Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measuring Instruments
2.4. Nesplora Aquarium
- Usability task: This task enables the participant to become used to the virtual environment and have an opportunity to explore it and understand how the button works. The subject has to find and turn on four displays in the main room of the aquarium by putting a white dot seen in the center of the frame over each display and pressing the button.
- Learning task training/learning task: This task consists of an AX or 1-back type text. The button must be pressed whenever the person sees the clownfish or hears the word ‘clownfish’, only if the previous fish or word was barbel. The learning task training has 20 items, and the learning task has 140 items. No neuropsychological evaluation data are produced from this task. The purpose of this first test is to train the participant and ensure they learn the stimuli.
- Dual execution–Xno training/dual execution–Xno task: This is a Dual X_no or Dual No_go task. The person must press the button whenever a fish appears, or a word is heard, except when seeing the clownfish or hearing the word ‘barbel’; establishing a different target for visual and auditory channels. Training for Task 2 is made up of 20 items, and Task 2 has 140 items. The execution of this task is geared towards measuring selective attention, sustained attention, inhibitory control, and the central executive system, due to its dual component. Nevertheless, reaction time (RT) and variability of RT are also assessed.
- Dual execution + i–Xno training/dual execution + i–Xno task: This is a Dual X_no or Dual No_go task with the interference of the previous task, due to the inversion of the target stimuli. The participant must press the button whenever they see a fish, or they hear a word (except when seeing the barbel or hearing the word ‘clownfish’); establishing a different target for visual and auditory channels. Training for Task 3 comprises 20 items, and Task 3 has 140 items. The execution of this task is geared toward measuring selective attention, sustained attention, inhibitory control, and the central executive system, due to its dual components. Nevertheless, reaction time (RT) and variability of RT are also assessed. In addition, through the inversion of the target stimuli, it is possible to evaluate the control of interference, both by switching capacity (cost of task change) and perseveration errors.
- Omission errors: These errors occur when the participant does not press the button on the target stimulus. These types of errors are interpreted as a measure of the level of alertness, as well as the ability to selectively pay attention to the target stimulus. A standardized score above 60 points indicates inattention problems.
- Commission errors: These occur when the participant presses the button on a non-target stimulus. These errors represent an index of impulsivity or the ability to inhibit the response involved in selective attention processes. A standardized score above 60 points indicates impulsive behavior.
- Reaction time (RT): Specifically, this is the mean of the reaction time to correct answers. This measure indicates the average time elapsed from the presentation of the target stimulus until the button is pressed to respond. This measure reflects the participant’s response time. A standardized score above 60 is related to low processing speed.
- Variability of RT: Indicates the consistency of reaction time in correct answers. This measure is indicative of changes in sustained attention or fatigability during the task. A standardized score above 60 points indicates a fluctuation of attention during the test.
- Motor activity: This variable indicates the amount of movement of the head during the test, measured through the virtual reality glasses. This variable captures whether you have had excessive motor activity, and that you have stayed within the smaller frame, which represents the two rocks through which the fish appear, and the larger frame, which represents the angle of view from which you can see and perceive the visual stimuli to be responded to. This measure could be indicative of motor hyperactivity during the test. A standardized score above 60 points indicates hyperactive problems.
- Discrepancy: The discrepancy of correct answers between blocks. This score is obtained by comparing the hits in the first half of the task with those from the second half of the task. This gives additional information about the consistency of performance through each task. A standardized score above 60 points indicates minimal consistency in the performance of each task or fatigability during the tasks.
- Mean RT (reaction time)–commissions: This indicates the average time, from the stimulus appearing, until the button is pressed in incorrect presses (commissions). This measure gives us complementary information on commission errors. In this variable, a high score (low reaction time) is related to greater impulsivity and/or hyperactivity; while a low score (high reaction time) is considered a secondary measure of inattention [53]. Therefore, this variable provides explanatory information about the cause of commission errors.
- Switching: This score shows the difference between the number of hits in the last part of a task and the number of hits at the beginning of the next task. This variable provides information on the participant’s ability to adapt to a paradigm shift without their execution suffering. A standardized score above 60 points is a sign of difficulties changing tasks or switching.
- Switching RT–correct answers: This variable measures the difference between the reaction time of the hits in the last part of a task and the reaction time of the hits at the beginning of the next task. It provides information about the participant’s ability to adapt to the paradigm change without their reaction speed suffering. A standardized score above 60 points is a sign of difficulties switching tasks.
- Working memory: This variable is calculated from the correct items of the dual execution task and the dual execution task + i. These tasks involve different target stimuli for the visual and auditory channels. The parallel processing of both sensory modalities defines these exercises as dual execution tasks. These types of tasks are used for the evaluation of working memory. This index is interpreted inversely to the previous variables mentioned; in this sense, a standardized score of more than 60 points indicates good performance in the variable, because it is based on the number of successes.
- Perseveration: This type of error occurs in the dual execution task, with interference when responding to the task following the instructions of the previous task, in other words. This variable provides a measure of control of the participant’s retroactive interference. A standardized score above 60 points is interpreted as a deficit in cognitive flexibility.
2.5. BDI-II
2.6. STAI
2.7. Assessment Parameters
3. Results
3.1. Depression vs. Control and Anxiety vs. Control (Processing Speed)
3.2. Depression vs. Control and Anxiety vs. Control (Attentional Arousal)
3.3. Depression vs. Control and Anxiety vs. Control (Inhibitory Control)
3.4. Depression vs. Control and Anxiety vs. Control (Sustained Attention)
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirschfield, R.M.A. The Comorbidity of Major Depression and Anxiety Disorders. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 244–254. [Google Scholar] [CrossRef]
- Hranov, L.G. Comorbid anxiety and depression: Illumination of a controversy. Int. J. Psychiatry Clin. Pract. 2007, 11, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.H.; Wieman, S.T.; Baker, A.W. Anxiety Comorbidities: Mood Disorders, Substance Use Disorders, and Chronic Medical Illness. In Clinical Handbook of Anxiety Disorders; Springer: Berlin/Heidelberg, Germany, 2020; pp. 77–103. [Google Scholar]
- Amr, M.; Volpe, F.M. Relationship between anhedonia and impulsivity in schizophrenia, major depression and schizoaffective disorder. Asian J. Psychiatry 2013, 6, 577–580. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- McTeague, L.M.; Rosenberg, B.; Lopez, J.W.; Carreon, D.M.; Huemer, J.; Jiang, Y.; Chick, C.; Eickhoff, S.B.; Etkin, A. Identification of Common Neural Circuit Disruptions in Emotional Processing Across Psychiatric Disorders. Am. J. Psychiatry 2020, 177, 411–421. [Google Scholar] [CrossRef]
- Hasselbalch, B.J.; Knorr, U.; Kessing, L.V. Cognitive impairment in the remitted state of unipolar depressive disorder: A systematic review. J. Affect. Disord. 2010, 134, 20–31. [Google Scholar] [CrossRef]
- Schwert, C.; Aschenbrenner, S.; Weisbrod, M.; Schröder, A. Cognitive Impairments in Unipolar Depression: The Impact of Rumination. Psychopathology 2017, 50, 347–354. [Google Scholar] [CrossRef]
- Elgamal, S.; Denburg, S.; Marriott, M.; MacQueen, G. Clinical Factors That Predict Cognitive Function in Patients with Major Depression. Can. J. Psychiatry 2010, 55, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Mohn, C.; Rund, B.R. Neurocognitive profile in major depressive disorders: Relationship to symptom level and subjective memory complaints. BMC Psychiatry 2016, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cotrena, C.; Branco, L.D.; Shansis, F.M.; Fonseca, R.P. Executive function impairments in depression and bipolar disorder: Association with functional impairment and quality of life. J. Affect. Disord. 2016, 190, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Ahern, E.; Semkovska, M. Cognitive functioning in the first-episode of major depressive disorder: A systematic review and meta-analysis. Neuropsychology 2017, 31, 52–72. [Google Scholar] [CrossRef]
- Favre, T.; Hughes, C.; Emslie, G.; Stavinoha, P.; Kennard, B.; Carmody, T. Executive Functioning in Children and Adolescents with Major Depressive Disorder. Child Neuropsychol. 2008, 15, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Gudayol-Ferré, E.; Guàrdia-Olmos, J.; Peró-Cebollero, M. Effects of remission speed and improvement of cognitive functions of depressed patients. Psychiatry Res. 2015, 226, 103–112. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.; Riedel, W.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2013, 44, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvat-Pujol, N.; Labad, J.; Urretavizcaya, M.; de Arriba-Arnau, A.; Segalàs, C.; Real, E.; Ferrer, A.; Crespo, J.M.; Jiménez-Murcia, S.; Soriano-Mas, C.; et al. Hypothalamic-pituitary-adrenal axis activity and cognition in major depression: The role of remission status. Psychoneuroendocrinology 2016, 76, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Potter, G.G.; McQuoid, D.R.; Boyd, B.; Turner, R.; MacFall, J.R.; Taylor, W.D. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol. Med. 2016, 47, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baune, B.T.; Fuhr, M.; Air, T.; Hering, C. Neuropsychological functioning in adolescents and young adults with major depressive disorder—A review. Psychiatry Res. 2014, 218, 261–271. [Google Scholar] [CrossRef]
- McDermott, L.M.; Ebmeier, K.P. A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 2009, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.R.; Harris, A.; Kemp, A.H. The impact of depression heterogeneity on inhibitory control. Aust. N. Z. J. Psychiatry 2012, 46, 374–383. [Google Scholar] [CrossRef]
- Shinba, T. Major depressive disorder and generalized anxiety disorder show different autonomic dysregulations revealed by heart-rate variability analysis in first-onset drug-naïve patients without comorbidity. Psychiatry Clin. Neurosci. 2017, 71, 135–145. [Google Scholar] [CrossRef]
- Lemelin, S.; Baruch, P.; Vincent, A.; Everett, J.; Vincent, P. Distractibility and Processing Resource Deficit in Major Depression. Evidence for Two Deficient Attentional Processing Models. J. Nerv. Ment. Dis. 1997, 185, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Robinson, O.J.; Evytal, K.; Cornwell, B.R.; Egrillon, C. The impact of anxiety upon cognition: Perspectives from human threat of shock studies. Front. Hum. Neurosci. 2013, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Petkus, A.J.; Reynolds, C.A.; Wetherell, J.L.; Kremen, W.S.; Gatz, M. Temporal dynamics of cognitive performance and anxiety across older adulthood. Psychol. Aging 2017, 32, 278–292. [Google Scholar] [CrossRef]
- Goretti, B.; Viterbo, R.G.; Portaccio, E.; Niccolai, C.; Hakiki, B.; Piscolla, E.; Iaffaldano, P.; Trojano, M.; Amato, M.P. Anxiety state affects information processing speed in patients with multiple sclerosis. Neurol. Sci. 2013, 35, 559–563. [Google Scholar] [CrossRef]
- Forster, S.; Elizalde, A.O.N.; Castle, E.; Bishop, S.J. Unraveling the Anxious Mind: Anxiety, Worry, and Frontal Engagement in Sustained Attention Versus Off-Task Processing. Cereb. Cortex 2013, 25, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalouf, F.T.; Klein, C.; Clark, L.; Sahakian, B.J.; LaBarbara, E.J.; Versace, A.; Hassel, S.; Almeida, J.R.; Phillips, M.L. Impaired sustained attention and executive dysfunction: Bipolar disorder versus depression-specific markers of affective disorders. Neuropsychologia 2010, 48, 1862–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stillman, A.N.; Rowe, K.C.; Arndt, S.; Moser, D.J. Anxious symptoms and cognitive function in non-demented older adults: An inverse relationship. Int. J. Geriatr. Psychiatry 2011, 27, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, N.; Bredemeier, K. Individual differences at high perceptual load: The relation between trait anxiety and selective attention. Cogn. Emot. 2011, 25, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Balderston, N.L.; Vytal, K.E.; O’Connell, K.B.S.; Torrisi, S.; Letkiewicz, A.; Ernst, M.; Grillon, C. Anxiety Patients Show Reduced Working Memory Related dlPFC Activation During Safety and Threat. Depress. Anxiety 2016, 34, 25–36. [Google Scholar] [CrossRef]
- Visu-Petra, L.; Stanciu, O.; Benga, O.; Miclea, M.; Cheie, L. Longitudinal and concurrent links between memory span, anxiety symptoms, and subsequent executive functioning in young children. Front. Psychol. 2014, 5, 443. [Google Scholar] [CrossRef] [Green Version]
- Beckwé, M.; Deroost, N.; Koster, E.H.W.; De Lissnyder, E.; De Raedt, R. Worrying and rumination are both associated with reduced cognitive control. Psychol. Res. 2013, 78, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, A.A.; Buckwalter, J.G. Virtual reality and cognitive assessment. Virtual Real. Neuro-Psycho-Physiol. Cog. Clin. Method Iss. Assess Reh. 1997, 44, 123. [Google Scholar]
- Lee, J.H.; Ku, J.; Cho, W.; Hahn, W.Y.; Kim, I.Y.; Lee, S.-M.; Kang, Y.J.; Kim, D.Y.; Yu, T.; Wiederhold, B.K.; et al. A Virtual Reality System for the Assessment and Rehabilitation of the Activities of Daily Living. CyberPsychol. Behav. 2003, 6, 383–388. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Schultheis, M.; Kerns, K.A.; Mateer, C. Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 2004, 14, 207–239. [Google Scholar] [CrossRef]
- Bohil, C.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Allain, P.; Foloppe, D.A.; Besnard, J.; Yamaguchi, T.; Etcharry-Bouyx, F.; Le Gall, D.; Nolin, P.; Richard, P. Detecting Everyday Action Deficits in Alzheimer’s Disease Using a Nonimmersive Virtual Reality Kitchen. J. Int. Neuropsychol. Soc. 2014, 20, 468–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallavicini, F.; Pedroli, E.; Serino, S.; Dell’Isola, A.; Cipresso, P.; Cisari, C.; Riva, G. Assessing Unilateral Spatial Neglect using advanced technologies: The potentiality of mobile virtual reality. Technol. Health Care 2015, 23, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Climent, G.; Rodríguez, C.; García, T.; Areces, D.; Mejías, M.; Aierbe, A.; Moreno, M.; Cueto, E.; Castellá, J.; Feli González, M. New virtual reality tool (Nesplora Aquarium) for assessing attention and working memory in adults: A normative study. Appl. Neuropsychol. Adult 2021, 28, 403–415. [Google Scholar] [CrossRef]
- Areces, D.; García, T.; Cueli, M.; Rodríguez, C. Is a Virtual Reality Test Able to Predict Current and Retrospective ADHD Symptoms in Adulthood and Adolescence? Brain Sci. 2019, 9, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley Orgánica 15/1999, d.d.d., de Protección de Datos de Carácter Personal [Spanish Organic Law 15/1999, of 13 December, on the Protection of Personal Data]. Boletín Oficial del Estado, 298, de 14 de Diciembre de 1999, 1 a 22. Available online: https://www.boe.es/eli/es/lo/1999/12/13/15/con (accessed on 8 February 2021).
- Camacho-Conde, J.A.; Climent, G. Attentional profile of adolescents with ADHD diagnosis in dual execution tasks in virtual reality: A randomized study. Appl. Neuropsychol. Child 2020, 1–10. [Google Scholar] [CrossRef]
- Camacho-Conde, J.A. Cognitive Function Assessment of a Patient with PTSD Before and After EMDR Treatment. J. EMDR Pract. Res. 2020, 14, 216–228. [Google Scholar] [CrossRef]
- Torrecillas, J.G.; Marín, B.; Alonso, B. Aplicación de realidad virtual (Nesplora Aquarium) en la valoración cognitiva y control de incapacidad temporal por contingencia común en pacientes con trastorno psiquiátrico menor. Rev. Asoc. Esp. Espec. Med. Trab. 2020, 29, 223–235. [Google Scholar]
- Voinescu, A.; Petrini, K.; Fraser, D.S.; Lazarovicz, R.-A.; Papavă, I.; Fodor, L.A.; David, D. The effectiveness of a virtual reality attention task to predict depression and anxiety in comparison with current clinical measures. Virtual Real. 2021, 1–22. [Google Scholar] [CrossRef]
- Voinescu, A.; Fodor, L.A.; Fraser, D.S.; David, D. Exploring Attention in VR: Effects of Visual and Auditory Modalities; Springer: Cham, Switzerland, 2020; pp. 677–683. [Google Scholar] [CrossRef]
- Voinescu, A.; Fodor, L.-A.; Fraser, D.S.; Mejias, M.; David, D. Exploring the Usability of Nesplora Aquarium, a Virtual Reality System for Neuropsychological Assessment of Attention and Executive Functioning. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1207–1208. [Google Scholar] [CrossRef]
- Camacho-Conde, J.A.; Legarra, L.; Bolinches, V.M.; Cano, P.; Guasch, M.; Llanos-Torres, M.L.; Serret, V.; Mejías, M.; Climent, G. Assessment of the attention processes in patients with anxiety-depressive disorders through virtual reality. In Proceedings of the FENS 2020—Virtual Forum Virtual Congress, Glasgow, UK, 11–15 July 2020. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Introduction to Cognitive Rehabilitation: Theory and Practice; Guilford Press: New York, NY, USA, 1989. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Effectiveness of an attention-training program. J. Clin. Exp. Neuropsychol. 1987, 9, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D.; Hitch, G. Working Memory. The Psychology of Learning and Motivation; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Halperin, J.M.; Wolf, L.E.; Greenblatt, E.R.; Young, G. Subtype analysis of commission errors on the continuous performance test in children. Dev. Neuropsychol. 1991, 7, 207–217. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K.; Sanz, J.; Valverde, C.V. Inventario de Depresión de Beck (BDI-II) [Beck Depression Inventory (BDI-II)]; Pearson: London, UK, 2011. [Google Scholar]
- Spielberger, C.; Gorsuch, R.; Lushene, R. STAI Manual for the State-Trait Anxiety Inventory (Adaptación Española en Editorial TEA); Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Miyake, A. The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis. J. Exp. Psychol. Gen. 2004, 133, 101–135. [Google Scholar] [CrossRef] [Green Version]
- Desseilles, M.; Schwartz, S.; Vu, T.T.D.; Sterpenich, V.; Ansseau, M.; Maquet, P.; Phillips, C. Depression alters “top-down” visual attention: A dynamic causal modeling comparison between depressed and healthy subjects. NeuroImage 2011, 54, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Strohmeier, C.W.; Rosenfield, B.; DiTomasso, R.A.; Ramsay, J.R. Assessment of the relationship between self-reported cognitive distortions and adult ADHD, anxiety, depression, and hopelessness. Psychiatry Res. 2016, 238, 153–158. [Google Scholar] [CrossRef]
- Chou, X.-L.; Fang, Q.; Yan, L.; Zhong, W.; Peng, B.; Bathellier, B.; Wei, J.; Tao, H.W.; Zhang, L.I. Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. eLife 2020, 9, 54157. [Google Scholar] [CrossRef]
- Fang, Q.; Chou, X.-L.; Peng, B.; Zhong, W.; Zhang, L.I.; Tao, H.W. A Differential Circuit via Retino-Colliculo-Pulvinar Pathway Enhances Feature Selectivity in Visual Cortex through Surround Suppression. Neuron 2019, 105, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.; Kaufman, S.K.; Holmes, B.; Diamond, M.I. Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron 2016, 89, 433–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Li, Y.; Stitt, I.M.; Zhou, Z.C.; Sellers, K.K.; Frohlich, F. Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention. Eneuro 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, J.; Kong, W.; Li, X.; Hu, B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: A systematic review. J. Affect. Disord. 2021, 296, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Ulke, C.; Paucke, M.; Huang, J.; Mauche, N.; Sander, C.; Stark, T.; Hegerl, U. Brain arousal regulation in adults with attention-deficit/hyperactivity disorder (ADHD). Psychiatry Res. 2017, 261, 102–108. [Google Scholar] [CrossRef]
- Gilbert, K.E.; Tonge, N.A.; Thompson, R.J. Associations between depression, anxious arousal and manifestations of psychological inflexibility. J. Behav. Ther. Exp. Psychiatry 2018, 62, 88–96. [Google Scholar] [CrossRef]
- Huang, J.; Ulke, C.; Strauss, M. Brain arousal regulation and depressive symptomatology in adults with attention-deficit/hyperactivity disorder (ADHD). BMC Neurosci. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Lewis, E.J.; Blanco, I.; Raila, H.; Joormann, J. Does repetitive negative thinking affect attention? Differential effects of worry and rumination on attention to emotional stimuli. Emotion 2019, 19, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Whitmer, A.J.; Gotlib, I.H. Switching and backward inhibition in major depressive disorder: The role of rumination. J. Abnorm. Psychol. 2012, 121, 570–578. [Google Scholar] [CrossRef] [Green Version]
- Riccio, C.A.; Reynolds, C.R.; Lowe, P.A. Clinical Applications of Continuous Performance Tests: Measuring Attention and Impulsive Responding in Children and Adults; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Desseilles, M.; Balteau, E.; Sterpenich, V.; Vu, T.T.D.; Darsaud, A.; Vandewalle, G.; Albouy, G.; Salmon, E.; Peters, F.; Schmidt, C.; et al. Abnormal Neural Filtering of Irrelevant Visual Information in Depression. J. Neurosci. 2009, 29, 1395–1403. [Google Scholar] [CrossRef]
- Crane, N.A.; Jenkins, L.M.; Dion, C.; Meyers, K.K.; Weldon, A.L.; Gabriel, L.B.; Walker, S.J.; Hsu, D.T.; Noll, U.C.; Klumpp, H.; et al. Comorbid anxiety increases cognitive control activation in Major Depressive Disorder. Depress. Anxiety 2016, 33, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birk, J.L.; Opitz, P.C.; Urry, H.L. Distractibility as a precursor to anxiety: Preexisting attentional control deficits predict subsequent autonomic arousal during anxiety. Biol. Psychol. 2015, 122, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lewin, J.S.; Friedman, L.; Wu, D.; Miller, D.A.; Thompson, L.A.; Klein, S.K.; Wise, A.L.; Hedera, P.; Buckley, P.; Meltzer, H.; et al. Cortical Localization of Human Sustained Attention: Detection with Functional MR Using a Visual Vigilance Paradigm. J. Comput. Assist. Tomogr. 1996, 20, 695–701. [Google Scholar] [CrossRef]
- Riccio, C.A.; Reynolds, C.R.; Lowe, P.; Moore, J.J. The continuous performance test: A window on the neural substrates for attention? Arch. Clin. Neuropsychol. 2002, 17, 235–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, L.; Iversen, S.D.; Goodwin, G.M. Sustained attention deficit in bipolar disorder. Br. J. Psychiatry 2002, 180, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Paelecke-Habermann, Y.; Pohl, J.; Leplow, B. Attention and executive functions in remitted major depression patients. J. Affect. Disord. 2005, 89, 125–135. [Google Scholar] [CrossRef]
- Grillon, C.; Robinson, O.J.; Mathur, A.; Ernst, M. Effect of attention control on sustained attention during induced anxiety. Cogn. Emot. 2015, 30, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellers, K.K.; Yu, C.; Zhou, Z.C.; Stitt, I.; Li, Y.; Radtke-Schuller, S.; Alagapan, S.; Fröhlich, F. Oscillatory Dynamics in the Frontoparietal Attention Network during Sustained Attention in the Ferret. Cell Rep. 2016, 16, 2864–2874. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.C.; Salzwedel, A.P.; Radtke-Schuller, S.; Li, Y.; Sellers, K.K.; Gilmore, J.H.; Shih, Y.-Y.I.; Fröhlich, F.; Gao, W. Resting state network topology of the ferret brain. Neuroimage 2016, 143, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Marwaha, S.; Thompson, A.; Bebbington, P.; Singh, S.P.; Freeman, D.; Winsper, C.; Broome, M.R. Adult attention deficit hyperactivity symptoms and psychosis: Epidemiological evidence from a population survey in England. Psychiatry Res. 2015, 229, 49–56. [Google Scholar] [CrossRef]
- Levin, R.L.; Heller, W.; Mohanty, A.; Herrington, J.D.; Miller, G.A. Cognitive Deficits in Depression and Functional Specificity of Regional Brain Activity. Cogn. Ther. Res. 2007, 31, 211–233. [Google Scholar] [CrossRef]
- Whitmer, A.J.; Gotlib, I.H. An attentional scope model of rumination. Psychol. Bull. 2013, 139, 1036–1061. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wu, H.; Xu, J.; Chen, F.; Wu, F.; Wang, C.; Wang, J. Abnormal large-scale resting-state functional networks in drug-free major depressive disorder. Brain Imaging Behav. 2020, 15, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J. Virtual Real; BoD–Books on Demand: Norderstedt, Germany, 2011. [Google Scholar]
- Seymour, N.E. VR to OR: A Review of the Evidence that Virtual Reality Simulation Improves Operating Room Performance. World J. Surg. 2007, 32, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Sandford, J.A.; Turner, A. Integrated Visual and Auditory Continuous Performance Test Manual; Braintrain, Inc.: Richmond, VA, USA, 2000. [Google Scholar]
- Parsons, T.D.; Barnett, M. Validity of a Newly Developed Measure of Memory: Feasibility Study of the Virtual Environment Grocery Store. J. Alzheimers Dis. 2017, 59, 1227–1235. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Becker, N.; Spinath, F.M.; Greiff, S. Assessing intelligence without intelligence tests. Future perspectives. Intelligence 2021, 89, 101596. [Google Scholar] [CrossRef]
- Marazziti, D.; Consoli, G.; Picchetti, M.; Carlini, M.; Faravelli, L. Cognitive impairment in major depression. Eur. J. Pharmacol. 2010, 626, 83–86. [Google Scholar] [CrossRef]
- Vilgis, V.; Silk, T.J.; Vance, A. Executive function and attention in children and adolescents with depressive disorders: A systematic review. Eur. Child Adolesc. Psychiatry 2015, 24, 365–384. [Google Scholar] [CrossRef]
- Billinghurst, M.; Clark, A.; Lee, G. A Survey of Augmented Reality. Found. Trends Hum.–Comput. Interact. 2015, 8, 73–272. [Google Scholar] [CrossRef]
- Weyandt, L.L.; Rice, J.A.; Linterman, I.; Mitzlaff, L.; Emert, E. Neuropsychological performance of a sample of adults with ADHD, developmental reading disorder, and controls. Dev. Neuropsychol. 1998, 14, 643–656. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Walker, A.Y.; Shores, A.E.; Trollor, J.N.; Lee, T.; Sachdev, P.S. Neuropsychological functioning of adults with attention deficit hyperactivity disorder. J. Clin. Exp. Neuropsychol. 2000, 22, 115–124. [Google Scholar] [CrossRef]
- Taivalantti, M.; Barnett, J.H.; Halt, A.-H.; Koskela, J.; Auvinen, J.; Timonen, M.; Järvelin, M.-R.; Veijola, J. Depressive symptoms as predictors of visual memory deficits in middle-age. J. Affect. Disord. 2019, 264, 29–34. [Google Scholar] [CrossRef]
- Mantella, R.C.; Butters, M.A.; Dew, M.A.; Mulsant, B.H.; Begley, A.E.; Tracey, B.; Shear, M.K.; Reynolds III, C.F.; Lenze, E.J. Cognitive impairment in late-life generalized anxiety disorder. Am. J. Geriatr. Psychiatry 2007, 15, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Conde, J.A.; Galán-López, J.M. Depression and Cognitive Impairment in Institutionalized Older Adults. Dement. Geriatr. Cogn. Disord. 2020, 49, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Kellough, J.L.; Beevers, C.G.; Ellis, A.J.; Wells, T. Time course of selective attention in clinically depressed young adults: An eye tracking study. Behav. Res. Ther. 2008, 46, 1238–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control | Clinical | |||||||
---|---|---|---|---|---|---|---|---|
Gender | Male | 35 (15%) | Female | 80 (35%) | Male | 35(15%) | Female | 80 (35%) |
Medium Age (years) | 36.21 ± 22 (18–62) | 41.66 ± 26.14 (16–69) | 38.18 ± 21 (18–62) | 42.66 ± 25 (16–66) | ||||
Inclusion features | 16 to 70 years | 35 (15%) | 80 (35%) | 35 (15%) | 80 (35%) | |||
Not diagnosed ADHD | 35 (15%) | 80 (35%) | 35 (15%) | 80 (35%) | ||||
Informed Consent | 35 (15%) | 80 (35% | 35 (15%) | 80 (35%) | ||||
Exclusion features | <16 to >70 years | 1 (15%) | 2 (35%) | 2 (15%) | 3 (35%) | |||
Intellectual impairment (IQ 103 < 70) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||||
Moderate/severe neurological disorders | 2 (0.8%) | 1 (0.4%) | 1 (0.4%) | 1 (0.4%) | ||||
Diagnosed ADHD | 1 (0.4%) | 0 (0%) | 0 (0%) | 0 (0%) |
Depression and Controls | Anxiety and Controls | |||||
---|---|---|---|---|---|---|
U | z | p | U | z | p | |
Mean of the reaction time correct answers (MRTCA) | 523.1 | 0.491 | 0.062 | 1824 | −1.207 | 0.221 |
Visual right MRTCA | 423.4 | −1.554 | 0.008 * | 1861 | −1.234 | 0.267 |
Auditory MRTCA | 547.3 | −1.482 | 0.158 | 1784 | −1.415 | 0.160 |
Distractor-affected items MRTCA | 562.3 | −1.383 | 0.171 | 1804 | −1.383 | 0.188 |
Non-distractor-affected items MDTCA | 492.3 | −2.082 | 0.041 * | 1861 | −1.123 | 0.273 |
XnoDUALab_MRTCA | 441.1 | −2.227 | 0.012 * | 1759 | −2.332 | 0.138 |
Depression and Controls | Anxiety and Controls | |||||
---|---|---|---|---|---|---|
U | z | p | U | z | p | |
Total omission errors | 467.0 | −2.471 | 0.016 * | 1395 | −4.107 | 0.002 ** |
Visual omission errors | 421.5 | −1.792 | 0.007 * | 1310 | −4.214 | 0.00 1 ** |
Auditory omission errors | 499.0 | −1.482 | 0.046 * | 1474 | −2.425 | 0.00 6 ** |
Distractor-affected items omission errors | 472.5 | −0.832 | 0.025 * | 1509 | −2.586 | 0.010 * |
Non-distractor-affected items omission errors | 463.0 | −2.442 | 0.018 * | 1390 | −1.341 | 0.002 ** |
XnoDUALab_omissions errors_n | 464.5 | −2.319 | 0.020 * | 1408 | −1.532 | 0.002 ** |
XnoDUALba_omissions errors_n | 459.2 | −1.517 | 0.017 * | 1465 | −2.082 | 0.005 ** |
Depression and Controls | Anxiety and Controls | |||||
---|---|---|---|---|---|---|
U | z | p | U | z | p | |
Total commission errors | 659.5 | −0.592 | 0.519 | 1395 | −0.530 | 0.719 |
Visual commission errors | 621.0 | −2.092 | 0.361 | 1310 | −1.731 | 0.833 |
Distractor-affected items commission errors | 672.5 | −1.981 | 0.613 | 1474 | −0.345 | 0.677 |
Distractor-affected items, mean of the reaction time correct answers | 591.0 | −1.152 | 0.249 | 1509 | −0.603 | 0.541 |
Non-distractor-affected items commission errors canswers | 661.5 | −0.592 | 0.568 | 1390 | −0.281 | 0.760 |
XnoDUALab_commissions errors_n | 716.5 | −0.364 | 0.789 | 1408 | −1.794 | 0.701 |
XnoDUALba_comissions errors_n | 644.0 | −0.792 | 0.491 | 1465 | −0.816 | 0.492 |
Depression andControls | Anxiety and Controls | |||||
---|---|---|---|---|---|---|
U | z | p | U | z | p | |
Standard deviation of the reaction time correct answers (SDRTCA) | 591.5 | −1.102 | 0.277 | 1971 | −0.530 | 0.781 |
Visual SDRTCA | 614.5 | −0.956 | 0.345 | 1725 | −1.441 | 0.103 |
Auditory SDRTCA | 507.1 | −1.981 | 0.191 | 2114 | −0.321 | 0.740 |
Distractor-affected items SDRTCA | 620.3 | −1.512 | 0.382 | 2052 | −0.427 | 0.638 |
Non-distractor-affected items SDRTCA | 609.5 | −0.987 | 0.333 | 1947 | −0.281 | 0.424 |
XnoDUALab_SDRTCA | 605.6 | −0.963 | 0.329 | 1892 | −0.934 | 0.325 |
XnoDUALba_SDRTCA | 590.0 | −0.229 | 0.268 | 2087 | −0.408 | 0.689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Conde, J.A.; Legarra, L.; Bolinches, V.M.; Cano, P.; Guasch, M.; Llanos-Torres, M.; Serret, V.; Mejías, M.; Climent, G. Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. J. Pers. Med. 2021, 11, 1341. https://doi.org/10.3390/jpm11121341
Camacho-Conde JA, Legarra L, Bolinches VM, Cano P, Guasch M, Llanos-Torres M, Serret V, Mejías M, Climent G. Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. Journal of Personalized Medicine. 2021; 11(12):1341. https://doi.org/10.3390/jpm11121341
Chicago/Turabian StyleCamacho-Conde, José A., Leire Legarra, Vanesa M. Bolinches, Patricia Cano, Mónica Guasch, María Llanos-Torres, Vanessa Serret, Miguel Mejías, and Gema Climent. 2021. "Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality" Journal of Personalized Medicine 11, no. 12: 1341. https://doi.org/10.3390/jpm11121341
APA StyleCamacho-Conde, J. A., Legarra, L., Bolinches, V. M., Cano, P., Guasch, M., Llanos-Torres, M., Serret, V., Mejías, M., & Climent, G. (2021). Assessment of Attentional Processes in Patients with Anxiety-Depressive Disorders Using Virtual Reality. Journal of Personalized Medicine, 11(12), 1341. https://doi.org/10.3390/jpm11121341