Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Davison, S.N. Clinical pharmacology considerations in pain management in patients with advanced kidney failure. Clin. J. Am. Soc. Nephrol. 2019, 14, 917–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panella, L.; Volontè, L.; Poloni, N.; Caserta, A.; Ielmini, M.; Caselli, I.; Lucca, G.; Callegari, C. Pharmacogenetic testing in acute and chronic pain: A preliminary study. Medicina 2019, 55, 147. [Google Scholar] [CrossRef] [Green Version]
- Daoust, R.; Paquet, J.; Cournoyer, A.; Piette, É.; Morris, J.; Lessard, J.; Castonguay, V.; Williamson, D.; Chauny, J.-M. Side effects from opioids used for acute pain after emergency department discharge. Am. J. Emerg. Med. 2020, 38, 695–701. [Google Scholar] [CrossRef]
- Wang, S.-C.; Chen, Y.-C.; Lee, C.-H.; Cheng, C.-M. Opioid addiction, genetic susceptibility, and medical treatments: A review. Int. J. Mol. Sci. 2019, 20, 4294. [Google Scholar] [CrossRef] [Green Version]
- Lötsch, J.; Doehring, A.; Mogil, J.S.; Arndt, T.; Geisslinger, G.; Ultsch, A. Functional genomics of pain in analgesic drug development and therapy. Pharmacol. Ther. 2013, 139, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Saba, R.; Kaye, A.D.; Urman, R.D. Pharmacogenomics in pain management. Anesthesiol. Clin. 2017, 35, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Marks, L.; May, G.H.; Wilson, J.B. The genetic basis of disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [Green Version]
- PharmGKB. Gene Reference Materials for CYP2D6. Available online: https:www.PharmGKBorg/page/cyp2d6RefMaterials (accessed on 5 August 2021).
- CPIC. CPIC Guideline for Opioids Based on Genotype. Available online: https://cpicpgx.org/guidelines/guideline-for-codeine-and-cyp2d6/ (accessed on 5 August 2021).
- Cavallari, L.H.; Johnson, J.A. A case for genotype-guided pain management. Pharmacogenomics 2019, 20, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Bartley, E.J.; Fillingim, R. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Trescot, A.M.; Faynboym, S. A review of the role of genetic testing in pain medicine. Pain Physician 2014, 17, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.; Graney, M.J.; Lummus, A.C.; Nichols, L.O.; Martindale-Adams, J. Differences of self-reported osteoarthritis disability and race. J. Natl. Med. Assoc. 2007, 99, 1046–1051. [Google Scholar]
- Campbell, C.M.; Edwards, R.R. Ethnic differences in pain and pain management. Pain Manag. 2012, 2, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, C.R.; Anderson, K.O.; Baker, T.A.; Campbell, L.C.; Decker, S.; Fillingim, R.; Kaloukalani, D.A.; Lasch, K.E.; Myers, C.; Tait, R.C.; et al. The unequal burden of pain: Confronting racial and ethnic disparities in pain. Pain Med. 2003, 4, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gibby, C.C.; Aday, L.A.; Todd, K.H.; Cleeland, C.S.; Anderson, K.O. Pain in aging community-dwelling adults in the United States: Non-Hispanic whites, non-Hispanic blacks, and Hispanics. J. Pain 2007, 8, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Greenspan, J.D.; Ohrbach, R.; Fillingim, R.B.; Maixner, W.; Renn, C.L.; Johantgen, M.; Zhu, S.; Dorsey, S.G. Racial/ethnic differences in experimental pain sensitivity and associated factors—Cardiovascular responsiveness and psychological status. PLoS ONE 2019, 14, e0215534. [Google Scholar] [CrossRef]
- Anderson, K.O.; Green, C.R.; Payne, R. Critical review: Racial and ethnic disparities in pain: Causes and consequences of unequal care. J. Pain 2009, 10, 1187–1204. [Google Scholar] [CrossRef]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L. Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain 2009, 10, 447–485. [Google Scholar] [CrossRef] [Green Version]
- Bernardes, S.F.; Keogh, E.; Lima, M.L. Bridging the gap between pain and gender research: A selective literature review. Eur. J. Pain 2008, 12, 427–440. [Google Scholar] [CrossRef]
- Hurley, R.W.; Adams, M.C.B. Sex, gender, and pain: An overview of a complex field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Mogil, J.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci. 2012, 13, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, M.; Turgeon, J.; Michaud, V. Contribution of CYP2D6 functional activity to oxycodone efficacy in pain management: Genetic polymorphisms, phenoconversion, and tissue-selective metabolism. Pharmaceutics 2021, 13, 1466. [Google Scholar] [CrossRef] [PubMed]
Demographics | N (%) |
---|---|
Age (year) (mean, ±SD) | 54.76 (0.13) |
Gender | |
Female | 50 (46.7) |
Male | 57 (53.3) |
Race/ethnicity | |
White | 91 (85) |
Black | 10 (9.3) |
Hispanic | 2 (1.9) |
Asian | 3 (2.8) |
Others | 1 (0.9) |
Type of health insurance | |
Private | 54 (51.4) |
Worker’s Comp | 48 (45.7) |
No insurance | 3 (2.8) |
Tobacco use | 20 (18.7) |
Personal history of substance abuse | |
Alcohol | 7 (6.5) |
Illegal drugs | 3 (2.8) |
Prescription drugs | 15 (14.0) |
Psychological disorder | |
Attention deficit disorder (ADD) | 6 (5.6) |
Obsessive compulsive disorder (OCD)/bipolar/schizophrenia | 6 (5.6) |
Depression | 24 (22.4) |
Type of Pain Rx | Pre-PGx Testing (%) | Post-PGx Testing (%) |
---|---|---|
Opioids | 107 (100) | 107 (100) |
NSAIDs | 58 (54.2) | 66 (61.7) |
Acetaminophen | 50 (46.7) | 47 (43.9) |
Benzodiazepines | 16 (14.9) | 17 (15.9) |
Muscle relaxant (carisoprodol) | 16 (14.9) | 22 (20.6) |
Anesthetic (lidocaine) | 5 (4.7) | 5 (4.7) |
GABA analog (pregabalin, duloxetine) | 16 (14.9) | 23 (21.5) |
Phenotype | Total Number of Rx | Added New Rx | Discontinued Old Rx | No Change |
---|---|---|---|---|
Ultrarapid metabolizer | 5 | 3 | 0 | 2 |
(60.0%) | (0.0%) | (40.0%) | ||
Normal metabolizer | 254 | 29 | 87 | 138 |
(11.4%) | (34.2%) | (54.3%) | ||
Intermediate metabolizer | 70 | 25 | 6 | 39 |
(35.7%) | (8.6%) | (55.7%) | ||
Poor metabolizer | 75 | 13 | 24 | 38 |
(17.3%) | (32%) | (50.6%) |
Phenotype | Total Number of Rx | Change in Dose ONLY | Change in Frequency ONLY | Change in Dose and Frequency | No Change |
---|---|---|---|---|---|
Ultrarapid metabolizer | 2 | 0 | 1 | 0 | 1 |
(0.0%) | (50.0%) | (0.0%) | (50%) | ||
Normal metabolizer | 138 | 5 | 20 | 5 | 108 |
(3.6%) | (14.5%) | (3.6%) | (78.3%) | ||
Intermediate metabolizer | 39 | 2 | 6 | 1 | 30 |
(5.1%) | (15.4%) | (2.6%) | (76.9%) | ||
Poor metabolizer | 38 | 3 | 3 | 4 | 28 |
(7.9%) | (7.9%) | (10.5%) | (73.7%) |
Pain Scale | Pre-PGx Testing (N = 105) | Post-PGx Testing (N = 105) |
---|---|---|
Mean (±SD) | 7.25 (2.04) | 7.00 (2.07) |
Categories | ||
Intense pain | 11 (10.5%) | 6 (5.7%) |
Severe pain | 62 (59.0%) | 65 (61.9%) |
Moderate pain | 25 (23.8%) | 27 (25.7%) |
Mild pain | 7 (6.7%) | 7 (6.7%) |
Pain Scale | Pre-PGx Testing | Post-PGx Testing | ||||
---|---|---|---|---|---|---|
N = 105 (107 − 2) | Any Change in Medication Post-PGx Testing (N = 84 (86 − 2)) | No Change in Medication Post-PGx Testing (N = 21) | ||||
Categories | N (%) | Mean (±SD) | N (%) | Mean (±SD) | N (%) | Mean (±SD) |
Intense pain | 11 (10.5) | 10 (0) | 5 (5.6) | 10 (0) | 1 (4.8) | 10 (0) |
Severe pain | 62 (59.0) | 8.1 (0.76) | 51 (60.7) | 8.0 (0.71) | 14 (66.7) | 8.1 (0.92) |
Moderate pain | 25 (23.8) | 5.3 (0.79) | 22 (26.2) | 5.1 (0.90) | 5 (23.8) | 4.8 (0.84) |
Mild pain | 7 (6.7) | 2.4 (0.53) | 6 (7.1) | 2.3 (0.61) | 1 (4.8) | 2 (0) |
Variable | Effect |
---|---|
Any change in medication post-PGx testing | −0.0217 (−0.3015–0.2582) |
Age | 0.0025 (−0.0074–0.0125) |
Gender | |
Female (ref) | 0.0307 (−0.2574–0.3189) |
Male | |
Race/ethnicity | |
White (ref) | |
Black | −0.0789 (−0.5379–0.3801) |
Hispanic | −0.7874 (−1.6430–0.0681) |
Asian | 0.0820 (−1.0878–1.2518) |
Type of health insurance | |
Private (ref) | |
Worker’s Comp | −0.0949 (−0.3635–0.1738) |
No insurance | −0.8634 (−2.1391–0.4123) |
Tobacco use | −0.1208 (−0.4784–0.2368) |
Personal history of substance abuse | |
Alcohol | 0.3642 (−0.1587–0.8871) |
Illegal drugs | −0.6739 (−1.3774–0.0296) |
Prescription drugs | 0.2231 (−0.1349–0.5811) |
Psychologic disease | |
ADD | 0.2785 (−0.2791–0.8361) |
OCD/bipolar/schizophrenia | 0.3446 (−0.3604–1.0496) |
Depression | 0.0622 (−0.2634–0.3880) |
Variable | Effect |
---|---|
Change in dosing post-PGx testing | −0.6605 (−1.2759–0.0452) * |
Age | −0.0010 (−0.0175–0.0155) |
Gender | |
Male (ref) | |
Female | −0.0397 (−0.5444–0.4648) |
Race/ethnicity | |
White (ref) | |
Black | −0.2488 (−1.1060–0.6084) |
Hispanic | - |
Asian | - |
Type of health insurance | |
Private (ref) | |
Worker’s Comp | −0.3740 (−0.8108–0.0628) |
No insurance | −0.9050 (−2.2242–0.4142) |
Tobacco use | −0.1892 (−0.8480–0.4695) |
Personal history of substance abuse | |
Alcohol | 0.0349 (−0.8220–0.8917) |
Illegal drugs | −0.5755 (−1.7689–0.6180) |
Prescription drugs | 0.4878 (−0.1259–1.1016) |
Psychologic disease | |
ADD | −0.0346 (−1.3021–1.2328) |
OCD/bipolar/schizophrenia | - |
Depression | −0.1050 (−0.7852–0.5752) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loh, F.-H.; Azzi, B.; Weingarten, A.; Loewy, Z.G. Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy. J. Pers. Med. 2021, 11, 1112. https://doi.org/10.3390/jpm11111112
Loh F-H, Azzi B, Weingarten A, Loewy ZG. Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy. Journal of Personalized Medicine. 2021; 11(11):1112. https://doi.org/10.3390/jpm11111112
Chicago/Turabian StyleLoh, Feng-Hua, Brigitte Azzi, Alexander Weingarten, and Zvi G. Loewy. 2021. "Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy" Journal of Personalized Medicine 11, no. 11: 1112. https://doi.org/10.3390/jpm11111112
APA StyleLoh, F.-H., Azzi, B., Weingarten, A., & Loewy, Z. G. (2021). Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy. Journal of Personalized Medicine, 11(11), 1112. https://doi.org/10.3390/jpm11111112