A Data-Driven Approach to Carrier Screening for Common Recessive Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Real-Time PCR
2.3. Sanger Verification
2.4. Statistical Analysis
3. Results
3.1. Development of Custom Panel Including Variants in the CFTR, PAH, SERPINA1, and GJB2 Genes
3.2. Testing of the Custom Panel for Heterozygous Carriage of Variants in the CFTR, PAH, SERPINA1, and GJB2 Genes in a Russian Population
3.3. Estimated Burden of Four Common Recessive Diseases in Russia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abouelhoda, M.; Sobahy, T.; El-Kalioby, M.; Patel, N.; Shamseldin, H.; Monies, D.; Al-Tassan, N.; Ramzan, K.; Imtiaz, F.; Shaheen, R.; et al. Clinical genomics can facilitate countrywide estimation of autosomal recessive disease burden. Genet. Med. 2016, 18, 1244–1249. [Google Scholar] [CrossRef][Green Version]
- Henneman, L.; Borry, P.; Chokoshvili, D.; Cornel, M.C.; van El, C.G.; Forzano, F.; Hall, A.; Howard, H.C.; Janssens, S.; Kayserili, H.; et al. Responsible implementation of expanded carrier screening. Eur. J. Hum. Genet. 2016, 24, e1–e12. [Google Scholar] [CrossRef][Green Version]
- Guo, M.H.; Gregg, A.R. Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels. Genet. Med. 2019, 21, 1940–1947. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Carrier screening in the age of genomic medicine. Committee opinion No. 690. Obstet. Gynecol. 2017, 129, e35–e40. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca/cftr/app (accessed on 3 August 2020).
- CFTR2 Variant List History. Available online: https://cftr2.org/mutations_history (accessed on 3 August 2020).
- Kapranov, N.I.; Kondratyeva, E.I.; Kashirskaya, N.Y. The history of the study of cystic fibrosis in Russia. In Proceedings of the XIII National Congress with International Participation “Innovative Achievements in Diagnostics and Therapy of Cystic Fibrosis, Sergiyev Posad, Russia, 27–28 April 2017; pp. 2–9. (In Russian). [Google Scholar]
- Voronkova, A.Y.; Amelina, E.L.; Kashirskaya, N.Y.; Kondratyeva, E.I.; Krasovskiy, S.A.; Starinova, M.A.; Kapranova, N.I. (Eds.) Register of Cystic Fibrosis Patients in the Russian Federation. 2017 Year; ID Medpraktika-M: Moscow, Russia, 2019; p. 68. (In Russian) [Google Scholar]
- Blau, N.; Shen, N.; Carducci, C. Molecular genetics and diagnosis of phenylketonuria: State of the art. Expert Rev. Mol. Diagn. 2014, 14, 655–671. [Google Scholar] [CrossRef] [PubMed]
- BIOPKU. International Database of Patients and Mutations Causing BH4-Responsive HPA/PKU. Available online: http://www.biopku.org/home/pah.asp (accessed on 3 August 2020).
- Volgina, S.J.; Yafarova, S.S.; Kletenkova, G.R. Phenylketonuria in children: Modern aspects of pathogenesis, clinic, treatment. Ross. Vestn. Perinatol. Pediatr. 2017, 62, 111–118. (In Russian) [Google Scholar] [CrossRef][Green Version]
- Santangelo, S.; Scarlata, S.; Poeta, M.; Bialas, A.; Paone, G.; Incalzi, R. Alpha-1 antitrypsin deficiency: Current perspective from genetics to diagnosis and therapeutic approaches. Curr. Med. Chem. 2017, 24, 65–90. [Google Scholar] [CrossRef]
- Fairbanks, K.D.; Tavill, A.S. Liver disease in alpha 1-antitrypsin deficiency: A review. Am. J. Gastroenterol. 2008, 103, 2136–2141. [Google Scholar] [CrossRef]
- Fregonese, L.; Stolk, J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis. 2008, 3, 16. [Google Scholar] [CrossRef][Green Version]
- Belevskiy, A.S.; Karchevskaya, N.A.; Ilkovich, M.M.; Gembitskaya, T.E.; Leshchenko, I.V.; Zakharova, E.Y.; Simonova, O.I.; Demko, I.V.; Shulzhenko, L.V.; Melnik, S.I. Alpha-1 antitrypsin deficiency in adults (draft federal guidelines). Prakt. Pul‘Monologiya 2017, 3, 98–108. (In Russian) [Google Scholar]
- Morton, N.E. Genetic epidemiology of hearing impairment. Ann. N. Y. Acad. Sci. 1991, 630, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Kenneson, A.; Van Naarden Braun, K.; Boyle, C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genet. Med. 2002, 4, 258–274. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zobkova, G.Y.; Kadochnikova, V.V.; Abramov, D.D.; Donnikov, A.E.; Demikova, N.S. Determination of the carrier frequency of mutations in the CFTR, PAH, GALT and GJB2 genes among 2168 individuals without clinical signs of hereditary diseases. Med. Genet. 2019, 18, 30–35. (In Russian) [Google Scholar]
- Abramov, D.D.; Belousova, M.V.; Kadochnikova, V.V.; Ragimov, A.A.; Trofimov, D.Y. Carrier frequency of GJB2 and GALT mutations associated with sensorineural hearing loss and galactosemia in the Russian population. Bull. RSMU 2016, 20–23. (In Russian) [Google Scholar] [CrossRef][Green Version]
- Zinchenko, R.A.; Osetrova, A.A.; Sharonova, E.I. Hereditary deafness in Kirov oblast: Estimation of the incidence rate and DNA diagnosis in children. Russ. J. Genet. 2012, 48, 542. [Google Scholar] [CrossRef]
- Research Organizing Committee of the ESSE-RF project. Epidemiology of cardiovascular diseases in different regions of Russia (ESSE-RF). The rationale for and design of the study. Russ. J. Prev. Med. Public Health 2013, 6, 25–34. (In Russian) [Google Scholar]
- Kish, L. Survey Sampling; John Wiley and Sons: New York, NY, USA, 1965. [Google Scholar]
- Territorial Authority of the Federal State Statistics Service for the Vologda Oblast. Available online: https://vologdastat.gks.ru/folder/31540 (accessed on 3 August 2020).
- SPSS Inc. SPSS for Windows, Version 16.0; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- Epitools-Calculate Confidence Limits for a Sample Proportion. Available online: https://epitools.ausvet.com.au/ciproportion (accessed on 3 August 2020).
- Kiseleva, A.V.; Klimushina, M.V.; Sotnikova, E.A.; Skirko, O.P.; Divashuk, M.G.; Kurilova, O.V.; Ershova, A.I.; Khlebus, E.Y.; Zharikova, A.A.; Efimova, I.A.; et al. Epidemiology of cystic fibrosis carriage in a Russian population. Clin. Epidemiol. under review.
- Barbitoff, Y.A.; Skitchenko, R.K.; Poleshchuk, O.I.; Shikov, A.E.; Serebryakova, E.A.; Nasykhova, Y.A.; Polev, D.E.; Shuvalova, A.R.; Shcherbakova, I.V.; Fedyakov, M.A.; et al. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol. Genet. Genomic Med. 2019, 7, e964. [Google Scholar] [CrossRef][Green Version]
- Genome Aggregation Database Consortium; Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Martins, F.T.A.; Ramos, P.Z.; Svidnicki, M.C.C.M.; Castilho, A.M.; Sartorato, E.L. Optimization of simultaneous screening of the main mutations involved in non-syndromic deafness using the TaqMan® OpenArrayTM Genotyping Platform. BMC Med. Genet. 2013, 14, 112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Broccanello, C.; Gerace, L.; Stevanato, P. QuantStudio™ 12K Flex OpenArray® System as a Tool for High-Throughput Genotyping and Gene Expression Analysis. In Quantitative Real-Time PCR: Methods and Protocols, 2nd ed.; Biassoni, R., Raso, A., Eds.; Springer: New York, NY, USA, 2020; Volume 2065, pp. 199–208. [Google Scholar]
- Picci, L.; Cameran, M.; Marangon, O.; Marzenta, D.; Ferrari, S.; Frigo, A.C.; Scarpa, M. A 10-year large-scale cystic fibrosis carrier screening in the Italian population. J. Cyst. Fibros. 2010, 9, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Strom, C.M.; Crossley, B.; Buller-Buerkle, A.; Jarvis, M.; Quan, F.; Peng, M.; Muralidharan, K.; Pratt, V.; Redman, J.B.; Sun, W. Cystic fibrosis testing 8 years on: Lessons learned from carrier screening and sequencing analysis. Genet. Med. 2011, 13, 166–172. [Google Scholar] [CrossRef][Green Version]
- Archibald, A.D.; Smith, M.J.; Burgess, T.; Scarff, K.L.; Elliott, J.; Hunt, C.E.; Barns-Jenkins, C.; Holt, C.; Sandoval, K.; Siva Kumar, V.; et al. Reproductive genetic carrier screening for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy in Australia: Outcomes of 12,000 tests. Genet. Med. 2018, 20, 513–523. [Google Scholar] [CrossRef][Green Version]
- Paranjapye, A.; Ruffin, M.; Harris, A.; Corvol, H. Genetic variation in CFTR and modifier loci may modulate cystic fibrosis disease severity. J. Cyst. Fibros. 2020, 19, S10–S14. [Google Scholar] [CrossRef][Green Version]
- European Cystic Fibrosis Society (ECFS). Available online: https://www.ecfs.eu/sites/default/files/general-content-images/working-groups/ecfs-patient-registry/ECFSPR_Report2017_v1.3.pdf (accessed on 3 August 2020).
- Zvereff, V.V.; Faruki, H.; Edwards, M.; Friedman, K.J. Cystic fibrosis carrier screening in a North American population. Genet. Med. 2014, 16, 539–546. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gurina, I.V. Frequency of reveality of del F 508 mutation of cystic fibrosis gene in Novosibirsk population and its relation with different pathologies. Sib. Sci. Med. J. 2006, 4, 141–142. (In Russian) [Google Scholar]
- Abramov, D.D.; Kadochnikova, V.V.; Yakimova, E.G.; Belousova, M.V.; Maerle, A.V.; Sergeev, I.V.; Ragimov, A.A.; Donnikov, A.E.; Trofimov, D.Y. High carrier frequency of CFTR gene mutations associated with cystic fibrosis, and PAH gene mutations associated with phenylketonuria in Russian population. Bull. RSMU 2015, 4, 32–35. (In Russian) [Google Scholar]
- Tcybakova, N.Y.; Sokolenko, A.P.; Iyevleva, A.G.; Suspitsin, E.N.; Imyanitov, E.N. BRCA1, CHEK2, NBS1, CFTR, PAH и CX26 founder mutations in healthy female residents of St. Petersburg. Transfusiology 2011, 12, 1329–1341. (In Russian) [Google Scholar]
- Zschocke, J. Phenylketonuria mutations in Europe. Hum. Mutat. 2003, 21, 345–356. [Google Scholar] [CrossRef]
- Akhmetova, V.L.; Khusainova, R.I.; Litvinov, S.S.; Khusnutdinova, E.K. The carrier rate of the phenylalanine hydoxylase gene (PAH) mutations p.Arg408Trp, pArg261Gln, and p.Arg261X in the populations of Eurasia. Russ. J. Genet. 2017, 53, 910–922. [Google Scholar] [CrossRef]
- Blanco, I.; Bueno, P.; Diego, I.; Pérez-Holanda, S.; Casas-Maldonado, F.; Esquinas, C.; Miravitlles, M. Alpha-1 antitrypsin Pi * Z gene frequency and Pi * ZZ genotype numbers worldwide: An update. Int. J. Chron. Obs. Pulmon. Dis. 2017, 12, 561–569. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Strnad, P.; Buch, S.; Hamesch, K.; Fischer, J.; Rosendahl, J.; Schmelz, R.; Brueckner, S.; Brosch, M.; Heimes, C.V.; Woditsch, V.; et al. Heterozygous carriage of the alpha1-antitrypsin Pi * Z variant increases the risk to develop liver cirrhosis. Gut 2019, 68, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Kelley, P.M.; Harris, D.J.; Comer, B.C.; Askew, J.W.; Fowler, T.; Smith, S.D.; Kimberling, W.J. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am. J. Hum. Genet. 1998, 62, 792–799. [Google Scholar] [CrossRef][Green Version]
- Scott, D.A.; Kraft, M.L.; Carmi, R.; Ramesh, A.; Elbedour, K.; Yairi, Y.; Srikumari, C.R.; Rosengren, S.S.; Markham, A.F.; Mueller, R.F.; et al. Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum. Mutat. 1998, 11, 387–394. [Google Scholar] [CrossRef]
- Mikstiene, V.; Jakaitiene, A.; Byckova, J.; Gradauskiene, E.; Preiksaitiene, E.; Burnyte, B.; Tumiene, B.; Matuleviciene, A.; Ambrozaityte, L.; Uktveryte, I.; et al. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population. BMC Genet. 2016, 17, 45. [Google Scholar] [CrossRef][Green Version]
- Houseman, M.J.; Ellis, L.A.; Pagnamenta, A.; Di, W.-L.; Rickard, S.; Osborn, A.H.; Dahl, H.-H.M.; Taylor, G.R.; Bitner-Glindzicz, M.; Reardon, W.; et al. Genetic analysis of the connexin-26 M34T variant: Identification of genotype M34T/M34T segregating with mild-moderate non-syndromic sensorineural hearing loss. J. Med. Genet. 2001, 38, 20–25. [Google Scholar] [CrossRef][Green Version]
- Hwa, H.-L.; Ko, T.-M.; Hsu, C.-J.; Huang, C.-H.; Chiang, Y.-L.; Oong, J.-L.; Chen, C.-C.; Hsu, C.-K. Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet. Med. 2003, 5, 161–165. [Google Scholar] [CrossRef]
- Lalaiants, M.R.; Markova, T.G.; Bakhshinian, V.V.; Bliznets, E.A.; Poliakov, A.V.; Tavartkiladze, G.A. The audiological phenotype and the prevalence of GJB2-related sensorineural loss of hearing in the infants suffering acoustic disturbances. Vestn. Otorinolaringol. 2014, 2, 37–43. (In Russian) [Google Scholar]
- Barashkov, N.A.; Pshennikova, V.G.; Posukh, O.L.; Teryutin, F.M.; Solovyev, A.V.; Klarov, L.A.; Romanov, G.P.; Gotovtsev, N.N.; Kozhevnikov, A.A.; Kirillina, E.V.; et al. Spectrum and frequency of the GJB2 gene pathogenic variants in a large cohort of patients with hearing impairment living in a subarctic region of Russia (the sakha republic). PLoS ONE 2016, 11, e0156300. [Google Scholar] [CrossRef]
- Zhuravsky, S.G.; Taraskina, A.E.; Podlesny, E.V.; Baldakova, O.V.; Ivanov, S.A. Mutation of 35delg gene connexin-26 as reason of prelingual sensorineural hearing loss in Arkhangelsk region. Ekol. Cheloveka 2008, 7, 53–56. (In Russian) [Google Scholar]
- Dzhemileva, L.U.; Posukh, O.L.; Barashkov, N.A.; Fedorova, S.A.; Teryutin, F.M.; Akhmetova, V.L.; Khidiyatova, I.M.; Khusainova, R.I.; Lobov, S.L.; Khusnutdinova, E.K. Haplotype diversity and reconstruction of ancestral haplotype associated with the c.35delg mutation in the GJB2 (CX26) gene among the volgo-ural populations of Russia. Acta Nat. 2011, 3, 52–63. [Google Scholar] [CrossRef]
Gene | HGVS | dbSNP | Number of Identified Alleles | Variant Proportion among All Identified Variants, % | HF, % | At 95% CI, % | AF in the ESSE-Vologda Study, % | AF by [28] | AF (European (Non-Finnish), EXAC, GNOMAD Exome, GNOMAD Genome), % [29] |
---|---|---|---|---|---|---|---|---|---|
CFTR | p.F508del | rs113993960 | 21 | 60 | 1.69 | 1.05–2.57 | 0.84 | 1.06 | |
p.L138dup | rs397508686 | 4 | 11.43 | 0.32 | 0.09–0.82 | 0.16 | 0 * | ||
CFTRdele2.3, c.54-5940_273+10250del21080; p.S18Rfs*16 | hg19:: chr7:117138367-117159446 | 3 | 8.57 | 0.24 | 0.05–0.7 | 0.12 | 0.013 ** | ||
p.L88Ifs*22 | rs121908769 | 3 | 8.57 | 0.24 | 0.05–0.7 | 0.12 | 0.04 | ||
p.R117H | rs78655421 | 2 | 5.71 | 0.16 | 0.02–0.58 | 0.08 | 0.1445 | 0.26 | |
p.G542* | rs113993959 | 1 | 2.86 | 0.08 | 0.00–0.45 | 0.04 | 0.07236 | 0.03 | |
c.3718-2477C>T | rs75039782 | 1 | 2.86 | 0.08 | 0.00–0.45 | 0.04 | 0 ** | ||
Total | 35 | 2.81 | 1.97–3.89 | 1.40 | |||||
PAH | p.R408W | rs5030858 | 19 | 65.52 | 1.53 | 0.92–2.37 | 0.76 | 0.7959 | 0.11 |
p.A403V | rs5030857 | 3 | 10.34 | 0.24 | 0.05–0.7 | 0.12 | 0.07236 | 0.09 | |
p.R261Q | rs5030849 | 2 | 6.9 | 0.16 | 0.02–0.58 | 0.08 | 0.04 | ||
p.I306V | rs62642934 | 2 | 6.9 | 0.16 | 0.02–0.58 | 0.08 | 0.0015 | ||
p.L48S | rs5030841 | 1 | 3.44 | 0.08 | 0.00–0.45 | 0.04 | 0.01 | ||
c.1066-11G>A | rs5030855 | 1 | 3.44 | 0.08 | 0.00–0.45 | 0.04 | 0.04 | ||
c.1315+1G>A | rs5030861 | 1 | 3.44 | 0.08 | 0.00–0.45 | 0.04 | 0.06 | ||
Total | 29 | 2.33 | 1.57–3.33 | 1.17 | |||||
SERPINA1 | p.E288V | rs17580 | 33 | 55 | 2.65 | 1.83–3.71 | 1.33 | 1.2 | 3.04 |
p.E366K | rs28929474 | 26 | 43.33 | 2.09 | 1.37–3.05 | 1.05 | 0.8671 | 1.83 | |
p.D280V | rs121912714 # | 1 | 1.67 | 0.16 # | 0.00–0.86 # | 0.08 # | 0.07215 | 0.07 | |
Total | 60 | 4.90 | 3.7–6.17 | 2.45 | |||||
GJB2 | p.M34T | rs35887622 | 72 | 84.7 | 5.71 § | 4.48–7.14 | 2.89 | 1.4 | 1.22 |
p.V37I | rs72474224 | 10 | 11.76 | 0.80 | 0.39–1.47 | 0.40 | 0.5072 | 0.19 | |
c.-23+1G>A | rs80338940 | 3 | 3.53 | 0.24 | 0.05–0.7 | 0.12 | 0.032 ** | ||
Total | 85 | 6.83 | 5.42–8.29 | 3.42 | |||||
Total | 209 | 16.87 | 14.76–19.00 | 8.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, A.V.; Klimushina, M.V.; Sotnikova, E.A.; Divashuk, M.G.; Ershova, A.I.; Skirko, O.P.; Kurilova, O.V.; Zharikova, A.A.; Khlebus, E.Y.; Efimova, I.A.; et al. A Data-Driven Approach to Carrier Screening for Common Recessive Diseases. J. Pers. Med. 2020, 10, 140. https://doi.org/10.3390/jpm10030140
Kiseleva AV, Klimushina MV, Sotnikova EA, Divashuk MG, Ershova AI, Skirko OP, Kurilova OV, Zharikova AA, Khlebus EY, Efimova IA, et al. A Data-Driven Approach to Carrier Screening for Common Recessive Diseases. Journal of Personalized Medicine. 2020; 10(3):140. https://doi.org/10.3390/jpm10030140
Chicago/Turabian StyleKiseleva, Anna V., Marina V. Klimushina, Evgeniia A. Sotnikova, Mikhail G. Divashuk, Alexandra I. Ershova, Olga P. Skirko, Olga V. Kurilova, Anastasia A. Zharikova, Eleonora Yu. Khlebus, Irina A. Efimova, and et al. 2020. "A Data-Driven Approach to Carrier Screening for Common Recessive Diseases" Journal of Personalized Medicine 10, no. 3: 140. https://doi.org/10.3390/jpm10030140