Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Microbiologic and Radiologic Examination
2.3. Anti-TB Drugs
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Factors Associated with Cavitary TB
3.3. Anti-TB Drugs
3.4. Treatment Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palaci, M.; Dietze, R.; Hadad, D.J.; Ribeiro, F.K.C.; Peres, R.L.; Vinhas, S.A.; Maciel, E.L.N.; Dettoni, V.D.V.; Horter, L.; Boom, W.H.; et al. Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. J. Clin. Microbiol. 2007, 45, 4064–4066. [Google Scholar] [CrossRef] [Green Version]
- Mathur, M.; Badhan, R.K.; Kumari, S.; Kaur, N.; Gupta, S. Radiological manifestations of pulmonary tuberculosis-A comparative study between immunocompromised and immunocompetent patients. J. Clin. Diagn. Res. 2017, 11, TC06–TC09. [Google Scholar] [CrossRef]
- Lee, H.; Sohn, J.W.; Sim, Y.S.; Shin, T.R.; Kim, D.-G.; Choi, H. Outcomes of extended duration therapy for drug-susceptible cavitary pulmonary tuberculosis. Ann. Transl. Med. 2020, 8, 346. [Google Scholar] [CrossRef]
- Haapanen, J.H.; Kass, I.; Gensini, G.; Middlebrook, G. Studies on the gaseous content of tuberculous cavities. Am. Rev. Respir. Dis. 1959, 80, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.; Saad, R., Jr.; Stirbulov, R. Pulmonary tuberculosis: Relationship between sputum bacilloscopy and radiological lesions. Rev. Inst. Med. Trop. São Paulo 2003, 45, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, S.; Uchiyama, K.; Shima, H.; Suzuki, K.; Shimura, A.; Sasaki, Y.; Yamagishi, F. Relationship between CT findings of pulmonary tuberculosis and the number of acid-fast bacilli on sputum smears. Clin. Imaging 2004, 28, 119–123. [Google Scholar] [CrossRef]
- Kempker, R.R.; Rabin, A.S.; Nikolaishvili, K.; Kalandadze, I.; Gogishvili, S.; Blumberg, H.M.; Vashakidze, S. Additional drug resistance in mycobacterium tuberculosis isolates from resected cavities among patients with multidrug-resistant or extensively drug-resistant pulmonary tuberculosis. Clin. Infect. Dis. 2011, 54, e51–e54. [Google Scholar] [CrossRef] [PubMed]
- Sarathy, J.P.; Zuccotto, F.; Hsinpin, H.; Sandberg, L.; Via, L.; Marriner, G.A.; Masquelin, T.; Wyatt, P.; Ray, P.; Dartois, V. Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infect. Dis. 2016, 2, 552–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.C.; Leung, C.C.; Yew, W.W.; Ho, S.C.; Tam, C.M. A Nested Case–control study on treatment-related risk factors for early relapse of tuberculosis. Am. J. Respir. Crit. Care Med. 2004, 170, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Executive Summary: Official american thoracic society/centers for disease control and prevention/infectious diseases society of america clinical practice guidelines: Treatment of drug-susceptible tuberculosis. Clin. Infect. Dis. 2016, 63, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.-W.; Yoo, J.-W.; Hong, Y.; Lee, J.S.; Lee, S.-D.; Kim, W.S.; Kim, D.S.; Shim, T.S. Risk factors for 1-year relapse of pulmonary tuberculosis treated with a 6-month daily regimen. Respir. Med. 2014, 108, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Jeong, B.-H.; Park, H.Y.; Jeon, K.; Huh, H.J.; Lee, N.Y.; Koh, W.-J. Treatment outcomes with fluoroquinolone-containing regimens for isoniazid-resistant pulmonary tuberculosis. Antimicrob. Agents Chemother. 2016, 60, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.-Y.; Lee, J.-J.; Chien, S.-T.; Enarson, D.A.; Chang, Y.-C.; Chen, Y.-T.; Hu, T.-Y.; Lin, C.-B.; Suk, C.-W.; Tao, J.-M.; et al. Glycemic control and radiographic manifestations of tuberculosis in diabetic patients. PLoS ONE 2014, 9, e93397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkabab, Y.M.; Al-Abdely, H.M.; Heysell, S.K. Diabetes-related tuberculosis in the Middle East: An urgent need for regional research. Int. J. Infect. Dis. 2015, 40, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Corona, M.E.; Cruz-Hervert, L.P.; García-García, L.; Ferreyra-Reyes, L.; Delgado-Sánchez, G.; Bobadilla-Del-Valle, M.; Canizales-Quintero, S.; Ferreira-Guerrero, E.; Báez-Saldaña, R.; Téllez-Vázquez, N.; et al. Association of diabetes and tuberculosis: Impact on treatment and post-treatment outcomes. Thorax 2013, 68, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Mehreen, S.; Basit, A.; Khan, R.A.; Jan, F.; Ullah, I.; Ihtesham, M.; Khan, A.; Ullah, U.; Javaid, A. Characteristics and treatment outcomes of patients with multi-drug resistant tuberculosis at a tertiary care hospital in Peshawar, Pakistan. Saudi Med. J. 2015, 36, 1463–1471. [Google Scholar] [CrossRef]
- de Boer, R.N.; Filho, J.B.D.O.E.S.; Cobelens, F.; Ramalho, D.D.P.; Miranda, P.F.C.; de Logo, K.; Oliveira, H.; Mesquita, E.; Oliveira, M.M.; Kritski, A. Delayed culture conversion due to cigarette smoking in active pulmonary tuberculosis patients. Tuberculosis 2014, 94, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, A.; Hagiwara, E.; Hamai, J.; Taguri, M.; Terauchi, Y. Impact of underlying diabetes and presence of lung cavities on treatment outcomes in patients with pulmonary tuberculosis. Diabet. Med. 2014, 31, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Umut, S.; Tosun, G.A.; Yildirim, N. Radiographic location of pulmonary tuberculosis in diabetic patients. Chest 1994, 106, 326. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.M.; Somoskövi, Á.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.L.; Spector, S.; Roscigno, G.; Nkengasong, J. Diagnostic standards and classification of tuberculosis in adults and children. Am. J. Respir. Crit. Care Med. 2000, 161, 1376–1395. [Google Scholar] [CrossRef]
- Bai, G.-H.; Park, Y.-K.; Choi, Y.-W.; Bai, J.-I.; Kim, H.-J.; Chang, C.L.; Lee, J.-K.; Kim, S.J. Trend of anti-tuberculosis drug resistance in Korea, 1994-2004. Int. J. Tuberc. Lung Dis. 2007, 11, 571–576. [Google Scholar] [PubMed]
- World Health Organization. Definitions and Reporting Framework for Tuberculosis–2013 Revision: Updated December 2014 and January 2020; 9241505346; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Turnbull, L.; Bell, C.; Child, F. Tuberculosis (NICE clinical guideline 33). Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H. Diagnosis and treatment of latent tuberculosis infection: The updated 2017 Korean guidelines. Korean J. Med. 2018, 93, 509–517. [Google Scholar] [CrossRef]
- American Thoracic Society; CDC; Infectious Diseases Society of America. Treatment of tuberculosis. MMRW Recomm. Rep. 2003, 52, 1–77. [Google Scholar]
- Flynn, J.L.; Chan, J. Immunology of Tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef]
- Mazzarella, G.; Bianco, A.; Perna, F.; D’Auria, D.; Grella, E.; Moscariello, E.; Sanduzzi, A. T lymphocyte phenotypic profile in lung segments affected by cavitary and non-cavitary tuberculosis. Clin. Exp. Immunol. 2003, 132, 283–288. [Google Scholar] [CrossRef]
- Starkenburg, S.; Munroe, M.E.; Waltenbaugh, C. Early alteration in leukocyte populations and Th1/Th2 function in ethanol-consuming mice. Alcohol. Clin. Exp. Res. 2001, 25, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Liang, C.-L.; Liu, H.; Zeng, Y.-Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [Green Version]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The Immune system in children with malnutrition—A Systematic review. PLoS ONE 2014, 9, E105017. [Google Scholar] [CrossRef] [Green Version]
- Scrimshaw, N.S.; San Giovanni, J.P. Synergism of nutrition, infection, and immunity: An overview. Am. J. Clin. Nutr. 1997, 66, 464S–477S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.Y.; Lee, L.N.; Hsueh, P.R. Factors changing the manifestation of pulmonary tuberculosis. Off. J. Int. Union Tuberc. Lung Dis. 2005, 9, 777–783. [Google Scholar]
- Chen, L.; Zhang, J.; Zhang, H. A large pulmonary cavity replaced by a tuberculosis granuloma and healed during treatment of a patient with tuberculosis. J. Infect. Dev. Ctries. 2018, 12, 60–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathman, G.; Sillah, J.; Hill, P.C.; Murray, J.F.; Adegbola, R.; Corrah, T.; Lienhardt, C.; McAdam, K.P.W.J. Clinical and radiological presentation of 340 adults with smear-positive tuberculosis in The Gambia. Int. J. Tuberc. Lung Dis. 2003, 7, 942–947. [Google Scholar] [PubMed]
- Murthy, S.E.; On behalf of the REMoxTB Consortium; Chatterjee, F.; Crook, A.; Dawson, R.; Mendel, C.; Murphy, M.E.; Murray, S.R.; Nunn, A.J.; Phillips, P.P.J.; et al. Pretreatment chest x-ray severity and its relation to bacterial burden in smear positive pulmonary tuberculosis. BMC Med. 2018, 16, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.S. Tuberculosis control in the Republic of Korea. Epidemiol. Health 2018, 40, e2018036. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Lee, L.-N.; Lai, H.-C.; Hsu, H.; Liaw, Y.; Hsueh, P.-R.; Yang, P. Prediction of the tuberculosis reinfection proportion from the local incidence. J. Infect. Dis. 2007, 196, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Patients (n = 410) | Non-Cavitary TB (n = 244) | Cavitary TB (n = 166) | p-Value |
---|---|---|---|---|
Age, years | 62 (44–80) | 65 (47–83) | 57 (39–75) | <0.001 |
Sex, male | 253 (61.7) | 138 (56.6) | 115 (69.3) | 0.010 |
Previous history of TB | 41 (10.0) | 15 (6.1) | 26 (15.7) | 0.002 |
BMI (kg/m2) | 21.8 (18.2–25.4) | 22.3 (18.5–26.1) | 21.0 (18.0–24.0) | <0.001 |
Smoking | <0.001 | |||
Current smoker | 87 (21.2) | 37 (16.7) | 50 (34.0) | |
Ex-smoker | 78 (19.0) | 49 (22.2) | 29 (19.7) | |
Never smoker | 203 (49.5) | 135 (61.1) | 68 (46.3) | |
Comorbidities | ||||
Diabetes Mellitus | 74 (18.0) | 33 (13.5) | 41 (24.7) | 0.004 |
Cardiovascular disease | 53 (12.9) | 38 (15.6) | 15 (9.0) | 0.053 |
Neurologic disease | 36 (8.8) | 24 (9.8) | 12 (7.2) | 0.360 |
COPD/Asthma | 43 (10.5) | 26 (10.7) | 17 (10.2) | 0.893 |
Chronic kidney disease | 12 (2.9) | 9 (3.7) | 3 (1.8) | 0.375 |
Chronic liver disease | 16 (3.9) | 8 (3.3) | 8 (4.8) | 0.429 |
HIV | 3 (0.7) | 3 (1.2) | 0 | 0.275 |
Initial AFB smear | <0.001 | |||
Negative | 259 (63.2) | 182 (74.6) | 77 (46.4) | |
Positive | 151 (36.8) | 62 (25.4) | 89 (53.6) | |
NAAT a | <0.004 | |||
Negative | 99 (24.1) | 73 (29.9) | 26 (15.7) | |
Positive | 223 (54.4) | 122 (50.0) | 101 (60.8) | |
Not performed | 88 (21.5) | 49 (20.1) | 39 (23.5) | |
Bilateral involvement | 203 (49.5) | 106 (43.4) | 97 (58.4) | 0.003 |
Variable | Unadjusted | Multivariate Analysis | |
---|---|---|---|
Unadjusted OR | p-Value | Adjusted OR * (95% CI) | |
Age | 0.97 (0.96–0.99) | <0.001 | |
Male | 0.58 (0.38–0.88) | 0.010 | |
BMI, kg/m2 | 0.90 (0.84–0.96) | 0.002 | 0.88 (0.81–0.97) |
Previous history of TB | 2.84 (1.45–5.54) | 0.002 | 3.45 (1.24–9.59) |
Smoking history | |||
Never-smoker | Ref. | Ref. | |
Ex- or current smoker | 1.82 (1.20–2.78) | 0.005 | 1.77 (1.01–3.13) |
Comorbidities | |||
Diabetes Mellitus | 2.01 (1.26–3.49) | 0.004 | 2.72 (1.36–5.44) |
Cardiovascular disease | 0.54 (0.29–1.02) | 0.055 | |
Neurologic disease | 0.71 (0.35–1.47) | 0.362 | |
COPD/Asthma | 0.96 (0.50–1.83) | 0.893 | |
Chronic kidney disease | 0.48 (0.13–1.80) | 0.277 | |
Chronic liver disease | 1.49 (0.55–4.06) | 0.432 | |
Initial AFB smear | |||
Negative | Ref | Ref | |
Positive | 3.39 (2.23–5.16) | <0.001 | 2.24 (1.26–3.98) |
NAAT | |||
Negative | Ref | ||
Positive | 2.32 (1.38–3.91) | 0.001 | |
Bilateral involvement | 1.83 (1.23–2.73) | 0.003 |
All Patients (n = 410) | Non-Cavitary TB (n = 244) | Cavitary TB (n = 166) | p-Value | |
---|---|---|---|---|
Regimen of anti-TB drugs | ||||
Rifampin | 402 (98.0) | 237 (97.1) | 165 (99.4) | 0.150 |
Isoniazid | 401 (97.8) | 237 (97.1) | 164 (98.8) | 0.322 |
Ethambutol | 393 (95.9) | 230 (94.3) | 163 (98.2) | 0.075 |
Pyrazinamide | 379 (92.4) | 222 (91.0) | 157 (94.6) | 0.177 |
Fluoroquinolone | 88 (21.5) | 53 (21.7) | 35 (21.1) | 0.877 |
Cycloserine | 21 (5.1) | 10 (4.1) | 11 (6.6) | 0.254 |
Injectable drug | 15 (3.7) | 3 (1.2) | 12 (7.2) | 0.002 |
Prothionamide | 8 (2.0) | 2 (0.8) | 6 (3.6) | 0.066 |
p-aminosalicylic acid | 4 (1.0) | - | 4 (2.4) | 0.026 |
Linezolid | 1 (0.2) | 1 (0.4) | 0 (0) | 1.000 |
Duration of anti-TB drugs | ||||
Rifampin | 196 (101–291) | 182 (90–274) | 218 (124–312) | <0.001 |
Isoniazid | 204 (104–304) | 188 (94–282) | 228 (125–331) | <0.001 |
Ethambutol | 139 (43–235) | 128 (33–223) | 155 (58–252) | 0.005 |
Pyrazinamide | 77 (0–157) | 71 (4–138) | 86 (0–182) | 0.093 |
Fluoroquinolone | 34 (0–128) | 27 (0–100) | 43 (0–160) | 0.122 |
Cycloserine | 8 (0–63) | 4 (0–35) | 14 (0–92) | 0.144 |
Injectable drug | 1 (0–9) | 0 (0–2) | 3 (0–16) | 0.011 |
Prothionamide | 2 (0–36) | 0 (0–3) | 5 (0–59) | 0.255 |
p-aminosalicylic acid | 3 (0–40) | - | 8 (0–66) | 0.087 |
Linezolid | 0 (0–3) | 0 (0–3) | - | 0.410 |
Treatment duration, days | 236 (102–370) | 202 (98–336) | 248 (134–392) | <0.001 |
Outcomes | All Patients (n = 410) | Non-Cavitary TB (n = 244) | Cavitary TB (n = 166) | p-Value |
---|---|---|---|---|
AFB culture results at month 2 | <0.030 | |||
Positive | 12 (2.9) | 4 (1.6) | 8 (4.8) | |
Negative | 166 (40.5) | 93 (38.1) | 73 (44.0) | |
Not performed | 232 (56.6) | 147 (60.2) | 85 (51.2) | |
Treatment duration, days | 236 (102–370) | 202 (98–336) | 248 (134–392) | <0.001 |
Treatment outcomes | 0.062 | |||
Cured/treatment completed | 385 (93.9) | 204 (83.7) | 151 (91.0) | |
Treatment failure | 0 (0) | 0 (0) | 0 (0) | |
Lost to follow up | 11 (2.7) | 7 (2.9) | 4 (2.4) | |
Not evaluated | 44 (10.7) | 33 (13.5) | 11 (6.6) | |
Recurrence after treatment success | 6 (1.5) | 1 (0.4) | 5 (3.0) | 0.042 |
Favorable treatment outcomes | 348 (84.9) | 203 (83.2) | 145 (87.3) | 0.249 |
Unfavorable treatment outcomes | 6 (1.5) | 1 (0.4) | 5 (3.0) | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Shin, Y.M.; Yoo, J.Y.; Cho, J.Y.; Kang, H.; Lee, H.; Choe, K.H.; Lee, K.M.; Yang, B. Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes. J. Pers. Med. 2021, 11, 1081. https://doi.org/10.3390/jpm11111081
Kim S-H, Shin YM, Yoo JY, Cho JY, Kang H, Lee H, Choe KH, Lee KM, Yang B. Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes. Journal of Personalized Medicine. 2021; 11(11):1081. https://doi.org/10.3390/jpm11111081
Chicago/Turabian StyleKim, Sun-Hyung, Yoon Mi Shin, Jin Young Yoo, Jun Yeun Cho, Hyeran Kang, Hyun Lee, Kang Hyeon Choe, Ki Man Lee, and Bumhee Yang. 2021. "Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes" Journal of Personalized Medicine 11, no. 11: 1081. https://doi.org/10.3390/jpm11111081
APA StyleKim, S.-H., Shin, Y. M., Yoo, J. Y., Cho, J. Y., Kang, H., Lee, H., Choe, K. H., Lee, K. M., & Yang, B. (2021). Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes. Journal of Personalized Medicine, 11(11), 1081. https://doi.org/10.3390/jpm11111081