenous Immunoglobulin (IVIG) Therapy in an Autistic Child with Common Variable Immune Deficiency (CVID)-Case Report. J. Allergy Clin. Immunol. 1997, 99, S2. [Google Scholar]
- Wang, J.; Rodriguez-Davalos, M.; Levi, G.; Sauter, B.; Gondolesi, G.E.; Cunningham-Rundles, C. Common variable immunodeficiency presenting with a large abdominal mass. J. Allergy Clin. Immunol. 2005, 115, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Salehi Sadaghiani, M.; Aghamohammadi, A.; Ashrafi, M.R.; Hosseini, F.; Abolhassani, H.; Rezaei, N. Autism in a child with common variable immunodeficiency. Iran J. Allergy Asthma Immunol. 2013, 12, 287–289. [Google Scholar] [PubMed]
- Sommerville, L.; Cordeiro, N.; McHenry, P.; O’Regan, M. CBP012 Chronic demyelinating neuropathy with multiple vitamin deficiencies in a child with autism. Eur. J. Paediatr. Neurol. 2007, 11, 89. [Google Scholar] [CrossRef]
- Kamata, A.; Muramatsu, K.; Sawaura, N.; Makioka, N.; Ogata, T.; Kuwashima, M.; Arakawa, H. Demyelinating neuropathy in a 6-year-old girl with autism spectrum disorder. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2017, 59, 951–954. [Google Scholar] [CrossRef]
- Scott, O.; Richer, L.; Forbes, K.; Sonnenberg, L.; Currie, A.; Eliyashevska, M.; Goez, H.R. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: An unusual cause of autistic regression in a toddler. J. Child Neurol. 2014, 29, 691–694. [Google Scholar] [CrossRef]
- Gonzalez-Toro, M.C.; Jadraque-Rodriguez, R.; Sempere-Perez, A.; Martinez-Pastor, P.; Jover-Cerda, J.; Gomez-Gosalvez, F. [Anti-NMDA receptor encephalitis: Two paediatric cases]. Rev. Neurol. 2013, 57, 504–508. [Google Scholar] [PubMed]
- Menon, D.U.; Garg, A.; Chedrawi, A.K.; Pardo, C.A.; Johnston, M.V. Subacute encephalitis in a child seropositive for alpha-3 subunit of neuronal nicotinic acetylcholine receptors antibody. J. Pediatr. Neurol. 2014, 12, 161–166. [Google Scholar]
- Bouboulis, D.A.; Mast, P.A. Infection-Induced Autoimmune Encephalopathy: Treatment with Intravenous Immune Globulin Therapy. A Report of Six Patients. Int. J. Neurol. Res. 2016, 2, 256–258. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Prasad, K.; Yeo, T. Progressive Encephalomyelitis with Rigidity and Myoclonus in an Intellectually Disabled Patient Mimicking Neuroleptic Malignant Syndrome. J. Mov. Disord. 2017, 10, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Wimberley, T.; Agerbo, E.; Pedersen, C.B.; Dalsgaard, S.; Horsdal, H.T.; Mortensen, P.B.; Thompson, W.K.; Köhler-Forsberg, O.; Yolken, R.H. Otitis media, antibiotics, and risk of autism spectrum disorder. Autism Res. Off. J. Int. Soc. Autism Res. 2018, 11, 1432–1440. [Google Scholar] [CrossRef]
- Adams, D.J.; Susi, A.; Erdie-Lalena, C.R.; Gorman, G.; Hisle-Gorman, E.; Rajnik, M.; Elrod, M.; Nylund, C.M. Otitis Media and Related Complications Among Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2016, 46, 1636–1642. [Google Scholar] [CrossRef]
- Mason-Brothers, A.; Ritvo, E.R.; Freeman, B.J.; Jorde, L.B.; Pingree, C.C.; McMahon, W.M.; Jenson, W.R.; Petersen, P.B.; Mo, A. The UCLA-University of Utah epidemiologic survey of autism: Recurrent infections. Eur. Child Adolesc. Psychiatry 1993, 2, 79–90. [Google Scholar] [CrossRef]
- Jyonouchi, H.; Geng, L.; Cushing-Ruby, A.; Quraishi, H. Impact of innate immunity in a subset of children with autism spectrum disorders: A case control study. J. Neuroinflamm. 2008, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Jyonouchi, H.; Geng, L.; Davidow, A.L. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioral symptoms following immune insults in a subset of ASD subjects: An inflammatory subtype? J. Neuroinflamm. 2014, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Maritati, F.; Peyronel, F.; Vaglio, A. IgG4-related disease: A clinical perspective. Rheumatol. Oxf. Engl. 2020, 59, iii123–iii131. [Google Scholar] [CrossRef]
- Lim, A.H.; Wong, S.; Nguyen, N.Q. Eosinophilic Esophagitis and IgG4: Is There a Relationship? Dig. Dis. Sci. 2021. [Google Scholar] [CrossRef]
- Heifert, T.A.; Susi, A.; Hisle-Gorman, E.; Erdie-Lalena, C.R.; Gorman, G.; Min, S.B.; Nylund, C.M. Feeding Disorders in Children With Autism Spectrum Disorders Are Associated With Eosinophilic Esophagitis. J. Pediatr. Gastroenterol. Nutr. 2016, 63, e69–e73. [Google Scholar] [CrossRef]
- Goldberg, M.R.; Mor, H.; Magid Neriya, D.; Magzal, F.; Muller, E.; Appel, M.Y.; Nachshon, L.; Borenstein, E.; Tamir, S.; Louzoun, Y.; et al. Microbial signature in IgE-mediated food allergies. Genome Med. 2020, 12, 92. [Google Scholar] [CrossRef]
- Lee, K.H.; Guo, J.; Song, Y.; Ariff, A.; O’Sullivan, M.; Hales, B.; Mullins, B.J.; Zhang, G. Dysfunctional Gut Microbiome Networks in Childhood IgE-Mediated Food Allergy. Int. J. Mol. Sci. 2021, 22, 79. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; Rubio-Aparicio, M.; Sánchez-Meca, J.; Veas, A.; Martínez-González, A.E. A Meta-analysis of Gut Microbiota in Children with Autism. J. Autism Dev. Disord. 2021. [Google Scholar] [CrossRef] [PubMed]
- Roussin, L.; Prince, N.; Perez-Pardo, P.; Kraneveld, A.D.; Rabot, S.; Naudon, L. Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorder: Clinical and Preclinical Evidence. Microorganisms 2020, 8, 1369. [Google Scholar] [CrossRef] [PubMed]
- Jyonouchi, H. Food allergy and autism spectrum disorders: Is there a link? Curr. Allergy Asthma Rep. 2009, 9, 194–201. [Google Scholar] [CrossRef]
- Thom, R.P.; McDougle, C.J. Immune Modulatory Treatments for Autism Spectrum Disorder. Semin. Pediatr. Neurol. 2020, 35, 100836. [Google Scholar] [CrossRef] [PubMed]
Study | Study Type | Autism Group | Control Group | Outcomes |
---|---|---|---|---|
Studies in Children Using Contemporaneous Control Groups for Comparison | ||||
Croonenberghs et al., 2002 [47] | P | 18 | 22 TD | Total IgG, IgG2 and IgG4 higher in ASD No Difference in IgG1 and IgG3 |
Trajkovski et al., 2004 [48] | R | 35 | 21 TD Siblings | Total IgG and IgG4 higher in ASD No Difference in IgG1, IgG2 and IgG3 |
Heuer et al., 2008 [23] | P | 166 with AD 27 with ASD | 96 TD 32 DD | Total IgG lower in AD Total IgG Inversely Correlated with Behavior |
Enstrom et al., 2009 [49] | P | 114 | 96 TD 31 DD | IgG4 higher in ASD No Difference in IgG1, IgG2 and IgG3 IgG4 Correlated with Social Impairment |
Spiroski et al., 2009 [50] | R | 30 | 22 TD Sibs 30 Moms 26 Dads | No Difference in Total IgG, IgG1, IgG2, IgG3 or IgG4 between ASD and TD Siblings |
Wasilewska et al., 2012 [51] | P | 24 NDR | 14 TD | No Difference in Total IgG |
Studies in Children Using Standard Reference Range as Comparison | ||||
Gupta et al., 1996 [52] | P | 25 | Standard Reference | 20% of ASD had below normal IgG subclasses (IgG1 in 1; IgG2 in 1; IgG3 in 1; IgG4 in 2) |
Stern et al., 2005 [53] | P | 24 Recurrent Infections | Standard Reference | No Difference in Total IgG |
Studies in Neonates Using Contemporaneous Control Groups for Comparison | ||||
Grether et al., 2010 [54] | R | 213 | 265 TD | Neonatal Total IgG lower in ASD Lower IgG Associated with Increased ASD Risk |
Grether et al., 2016 [55] | R | 84 | 159 TD 49 DD | Lower IgG Associated with Increased ASD Risk |
Studies on Immunoglobulin G Concentrations in the Cerebrospinal Fluid | ||||
Young et al., 1977 [56] | P | 5 | Standard Reference | IgG in the CSF was normal |
Runge et al., 2020 [57] | R | 35 | 39 TD | No Difference in CSF IgG Index |
Non-Siblings | Siblings | All Controls | |||||||
---|---|---|---|---|---|---|---|---|---|
Pooled MD | Cochran’s Q | I2 | Pooled MD | Cochran’s Q | I2 | Pooled MD | Cochran’s Q | I2 | |
Total IgG | −231 (−223, −238) | 40 ** | 95% | 49 (−3, 101) | 3.3 | 70% | −225 (−217, –233) | 153 ** | 97% |
IgG1 | 14 (−45, 74) | 2.2 | 54% | 17 (−17, 51) | 5.5 | 82% | 17 (−13, 46) | 7.7 | 61% |
IgG2 | 9.2 (−1.0, 19.2) | 0.0 | 0% | 35.8 (3.5, 68.2) | 5.8 | 83% | 11.5 (1.9, 21.2) | 8.23 | 64% |
IgG3 | -0.3 (−3.2, 2.6) | 0.4 | 0% | 0.5 (−3.7, 4.7) | 0.4 | 0% | 0.0 (−2.4, 2.4) | 0.9 | 0% |
IgG4 | 16.6 ** (6.7, 26.4) | 0.7 | 0% | 19.7 ** (12.8, 26.5) | 6.5 * | 84% | 18.7 ** (13.1, 24.3) | 7.4 | 60% |
Study | Medical Indication | Autism Group (N) | IVIG Treatment | Outcomes |
---|---|---|---|---|
Niederhofer, Staffen et al., 2003 [58] | NS | 12 | 400 mg/kg | Improvement in all ABC Subscales and improved drowsiness and activity |
Jyonouchi, Geng et al., 2011 [22] | SPAD | 10 | NR | Decreased pro-inflammatory cytokines (IL-6, IL-12 and IL-23) and increased TGF-ß and sTNFRII |
Jyonouchi, Geng et al., 2011 [59] | SPAD in 6 CVID in 1 | 7 | NR | NR |
Maltsev and Yevtushenko 2016 [60] | NK Cell Deficiency; Reactivated HSV or Measles Infection | 78 | 2g/kg monthly for 6 months | Improvement in all ABC Subscales |
Study | Medical Indication | Autism Group | IVIG Treatment | Outcomes |
---|---|---|---|---|
Gupta et al., 1996 [52] | IgG deficiency and others | 10 | 0.4 g/kg every 4 weeks for 6 months | No quantitative outcomes 5 with “marked” or “striking” improvements. 5 with minimal improvements |
Plioplys 1998 [61] | None | 10 | 154–375 mg/kg every 6 weeks for 1–6 infusions | No quantitative outcomes 1 remarkable, 4 mild and 5 no improvements |
DelGiudice-Asch et al., 1999 [62] | Recurrent infections | 7 | 400 mg/kg every month for 6 months | 2 discontinued treatment No significant changes in several quantitative symptom scales |
Oleske 2004 [63] | Antibody deficiency | 27 | 0.4–1 g/kg every 3 weeks for 6–18 months | No quantitative outcomes Less recurrent infections ASD symptoms improved in 78% |
Melamed et al., 2006 [64] | Humoral and/or cellular immune deficit | 12 | 1 g/kg monthly for 3 years | Non-standard quantitative outcomes Drastic reduction in Infections Improvement in cognition, communication and social skills |
Melamed et al., 2018 [65] | Activated CD154 levels <80, recurrent infections or abnormal lymphocyte stimulation test or | 14 | 1 g/kg every 2–4 weeks for10 doses | Improvement in CGI-S and CGI-S, SRS, CCC–2 and ADOS |
Study | Medical Indication | Autism Group (N) | IVIG Treatment | Outcomes |
---|---|---|---|---|
Boris et al., 2005 [66] | 6 with IgG Deficiency | 26 | 400 mg/kg every month for 6 months | Improvements in ABC total and all subscales 22 (85%) lost gains after stopping IVIG |
Connery et al., 2018 [19] | Autoimmune encephalopathy | 31 | 0.75–2 g/kg every 2–6 weeks; 77% treated >1 year | Improvements on SRS and ABC scales |
Study | Medical Indication | Autism Group (N) | IVIG Treatment | Outcomes |
---|---|---|---|---|
Knutsen and Fenton 1998 [67] | 1 with IgG deficiency 3 with intractable epilepsy | 3 | 1.0–1.7 g/kg up to 11 months | No quantitative outcomes 2 seizure free, 1 with seizure improved ASD symptoms improved in 2 and worsened in 1 |
Jyonouchi et al., 2012 [68] | SPAD 4 with intractable epilepsy | 8 | 0.6–1g/kg every 3 weeks for 1–6 years | No quantitative outcomes Four with seizure improvement One with cognitive improvements |
Fadeyi and Li 2018 [69] | IgG deficiency | 3 | NR | No quantitative outcomes Improvements in ASD symptoms and IgG and IgM levels |
Study | Medical Indication | Participant | IVIG Treatment | Outcomes (Non-Quantitative) |
---|---|---|---|---|
Immune Abnormality | ||||
Suez and Scharnwebber 1997 [72] | CVID | 15 yo boy | NR | Significant improvement in ASD symptoms |
Wang et al., 2005 [73] | CVID | 22 yo man | Monthly Dose NR | Significant improvements in appetite, weight gain, and serious infections |
Salehi Sadaghiani et al., 2013 [74] | CVID | 13 yo boy | NR | No improvements reported |
Inflammatory Neuropathy | ||||
Sommerville et al., 2007 [75] | CIDP Epilepsy | 8 yo boy | 0.4 g/kg/d for 5 days | No improvements reported |
Kamata et al., 2017 [76] | Inflammatory Neuropathy | 6 yo girl | 0.4 g/kg/d for 5 days | Neuropathy improved No mention of changes in ASD symptoms |
Immune Mediated Encephalopathy | ||||
Scott et al., 2014 [77] | anti-NMDA receptor encephalitis | 33 mo boy | 0.4 g/kg/d for 5 days | Language and social skills improved |
Menon et al., 2014 [79] | anti-nAChR receptor encephalitis | 5 yo boy | w/plasmapheresis | Improvements in hyperactivity, agitation, speech, and social interaction |
Akcakaya et al., 2015, 2016 [70,71] | Enterovirus Encephalitis, Seizures | 14 yo girl | 0.02 g/kg | Improvements in eye contact, speech, communication, and seizures |
Gonzalez-Toro et al., 2013 [78] | anti-NMDA receptor encephalitis | 5 yo boy | 0.4 g/kg/day for 5 days | Improvements in ASD symptoms and language |
Bouboulis and Mast 2016 [80] | Autoimmune Encephalopathy | 5 yo boy | 1.6 g/kg every 8 weeks for 2 years | Improvements in ASD symptoms, language, learning, and memory |
Other Conditions | ||||
Xu et al., 2017 [81] | Neuroleptic malignant syndrome | 32 yo man | NR | Seizures and dysautonomia improved No mention of changes in ASD symptoms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossignol, D.A.; Frye, R.E. A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J. Pers. Med. 2021, 11, 488. https://doi.org/10.3390/jpm11060488
Rossignol DA, Frye RE. A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine. 2021; 11(6):488. https://doi.org/10.3390/jpm11060488
Chicago/Turabian StyleRossignol, Daniel A, and Richard E Frye. 2021. "A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder" Journal of Personalized Medicine 11, no. 6: 488. https://doi.org/10.3390/jpm11060488
APA StyleRossignol, D. A., & Frye, R. E. (2021). A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine, 11(6), 488. https://doi.org/10.3390/jpm11060488