Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population and Setting
2.2. Participants
2.3. Outcome
2.4. Selection of Early Warning Scales
2.5. Predictors and Data Abstraction
2.6. Data Analyses
3. Results
3.1. Patient Characteristics
3.2. EWS Discrimination for the Global Cohort
3.3. EWS Discrimination for the Global Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maves, R.C.; Downar, J.; Dichter, J.R.; Hick, J.L.; Devereaux, A.; Geiling, J.A.; Kissoon, N.; Rubinson, L.L.; Hanfling, D.; Hodge, J.G.; et al. Triage of Scarce Critical Care Resources in COVID-19 an Implementation Guide for Regional Allocation: An Expert Panel Report of the Task Force for Mass Critical Care and the American College of Chest Physicians. Chest 2020, 158, 212–225. [Google Scholar] [CrossRef]
- Jaffe, E.; Sonkin, R.; Strugo, R.; Zerath, E. Evolution of emergency medical calls during a pandemic—An emergency medical service during the COVID-19 outbreak. Am. J. Emerg. Med. 2020. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Tien, H.; Sawadsky, B.; Lewell, M.; Peddle, M.; Durham, W. Critical care transport in the time of COVID-19. CJEM 2020. [Google Scholar] [CrossRef]
- Mileder, L.P.; Schüttengruber, G.; Prattes, J.; Wegscheider, T. Simulation-based training and assessment of mobile pre-hospital SARS-CoV-2 diagnostic teams in Styria, Austria. Medicine 2020, 99, e2108. [Google Scholar] [CrossRef]
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Med, N.M.; Gomersall, C.D.; et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020, 8, 506–517. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Hendren, N.S.; Drazner, M.H.; Bozkurt, B.; Cooper, L.T. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation 2020, 141, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Sun, X.L.; Zhang, Y.; Ge, L.; Wang, J.; Liang, X.; Li, J.-F.; Wang, C.-L.; Xing, Z.-T.; Chhetri, J.K.; et al. Evaluation of the Risk Prediction Tools for Patients with Coronavirus Disease 2019 in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Panday, R.S.N.; Minderhoud, T.C.; Alam, N.; Nanayakkara, P.W.B. Prognostic value of early warning scores in the emergency department (ED) and acute medical unit (AMU): A narrative review. Eur. J. Intern. Med. 2017, 45, 20–31. [Google Scholar] [CrossRef]
- Martín-Rodríguez, F.; López-Izquierdo, R.; Del Vegas, C.P.; Benito, J.F.D.; Rodríguez, V.C.; Rasilla, M.N.D.; Conty, J.L.M.; Scar, A.M.; de la Torre, S.O.; Martín, V.M.; et al. Accuracy of National Early Warning Score 2 (NEWS2) in Prehospital Triage on In-Hospital Early Mortality: A Multi-Center Observational Prospective Cohort Study. Prehosp. Disaster Med. 2019, 34, 610–618. [Google Scholar] [CrossRef]
- Spencer, W.; Smith, J.; Date, P.; de Tonnerre, E.; Taylor, D.M. Determination of the best early warning scores to predict clinical outcomes of patients in the emergency department. Emerg. Med. J. 2019, 36, 716–721. [Google Scholar] [CrossRef]
- Spångfors, M.; Molt, M.; Samuelson, K. National Early Warning Score: A survey of registered nurses’ perceptions, experiences and barriers. J. Clin. Nurs. 2020, 29, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Gidari, A.; De Socio, G.V.; Sabbatini, S.; Francisci, D. Predictive value of National Early Warning Score 2 (NEWS2) for intensive care unit admission in patients with SARS-CoV-2 infection. Infect. Dis. (Lond.) 2020, 52, 698–704. [Google Scholar] [CrossRef]
- Khwannimit, B.; Bhurayanontachai, R.; Vattanavanit, V. Comparison of the accuracy of three early warning scores with SOFA score for predicting mortality in adult sepsis and septic shock patients admitted to intensive care unit. Heart Lung 2019, 48, 240–244. [Google Scholar] [CrossRef]
- Sridhar, S.; Schmid, A.; Biziyaremye, F.; Hodge, S.; Patient, N.; Wilson, K. Implementation of a Pediatric Early Warning Score to Improve Communication and Nursing Empowerment in a Rural District Hospital in Rwanda. Glob. Health Sci. Pract. 2020, 8, 838–845. [Google Scholar] [CrossRef]
- Russell, S.; Stocker, R.; Barker, R.O.; Liddle, J.; Adamson, J.; Hanratty, B. Implementation of the National Early Warning Score in UK care homes: A qualitative evaluation. Br. J. Gen. Pract. 2020, 70, e793–e800. [Google Scholar] [CrossRef]
- Foy, K.E.; Pearson, J.; Kettley, L.; Lal, N.; Blackwood, H.; Bould, M.D. Four early warning scores predict mortality in emergency surgical patients at University Teaching Hospital, Lusaka: A prospective observational study. Can. J. Anaesth. 2020, 67, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Haegdorens, F.; Monsieurs, K.G.; De Meester, K.; Van Bogaert, P. The optimal threshold for prompt clinical review: An external validation study of the national early warning score. J. Clin. Nurs. 2020, 29, 4594–4603. [Google Scholar] [CrossRef] [PubMed]
- Ehara, J.; Hiraoka, E.; Hsu, H.C.; Yamada, T.; Homma, Y.; Fujitani, S. The effectiveness of a national early warning score as a triage tool for activating a rapid response system in an outpatient setting: A retrospective cohort study. Medicine 2019, 98, e18475. [Google Scholar] [CrossRef] [PubMed]
- Parshuram, C.S.; Dryden-Palmer, K.; Farrell, C.; Gottesman, R.; Gray, M.; Hutchison, J.S.; Helfaer, M.; Hunt, E.A.; Joffe, A.R.; Lacroix, J.; et al. Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients: The EPOCH Randomized Clinical Trial. JAMA 2018, 319, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Paternina-Caicedo, A.; Miranda, J.; Bourjeily, G.; Levinson, A.; Dueñas, C.; Bello-Muñoz, C.; Rojas-Suarez, J.A. Performance of the Obstetric Early Warning Score in critically ill patients for the prediction of maternal death. Am. J. Obstet. Gynecol. 2017, 216, e1–e58.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covino, M.; Sandroni, C.; Santoro, M.; Sabia, L.; Simeoni, B.; Bocci, M.G.; Ojetti, V.; Candelli, M.; Antonelli, M.; Gasbarrini, A.; et al. Predicting intensive care unit admission and death for COVID-19 patients in the emergency department using early warning scores. Resuscitation 2020, 156, 84–91. [Google Scholar] [CrossRef]
- De Nardo, P.; Gentilotti, E.; Mazzaferri, F.; Cremonini, E.; Hansen, P.; Goossens, H.; Tacconelli, E. Multi-Criteria Decision Analysis to prioritize hospital admission of patients affected by COVID-19 in low-resource settings with hospital-bed shortage. Int. J. Infect. Dis. 2020, 98, 494–500. [Google Scholar] [CrossRef]
- Yang, P.; Wang, P.; Song, Y.; Zhang, A.; Yuan, G.; Cui, Y. A retrospective study on the epidemiological characteristics and establishment of an early warning system of severe COVID-19 patients. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.A.F.; Redfern, O.C.; Hatch, R.; Young, J.D.; Tarassenko, L.; Watkinson, P.J. Trajectories of vital signs in patients with COVID-19. Resuscitation 2020, 156, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rodríguez, F.; Castro-Villamor, M.Á.; Del Vegas, C.P.; Martín-Conty, J.L.; Mayo-Iscar, A.; Benito, J.F.D.; del Brio, I.P.; Arnillas-Gómez, P.; Escudero-Cuadrillero, C.; López-Izquierdo, R. Analysis of the early warning score to detect critical or high-risk patients in the prehospital setting. Intern. Emerg. Med. 2019, 14, 581–589. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, I.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Kivipuro, M.; Tirkkonen, J.; Kontula, T.; Solin, J.; Kalliomäki, J.; Pauniaho, S.L.; Huhtala, H.; Yli-Hankala, A.; Hoppu, S. National early warning score (NEWS) in a Finnish multidisciplinary emergency department and direct vs. late admission to intensive care. Resuscitation 2018, 128, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.T.; Nazir, N.; McDonald, T.; Cannon, C.M. The modified rapid emergency medicine score: A novel trauma triage tool to predict in-hospital mortality. Injury 2017, 48, 1870–1877. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Hsieh, C.H.; Weng, Y.M.; Hsieh, M.S.; Goh, Z.N.L.; Chen, H.Y.; Chang, T.; Ng, C.-J.; Seak, J.C.-Y.; Seak, C.-K.; et al. Performance Assessment of the Mortality in Emergency Department Sepsis Score, Modified Early Warning Score, Rapid Emergency Medicine Score, and Rapid Acute Physiology Score in Predicting Survival Outcomes of Adult Renal Abscess Patients in the Emergency D. BioMed Res. Int. 2018, 2018, 69835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLymont, N.; Glover, G.W. Scoring systems for the characterization of sepsis and associated outcomes. Ann. Transl. Med. 2016, 4, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, L.J.; Redmond, N.M.; Garrett, J.; Whiting, P.; Northstone, K.; Pullyblank, A. Distributions of the National Early Warning Score (NEWS) across a healthcare system following a large-scale roll-out. Emerg. Med. J. 2019, 36, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Campbell, V.; Conway, R.; Carey, K.; Tran, K.; Visser, A.; Gifford, S.; McLanders, M.; Edelson, D.; Churpek, M. Predicting clinical deterioration with Q-ADDS compared to NEWS, Between the Flags, and eCART track and trigger tools. Resuscitation 2020, 153, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Myrstad, M.; Ihle-Hansen, H.; Tveita, A.A.; Andersen, E.L.; Nygård, S.; Tveit, A.; Berge, T. National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19—A prospective cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 66. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.G.; Hur, J.; Hong, K.S.; Lee, W.; Ahn, J.H. Prognostic Accuracy of the SIRS, qSOFA, and NEWS for Early Detection of Clinical Deterioration in SARS-CoV-2 Infected Patients. J. Korean Med. Sci. 2020, 35, e234. [Google Scholar] [CrossRef] [PubMed]
- Sixt, T.; Moretto, F.; Devilliers, H.; Abdallahoui, M.; Eberl, I.; Rogier, T.; Duong, M.; Salmon-Rousseau, A.; Mahy, S.; Buisson, M.; et al. The usefulness of NEWS2 at day 7 of hospitalization in predicting COVID-19 evolution and as an early endpoint in therapeutic trials. J. Infect. 2020. [Google Scholar] [CrossRef]
- Hu, H.; Yao, N.; Qiu, Y. Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients with Novel Coronavirus Disease. Acad. Emerg. Med. 2020, 27, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yao, N.; Qiu, Y. Predictive value of five early warning scores for critical novel coronavirus disease. Disaster Med. Public Health Prep. 2020. [Google Scholar] [CrossRef]
- Weng, Z.; Chen, Q.; Li, S.; Li, H.; Zhang, Q.; Lu, S.; Wu, L.; Xiong, L.; Mi, B.; Liu, D.; et al. ANDC: An early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J. Transl. Med. 2020, 18, 328. [Google Scholar] [CrossRef]
- Li, L.Q.; Huang, T.; Wang, Y.Q.; Wang, Z.P.; Liang, Y.; Huang, T.B.; Zhang, H.-Y.; Sun, W.; Wang, Y. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef]
- Lapostolle, F.; Schneider, E.; Vianu, I.; Dollet, G.; Roche, B.; Berdah, J.; Michel, J.; Goix, L.; Chanzy, E.; Petrovic, T.; et al. Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: The COVID-call study. Intern. Emerg. Med. 2020, 15, 813–817. [Google Scholar] [CrossRef]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2017, 195, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Keep, J.W.; Messmer, A.S.; Sladden, R.; Burrell, N.; Pinate, R.; Tunnicliff, M.; Glucksman, E. National early warning score at Emergency Department triage may allow earlier identification of patients with severe sepsis and septic shock: A retrospective observational study. Emerg. Med. J. 2016, 33, 37–41. [Google Scholar] [CrossRef]
- Haegdorens, F.; Monsieurs, K.G.; De Meester, K.; Van Bogaert, P. An intervention including the national early warning score improves patient monitoring practice and reduces mortality: A cluster randomized controlled trial. J. Adv. Nurs. 2019, 75, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Assaf, D.; Gutman, Y.; Neuman, Y.; Segal, G.; Amit, S.; Gefen-Halevi, S.; Shilo, N.; Epstein, A.; Mor-Cohen, R.; Biber, A.; et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern. Emerg. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Green, C.A.; Halpin, S.; et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Z.; Jiang, Y.; Shi, O.; Zhang, X.; Xu, K.; Suo, C.; Wang, Q.; Song, Y.; Yu, K.; et al. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int. J. Epidemiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Haimovich, A.D.; Ravindra, N.G.; Stoytchev, S.; Young, H.P.; Wilson, F.P.; van Dijk, D.; Schulz, W.L.; Taylor, R. AMichel. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation. Ann. Emerg. Med. 2020, 76, 442–453. [Google Scholar] [CrossRef]
- Rodriguez-Nava, G.; Yanez-Bello, M.A.; Trelles-Garcia, D.P.; Chung, C.W.; Friedman, H.J.; Hines, D.W. Performance of the quick COVID-19 severity index and the Brescia-COVID respiratory severity scale in hospitalized patients with COVID-19 in a community hospital setting. Int. J. Infect. Dis. 2021, 102, 571–576. [Google Scholar] [CrossRef] [PubMed]
NEWS2 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
Pulse (bpm) | ≤40 | 41–50 | 51–90 | 91–110 | 111–130 | ≥131 | |
BR (bpm) | ≤8 | 9–11 | 12–20 | 21–24 | ≥25 | ||
T (°C) | ≤35 | 35.1–36 | 36.1–38 | 38.1–39 | ≥39.1 | ||
SBP (mmHg) | ≤90 | 91–100 | 101–110 | 111–219 | ≥220 | ||
SpO2 (%) Scale 1 | ≤91 | 92–93 | 94–95 | ≥96 | |||
SpO2 (%) Scale 2 1 | ≤83 | 84–85 | 86–87 | 88–92 ≥93 air | 93–94 Oxygen | 95–96 Oxygen | ≥97 Oxygen |
Air oxygen | Oxygen | Air | |||||
AVPU (scale) | A | V, P, U | |||||
qSOFA | 1 | ||||||
BR (bpm) | ≥22 | ||||||
SBP (mmHg) | ≤100 | ||||||
GCS (points) | ≤13 | ||||||
MREMS | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Pulse (bpm) | 70–109 | 55–69 110–139 | 40–54 140–179 | <39 >179 | |||
BR (bpm) | 12–24 | 10–11 25.34 | 6–9 | 35–49 | <5 >49 | ||
SBP (mmHg) | 70–109 | 50–69 110–129 | 130–159 | ≤49 >159 | |||
SpO2 (%) | >89 | 88–89 | 75–85 | <75 | |||
GCS (scale) | 14–15 | 11–13 | 8–10 | 5–7 | 3–4 | ||
Age (years old) | <45 | 45–54 | 55–64 | 65–74 | >74 | ||
RAPS | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Pulse (bpm) | 70–109 | 55–69 110–139 | 40–54 140–179 | <39 >179 | |||
BR (bpm) | 12–24 | 10–11 25.34 | 6–9 | 35–49 | <5 >49 | ||
MAP (mmHg) | 70–109 | 50–69 110–129 | 130–159 | ≤49 >159 | |||
GCS (scale) | 14–15 | 11–13 | 8–10 | 5–7 | 3–4 |
Total Cohort (n = 663) | SARS-CoV-2 (n = 261) | Non-SARS-CoV-2 (n = 402) | p Value | |
---|---|---|---|---|
Outcomes, mortality | ||||
2-days | 55 (8.3) | 32 (12.3) | 23 (5.7) | 0.004 |
Demographic characteristics | ||||
Sex, female | 341 (51.4) | 141 (54.0) | 200 (49.8) | 0.282 |
Age (years) | 82 (70–88) | 80 (69–88) | 83 (70–88) | 0.348 |
Age groups (years) | ||||
18–49 | 53 (8.0) | 23 (8.8) | 30 (7.5) | |
50–74 | 160 (24.1) | 65 (24.9) | 95 (23.6) | 0.476 |
≥ 75 | 446 (67.3) | 171 (65.5) | 275 (68.4) | 0.611 |
Ambulance | ||||
BLS | 617 (93.1) | 248 (95.0) | 369 (91.8) | |
ALS | 46 (6.9) | 13 (5.0) | 33 (8.2) | 0.114 |
Nursing home | 300 (45.2) | 119 (45.6) | 181 (45.0) | 0.886 |
Clinical characteristics | ||||
BR (bpm) | 16 (12–24) | 17 (12–25) | 16 (12–23) | 0.133 |
Saturation (%) | 95 (91–98) | 94 (89–97) | 96 (92–98) | 0.002 |
Suppl. O2 | 120 (18.1) | 41 (15.7) | 79 (19.7) | 0.198 |
SBP (mmHg) | 127 (112–146) | 128 (116–148) | 126 (108–145) | 0.056 |
MBP (mmHg) | 88 (79–101) | 89 (82–102) | 87 (77–100) | 0.076 |
Heart rate (bpm) | 86 (73–101) | 95 (75–100) | 86 (73–101) | 0.880 |
T (°C) | 36.4 (36.0–37.0) | 36.4 (36.0–37.0) | 36.4 (36.0–36.9) | 0.953 |
GCS points) | 15 (14–15) | 15 (14–15) | 15 (14–15) | 0.781 |
CACI (points) | 5 (4–7) | 5 (3–6) | 6 (4–8) | 0.001 |
Inpatients | 531 (80.1) | 215 (82.4) | 316 (78.6) | 0.236 |
ICU | 28 (4.2) | 19 (7.3) | 9 (2.2) | 0.002 |
SARS-CoV-2 (n = 261) | Non-SARS-CoV-2 (n = 402) | |||||
---|---|---|---|---|---|---|
Survivors (n = 229) | Nonsurvivors (n = 32) | p Value | Survivors (n = 379) | Nonsurvivors (n = 23) | p Value | |
Demographic characteristics | ||||||
Sex, female | 123 (53.7) | 18 (56.3) | 0.788 | 187 (49.3) | 13 (56.5) | 0.505 |
Age (years) | 79 (68–88) | 85 (79–92) | 0.031 | 82 (69–88) | 86 (80–92) | 0.006 |
Nursing home | 98 (42.8) | 21 (65.6) | 0.015 | 164 (43.3) | 17 (73.9) | 0.004 |
Clinical characteristics | ||||||
BR (bpm) | 16 (12–25) | 24 (12–31) | 0.023 | 16 (12–23) | 22 (12–28) | 0.090 |
Saturation (%) | 95 (90–97) | 89 (84–96) | 0.009 | 96 (92–98) | 92 (81–97) | 0.017 |
Suppl. O2 | 29 (12.7) | 12 (37.5) | <0.001 | 65 (17.2) | 14 (60.1) | <0.001 |
SBP (mmHg) | 128 (117–146) | 129 (112–149) | 0.188 | 128 (111–145) | 102 (88–122) | 0.003 |
MBP (mmHg) | 90 (82–102) | 89 (77–102) | 0.451 | 88 (78–101) | 71 (62–92) | 0.005 |
Heart rate (bpm) | 85 (75–98) | 86 (66–108) | 0.848 | 83 (73–101) | 88 (50–108) | 0.943 |
T (°C) | 36.4 (36.0–37.0) | 36.2 (36.0–37.3) | 0.285 | 36.4 (36.0–36.9) | 36.4 (36.0–37.4) | 0.400 |
GCS points) | 15 (14–15) | 13 (8–15) | 0.001 | 15 (14–15) | 10 (10–14) | <0.001 |
EWS (points) | ||||||
NEWS2 | 4 (2–7) | 10 (5–12) | <0.001 | 4 (2–6) | 11 (7–13) | <0.001 |
qSOFA | 1 (0–1) | 2 (1–2) | <0.001 | 1 (0–1) | 2 (1–2) | <0.001 |
MREMS | 5 (4–7) | 9 (6–12) | <0.001 | 5 (4–7) | 10 (8–13) | <0.001 |
RAPS | 1 (1–3) | 4 (1–5) | <0.001 | 2 (0–3) | 5 (4–7) | <0.001 |
CACI (points) | 5 (3–6) | 6 (5–8) | 0.002 | 6 (4–8) | 7 (6–11) | 0.003 |
Inpatients | 184 (80.3) | 31 (96.9) | 0.022 | 294 (77.6) | 22 (95.7) | 0.040 |
ICU | 19 (8.3) | 0 | 0.091 | 7 (1.8) | 2 (8.7) | 0.031 |
NEWS2 | qSOFA | MREMS | RAPS | |
---|---|---|---|---|
Global | 0.825 (0.75–0.89) | 0.761 (0.68–0.83) | 0.803 (0.73–0.87) | 0.775 (0.70–0.85) |
SARS-CoV-2 | 0.804 (0.71–0.89) | 0.736 (0.63–0.83) | 0.764 (0.66–0.86) | 0.750 (0.64–0.82) |
Non-SARS-CoV-2 | 0.863 (0.76–0.95) | 0.799 (0.68–0.91) | 0.860 (0.76–0.95) | 0.815 (0.70–0.92) |
Cutoff | Se | Sp | PPV | NPV | LR (+) | LR (−) | OR | |
---|---|---|---|---|---|---|---|---|
NEWS2 | ||||||||
Global | 7 | 78.2 (65.6–87.1) | 73.4 (69.7–76.7) | 21.0 (16.0–27.1) | 97.4 (95.5–98.5) | 2.93 (2.42–3.56) | 0.30 (0.18–0.49) | 9.87 (5.08–19.1) |
SARS-CoV-2 | 8 | 71.9 (54.6–84.4) | 76.4 (70.5–81.5) | 29.9 (20.8–40.8) | 95.1 (91.0–97.4) | 3.05 (2.22–4.19 | 0.37 (0.21–0.65) | 8.28 (3.62–18.9) |
Non-SARS-CoV-2 | 7 | 87.0 (67.9–95.5) | 75.2 (70.6–79.3) | 17.5 (11.7–25.6) | 99.0 (97.0–99.6) | 3.51 (2.77–4.44) | 0.17 (0.06–0.50) | 20.2 (5.87–69.5) |
qSOFA | ||||||||
Global | 2 | 58.2 (45.0–70.3) | 81.4 (78.1–84.3) | 22.1 (16.1–29.5) | 95.6 (93.4–97.0) | 3.13 (2.37–4.14) | 0.51 (0.37–0.71) | 6.09 (3.43–10.8) |
SARS-CoV-2 | 2 | 53.1 (36.4–69.1) | 82.1 (76.6–86.5) | 29.3 (19.2–42.0) | 92.6 (88.2–95.5) | 2.97 (1.93–4.55) | 0.57 (0.39–0.84) | 5.20 (2.40–11.2) |
Non-SARS-CoV-2 | 2 | 65.2 (44.9–81.2) | 81.0 (76.7–84.6) | 17.2 (10.7–26.5) | 97.5 (95.1–98.7) | 3.43 (2.39–4.94) | 0.43 (0.24–0.76) | 7.99 (3.26–19.5) |
MREMS | ||||||||
Global | 8 | 69.1 (56.0–79.7) | 80.6 (77.3–83.5) | 24.4 (18.3–31.7) | 96.6 (94.7–97.9) | 3.56 (2.80–4.52) | 0.38 (0.26–0.57) | 9.28 (5.06–17.1) |
SARS-CoV-2 | 9 | 59.4 (42.3–74.5) | 87.8 (82.9–91.4) | 40.4 (27.6–54.7) | 93.9 (89.9–96.4) | 4.86 (3.10–7.72) | 0.46 (0.30–0.71) | 10.4 (4.67–23.5) |
Non-SARS-CoV-2 | 8 | 78.3 (58.1–90.3) | 81.8 (77.6–85.4) | 20.7 (13.5–30.4) | 98.4 (96.3–99.3) | 4.30 (3.17–5.82) | 0.27 (0.12–0.58) | 16.1 (5.81–45.1) |
RAPS | ||||||||
Global | 4 | 67.3 (54.1–78.2) | 84.2 (81.1–86.9) | 27.8 (20.9–36.0) | 96.6 (94.7–97.8) | 4.26 (3.28–5.53) | 0.39 (0.26–0.57) | 10.9 (5.99–20.1) |
SARS-CoV-2 | 4 | 59.4 (42.3–74.5) | 84.3 (79.0–88.4) | 34.5 (23.4–47.7) | 93.7 (89.5–96.3) | 3.78 (2.49–5.72) | 0.48 (0.31–0.74) | 7.84 (3.56–17.2) |
Non-SARS-CoV-2 | 4 | 78.3 (58.1–90.3) | 84.2 (80.2–87.5) | 23.1 (15.1–33.6) | 98.5 (96.4–99.3) | 4.94 (3.60–6.79) | 0.26 (0.12–0.56) | 19.1 (6.84–53.5) |
NEWS | qSOFA | RAPS | MREMS | ||
---|---|---|---|---|---|
Global | NEWS | ||||
qSOFA | 0.0006 | ||||
RAPS | 0.049 | 0.651 | |||
MREMS | 0.272 | 0.150 | 0.243 | ||
SARS-CoV-2 | NEWS | ||||
qSOFA | 0.019 | ||||
RAPS | 0.075 | 0.739 | |||
MREMS | 0.171 | 0.510 | 0.697 | ||
Non-SARS-CoV-2 | NEWS | ||||
qSOFA | 0.002 | ||||
RAPS | 0.299 | 0.757 | |||
MREMS | 0.924 | 0.096 | 0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Rodríguez, F.; Martín-Conty, J.L.; Sanz-García, A.; Rodríguez, V.C.; Rabbione, G.O.; Cebrían Ruíz, I.; Oliva Ramos, J.R.; Castro Portillo, E.; Polonio-López, B.; Enríquez de Salamanca Gambarra, R.; et al. Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments. J. Pers. Med. 2021, 11, 170. https://doi.org/10.3390/jpm11030170
Martín-Rodríguez F, Martín-Conty JL, Sanz-García A, Rodríguez VC, Rabbione GO, Cebrían Ruíz I, Oliva Ramos JR, Castro Portillo E, Polonio-López B, Enríquez de Salamanca Gambarra R, et al. Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments. Journal of Personalized Medicine. 2021; 11(3):170. https://doi.org/10.3390/jpm11030170
Chicago/Turabian StyleMartín-Rodríguez, Francisco, José L. Martín-Conty, Ancor Sanz-García, Virginia Carbajosa Rodríguez, Guillermo Ortega Rabbione, Irene Cebrían Ruíz, José R. Oliva Ramos, Enrique Castro Portillo, Begoña Polonio-López, Rodrigo Enríquez de Salamanca Gambarra, and et al. 2021. "Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments" Journal of Personalized Medicine 11, no. 3: 170. https://doi.org/10.3390/jpm11030170