Precision Medicine for the Management of Therapy Refractory Colorectal Cancer
Abstract
:1. Introduction
2. Methods
2.1. Patients and Design of the Precision Medicine Platform
2.2. Evaluation of Outcome and Follow-Up
- Complete response (CR): All target lesions disappear
- Partial response (PR): The sum of the longest diameter of target lesions decrease at least by 30%
- Stable disease (SD): Neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD
- Progressive disease (PD): The sum of the longest diameter of target lesions increase at least by 20%. PD means the tumor has become resistant to the therapy and, thus, the therapy has failed.
2.3. Tissue Samples
2.4. Cancer Gene Panel Sequencing
2.5. Immunohistochemistry
2.6. Fluorescence in situ Hybridization (FISH)
2.7. Multidisciplinary Team for Precision Medicine
2.8. Study Design and Statistics
3. Results
3.1. Patient Characteristics
3.2. Molecular Profile
3.3. Therapy Recommendations and Outcome
4. Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018, GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Durko, L.; Małecka-Panas, E. Lifestyle Modifications and Colorectal Cancer. Curr. Colorectal. Cancer Rep. 2014, 10, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Modest, D.P.; Pant, S.; Sartore-Bianchi, A. Treatment sequencing in metastatic colorectal cancer. Eur. J. Cancer 2019, 109, 70–83. [Google Scholar] [CrossRef]
- Tran, N.H.; Cavalcante, L.L.; Lubner, S.J.; Mulkerin, D.L.; LoConte, N.K.; Clipson, L.; Matkowskyj, K.A.; Deming, D.A. Precision medicine in colorectal cancer: The molecular profile alters treatment strategies. Ther. Adv. Med. Oncol. 2015, 7, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarre, J.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aguilar, E.A.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar]
- Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020, 9, 361–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garraway, L.A.; Verweij, J.; Ballman, K.V. Precision oncology: An overview. J. Clin. Oncol. 2013, 31, 1803–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartzberg, L.; Kim, E.S.; Liu, D.; Schrag, D. Precision Oncology: Who, How, What, When, and When Not? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 160–169. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Slamon, D.J.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Blanke, C.D.; Rankin, C.; Demetri, G.D.; Ryan, C.W.; Von Mehren, M.; Benjamin, R.S.; Raymond, A.K.; Bramwell, V.H.; Baker, L.H.; Maki, R.G.; et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J. Clin. Oncol. 2008, 26, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.; Grob, J.-J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Koeppen, H.; Yu, W.; Zha, J.; Pandita, A.; Pandita, A.; Rangell, L.; Raja, R.; Mohan, S.; Patel, R.; Patel, R.; et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib+/-onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. Clin. Cancer Res. 2014, 20, 4488–4498. [Google Scholar] [CrossRef] [Green Version]
- Merlano, M.C.; Granetto, C.; Fea, E.; Ricci, V.; Garrone, O. Heterogeneity of colon cancer: From bench to bedside. ESMO Open 2017, 2, e000218. [Google Scholar] [CrossRef] [Green Version]
- Molinari, C.; Marisi, G.; Passardi, A.; Matteucci, L.; De Maio, G.; Ulivi, P. Heterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine? Int. J. Mol. Sci. 2018, 19, 3733. [Google Scholar] [CrossRef] [Green Version]
- Punt, C.J.A.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017, 14, 235–246. [Google Scholar] [CrossRef]
- Árnadóttir, S.S.; Jeppesen, M.; Lamy, P.; Bramsen, J.B.; Nordentoft, I.; Knudsen, M.; Vang, S.; Madsen, M.R.; Thastrup, O.; Thastrup, J.; et al. Characterization of genetic intratumor heterogeneity in colorectal cancer and matching patient-derived spheroid cultures. Mol. Oncol. 2018, 12, 132–147. [Google Scholar] [CrossRef]
- Jones, H.G.; Jenkins, G.; Williams, N.; Griffiths, P.; Chambers, P.; Beynon, J.; Harris, D. Genetic and Epigenetic Intra-tumour Heterogeneity in Colorectal Cancer. World J. Surg. 2017, 41, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Del Carmen, S.; Sayagués, J.M.; Bengoechea, O.; Anduaga, M.F.; Alcazar, J.A.; Gervas, R.; García, J.; Orfao, A.; Bellvis, L.M.; Sarasquete, M.-E.; et al. Spatio-temporal tumor heterogeneity in metastatic CRC tumors: A mutational-based approach. Oncotarget 2018, 9, 34279–34288. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, D.; Barriuso, J.; Mullamitha, S.; Saunders, M.; O’Dwyer, S.; Aziz, O. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine 2019, 40, 363–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012, 5, 19–27. [Google Scholar] [PubMed]
- Munteanu, I.; Mastalier, B. Genetics of colorectal cancer. J. Med. Life 2014, 7, 507–511. [Google Scholar]
- Sameer, A.S. Colorectal cancer: Molecular mutations and polymorphisms. Front. Oncol. 2013, 3, 114. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, S.; Swanton, C.; Taylor, B.S.; Costello, J.F. Treatment-Induced Mutagenesis and Selective Pressures Sculpt Cancer Evolution. Cold Spring Harb Perspect Med. 2017, 7, a026617. [Google Scholar] [CrossRef]
- Ibragimova, M.K.; Tsyganov, M.M.; Litviakov, N.V. Natural and Chemotherapy-Induced Clonal Evolution of Tumors. Biochemistry 2017, 82, 413–425. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G. Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. 2018, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, L.E. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, P.P.; De Falco, V.; Giunta, E.F.; Ciardiello, F.; Cardone, C.; Vitale, P.; Zanaletti, N.; Borrelli, C.; Poliero, L.; Terminiello, M.; et al. Clinical Practice Use of Liquid Biopsy to Identify RAS/BRAF Mutations in Patients with Metastatic Colorectal Cancer (mCRC): A Single Institution Experience. Cancers 2019, 11, 1504. [Google Scholar] [CrossRef] [Green Version]
- Saridaki, Z.; Souglakos, J.; Georgoulias, V. Prognostic and predictive significance of MSI in stages II/III colon cancer. World J. Gastroenterol. 2014, 20, 6809–6814. [Google Scholar] [CrossRef] [PubMed]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aasebø, K.; Dragomir, A.; Sundström, M.; Mezheyeuski, A.; Edqvist, P.; Eide, G.E.; Ponten, F.; Pfeiffer, P.; Glimelius, B.; Sorbye, H. Consequences of a high incidence of microsatellite instability and BRAF-mutated tumors: A population-based cohort of metastatic colorectal cancer patients. Cancer Med. 2019, 8, 3623–3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, K.; Barnett-Griness, O.; Friedman, V.; Greenson, J.K.; Gruber, S.B.; Lejbkowicz, F.; Rennert, G. Outcomes of Chemotherapy for Microsatellite Instable–High Metastatic Colorectal Cancers. JCO Precis. Oncol. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | Number |
---|---|
Median (range) age in years at first diagnosis | 54.9 (16.9–81.2) |
Median (range) age in years at time of molecular profiling | 57.9 (19.3–84.3) |
Male patients | 42 (70%) |
Female patients | 18 (30%) |
Caucasian | 60 (100%) |
Relapsed disease | 23 (38%) |
Metastatic disease | 60 (100%) |
Systemic chemotherapy received | 60 (100%) |
Prior chemotherapy regimens | 2–6 |
Targeted therapy recommendations for patients
| 28 (47%) 19 (32%) 9 (15%) |
Colorectal cancer localization
| 13 (22%) 6 (10%) 5 (8%) 2 (3%) 47 (78%) 2 (3%) 27 (45%) 18 (30%) |
Number of metastasis | 106 |
Liver metastasis | 46 (43%) |
Lung metastasis | 32 (30%) |
Peritoneal carcinomatosis | 17 (16%) |
Bone metastasis | 4 (4%) |
Cerebral metastasis | 3 (3%) |
Cutaneous metastasis | 2 (3%) |
Renal metastasis | 1 (1%) |
Splenic metastasis | 1 (1%) |
Number of mutations detected | 166 |
Mutated Genes | Number of Mutations | Percentage of Occurrence in Patients (n = 60) | Percentage of all Mutations (166 Mutations in Total) |
---|---|---|---|
TP53 | 36 | 60.0% | 21.7% |
KRAS | 29 | 48.3% | 17.5% |
APC | 15 | 25.0% | 9.0% |
PIK3CA | 9 | 15.0% | 5.4% |
PTEN | 8 | 13.3% | 4.8% |
ATM | 5 | 8.3% | 3.0% |
SMAD4 | 5 | 8.3% | 3.0% |
NOTCH1 | 4 | 6.7% | 2.4% |
BRCA2 | 3 | 5.0% | 1.8% |
FBXW7 | 3 | 5.0% | 1.8% |
FGFR3 | 3 | 5.0% | 1.8% |
PTCH1 | 3 | 5.0% | 1.8% |
ERBB4 | 2 | 3.3% | 1.2% |
FANCA | 2 | 3.3% | 1.2% |
GNAS | 2 | 3.3% | 1.2% |
NOTCH3 | 2 | 3.3% | 1.2% |
POLE | 2 | 3.3% | 1.2% |
SLX4 | 2 | 3.3% | 1.2% |
ALK | 1 | 1.7% | 0.6% |
AR | 1 | 1.7% | 0.6% |
ARID1A | 1 | 1.7% | 0.6% |
ATRX | 1 | 1.7% | 0.6% |
BRAF | 1 | 1.7% | 0.6% |
CCND1 | 1 | 1.7% | 0.6% |
CDK12 | 1 | 1.7% | 0.6% |
CREBBP | 1 | 1.7% | 0.6% |
CTNNB1 | 1 | 1.7% | 0.6% |
EGFR | 1 | 1.7% | 0.6% |
ESR1 | 1 | 1.7% | 0.6% |
IDH1 | 1 | 1.7% | 0.6% |
JAK3 | 1 | 1.7% | 0.6% |
KDR | 1 | 1.7% | 0.6% |
KIT | 1 | 1.7% | 0.6% |
MAP2K1 | 1 | 1.7% | 0.6% |
MRE11A | 1 | 1.7% | 0.6% |
MYC | 1 | 1.7% | 0.6% |
NF1 | 1 | 1.7% | 0.6% |
NF2 | 1 | 1.7% | 0.6% |
NRAS | 1 | 1.7% | 0.6% |
NTRK3 | 1 | 1.7% | 0.6% |
PALB2 | 1 | 1.7% | 0.6% |
RAD50 | 1 | 1.7% | 0.6% |
RB1 | 1 | 1.7% | 0.6% |
RICTOR | 1 | 1.7% | 0.6% |
RNF43 | 1 | 1.7% | 0.6% |
SMARCA4 | 1 | 1.7% | 0.6% |
SMARCB1 | 1 | 1.7% | 0.6% |
SMO | 1 | 1.7% | 0.6% |
TSC2 | 1 | 1.7% | 0.6% |
Therapeutic Agent (Trading Name) | Targets | Overview of Current FDA Approval in Different Entities | Overview of Current EMA Approval in Different Entities | Number of Recommended and Received Cases and Responses |
---|---|---|---|---|
Pembrolizumab (Keytruda®) | PD-1, hypermutability | Melanoma, NSCLC, HNSCC, HL, Urothelial carcinoma, microsatellite instability-high cancer, gastric cancer, cervical cancer | Melanoma, NSCLC, HNSCC, HL, Urothelial carcinoma | -Recommended for and applied in 4 patients with MSI-H status: 1 patient achieved SD for 4.2 months; 2 patients achieved PR for 24.3 months and 30.5 months, respectively; 1 patient achieved CR for 27.5 months |
Cetuximab (Erbitux®) | EGFR | CRC, HNSCC | CRC, HNSCC | -Recommended in combination with everolimus for 1 patient with EGFR expression and KRAS wildtype (patient initially had a KRAS mutation) and loss of PTEN and mTOR expression -Recommended in combination with irinotecan for 1 patient with EGFR expression and the KRAS wildtype (patient had initially a KRAS mutation) |
Vemurafenib (Zelboraf®) | BRAF V600E | BRAF V600E melanoma or NSCLC BRAF V600E melanoma | BRAF V600E melanoma or NSCLC BRAF V600E melanoma | -Recommended for 1 patient with BRAF V600E (recommended prior to the clinical phase III BEACON trial) |
Nintedanib (Vargatef®, Ofev®) | FGFR, FLT3, PDGFR, VEGFR | Idiopathic pulmonary fibrosis | NSCLC | -Recommended for 3 patients: 1 patient had a FLT3 amplification, 1 patient had a FGFR3 fusion gene, and 1 patient had PDGFRA expression |
Vismodegib (Erdivedge®) | SMO | Basal cell carcinoma | Basal cell carcinoma | -Recommended for 1 patient with the SMO mutation |
Everolimus (Afinitor®) | mTOR expression | Breast cancer, PNET, RCC, renal angiomyolipoma, subependymal giant cell astrocytomas (SEGAs) with tuberous sclerosis complex (TSC) | Breast cancer, RCC, Neuroendocrine tumors of pancreatic, gastrointestinal, or lung origin | -Recommended for 6 patients with strong p-mTOR expression and PTEN deficiency: in one case, it was recommended and applied in combination with raltitrexed. The patient achieved SD for 9.0 months. In two cases, it was recommended and applied in combination with bevacizumab. Both patients experienced PD. In one case, it was recommended in combination with Cetuximab. |
Trastuzumab (Herceptin®) | HER2 | HER2+ breast cancer and gastric cancer | HER2+ breast cancer and gastric cancer | -Recommended for and applied in combination with lapatinib for 2 HER2+ patients: 1 patient achieved SD for 1.9 months and 1 patient experienced PD. |
Lapatinib (Tykerb®, Tyverb®) | HER2, EGFR | HER2+ breast cancer | HER2+ breast cancer | -Recommended for and applied in combination with trastuzumab for 2 HER2+ patients: See trastuzumab. |
Afatinib (Gilotrif®) | EGFR, HER1, HER2, HER3 | NSCLC | NSCLC | -Recommended for 5 patients with HER3 expression and applied in 1 patient. The patient experienced PD. |
Crizotinib (Xalkori®) | ALK, ROS1, HGFR, MET | ROS1+ or ALK+ NSCLC | ROS1+ or ALK+ NSCLC | Recommended for 2 patients with MET expression |
Erlotinib (Tarceva®) | EGFR | NSCLC, PDAC | NSCLC, PDAC | -Recommended for 1 patient with the EGFR mutation |
Sunitinib (Sutent®) | PDGFR, KIT, VEGFR, RET, FLT3 | RCC, PDAC, GIST | RCC, PDAC, GIST | -Recommended in combination with capecitabine for 1 patient with the KIT mutation: the patient was enrolled in the phase II SUNCAP trial. |
Number, Gender, Localization of CRC | Detected Mutations; Gene Fusions | Immunohistochemistry | Applied Targeted Therapy | Age (in Years) at Time of Molecular Profiling | TTF in Months | Therapy Response | Cause of Therapy Termination |
---|---|---|---|---|---|---|---|
1 Male Sigmoid carcinoma | KRAS | EGFR score = 90, MET score = 3, p-mTOR score = 110, loss of PTEN | Everolimus combined with bevacizumab | 65.5 | 2.8 | PD | PD |
2 Male Sigmoid carcinoma | NRAS, PTEN | p-mTOR score = 65, loss of PTEN | Everolimus combined with raltitrexed | 49.0 | 9.1 | SD | PD |
3 Male Sigmoid carcinoma | No mutations detected | MSI-H | Pembrolizumab | 53.2 | 24.3 | PR | PD |
4 Male Carcinoma of the ascending colon | APC, PTEN, TP53 | MSI-H, EGFR score = 180, MET score = 3, p-mTOR score = 80 | Pembrolizumab | 48.7 | 30.6 | PR | PD |
5 Male Cecum carcinoma | APC, KRAS, TP53 | EGFR score = 30, HER3 score = 3, MET score = 2, p-mTOR = 100, | Afatinib | 55.6 | 2.3 | PD | PD |
6 Male Rectal cancer | PIK3CA, TP53 | EGFR score = 280, HER2 score = 2, HER3 score = 3, MET score = 2, p-mTOR = 240 | Trastuzumab combined with lapatinib | 56.2 | 1.9 | SD | PD |
7 Male Sigmoid carcinoma | AR, ARID1A, ATM, PALB2, PIK3CA, RNF43; FGFR3—TACC3 | MSI-H EGFR score = 200, PTEN score = 100, p-mTOR = 240, | Pembrolizumab | 58.3 | 4.2 | SD | PD |
8 Female Sigmoid carcinoma | CTNNB1, KRAS, PTEN, RB1, TP53, | MSI-H, | Pembrolizumab | 42.0 | 27.5 | CR | Relapse |
9 Female Sigmoid carcinoma | No mutations detected | HER2 score = 3, p-mTOR = 120 | Trastuzumab combined with lapatinib | 50.3 | 3.1 | PD | PD |
10 Female Rectal cancer | BRCA2, KRAS, POLE, PTCH1, RAD50, TP53 | EGFR score = 50, p-mTOR = 60, | Everolimus combined with bevacizumab | 57.0 | 1.7 | PD | PD |
11 Female Sigmoid carcinoma | TP53 | EGFR score = 110, HER3 score = 2, MET score = 1, p-mTOR = 240, loss of PTEN | Everolimus | 19.3 | 0.3 | n.a. | Death |
12 Male Carcinoma of the ascending colon | KIT, KRAS, TP53 | EGFR score = 50, MET score = 2, p-mTOR = 40, | Sunitinib combined with capecitabine; The patient was enrolled in the phase II SUNCAP trial. | 70.0 | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh, H.; Mader, R.M.; Müllauer, L.; Erhart, F.; Kautzky-Willer, A.; Prager, G.W. Precision Medicine for the Management of Therapy Refractory Colorectal Cancer. J. Pers. Med. 2020, 10, 272. https://doi.org/10.3390/jpm10040272
Taghizadeh H, Mader RM, Müllauer L, Erhart F, Kautzky-Willer A, Prager GW. Precision Medicine for the Management of Therapy Refractory Colorectal Cancer. Journal of Personalized Medicine. 2020; 10(4):272. https://doi.org/10.3390/jpm10040272
Chicago/Turabian StyleTaghizadeh, Hossein, Robert M. Mader, Leonhard Müllauer, Friedrich Erhart, Alexandra Kautzky-Willer, and Gerald W. Prager. 2020. "Precision Medicine for the Management of Therapy Refractory Colorectal Cancer" Journal of Personalized Medicine 10, no. 4: 272. https://doi.org/10.3390/jpm10040272
APA StyleTaghizadeh, H., Mader, R. M., Müllauer, L., Erhart, F., Kautzky-Willer, A., & Prager, G. W. (2020). Precision Medicine for the Management of Therapy Refractory Colorectal Cancer. Journal of Personalized Medicine, 10(4), 272. https://doi.org/10.3390/jpm10040272