Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review
Abstract
:1. Introduction
2. History
3. Epidemiology
4. Clinical Manifestations
5. Pathophysiology
5.1. Immune System
5.2. Inflammation and Oxidative Stress
- (a)
- chronic low-grade inflammation, as indicated by elevated production or levels of tumor necrosis factor-alpha (TNF-α) and other pro-inflammatory cytokines such as IL-1β and IL-6;
- (b)
- Cellular-mediated immune (CMI) response activation, as indicated by increased neopterin levels, a well-known biomarker of the immunological stimulation;
- (c)
- (d)
5.3. NK Alteration
5.4. Immunoglobulins
5.5. Autoimmunity
5.5.1. B Cell Impairment
5.5.2. 5′-Oligoadenylate Synthetase/RNase L Pathway
5.5.3. Central Nervous System Alteration
Neuroinflammation
Neuronal Sensitization
Glial Activation
5.5.4. Alterations of Serotonin Transmission
5.5.5. Neuroendocrine
HPA Axis in ME/CFS
- (a)
- Activation of immune-inflammatory pathways is secondary to HPA axis hypofunction by the attenuation of negative feedback of the HPA axis hormones on the immune system, and
- (b)
- chronic activation of immune-inflammatory pathways play a causative role in HPA axis hypofunction [143].
Hypocortisolism
6. Cortisol Treatments for Patients With CFS
7. Genetic Predisposition
7.1. Epigenetic Modification
7.2. Mechanisms
7.3. Neurotransmitter Dysregulation
7.4. Alteration in HPA Axis
7.5. Immune-Inflammatory RESPONSES
8. Management
9. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Brurberg, K.G.; Fønhus, M.S.; Larun, L.; Flottorp, S.; Malterud, K. Case de fi nitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): A systematic review. BMJ Open 2014, 4, e003973. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Jain, A.K.; DeMeirleir, K.L.; Peterson, D.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical Working Case Definition, Diagnostic and Treatment Protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–36. [Google Scholar] [CrossRef]
- Rowe, P.C.; Underhill, R.A.; Friedman, K.J.; Gurwitt, A.; Medow, M.S.; Schwartz, M.S.; Speight, N.; Stewart, J.M.; Vallings, R.; Rowe, K.S. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. Front. Pediatr. 2017, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Reeves, W.C.; Jones, J.F.; Maloney, E.; Heim, C.; Hoaglin, D.C.; Boneva, R.S.; Morrissey, M.; Devlin, R. Prevalence of chronic fatigue syndrome in metropolitan, urban, and rural Georgia. Popul. Health Metr. 2007, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Clayton, E.W.; Biaggionni, I.; Cockshell, S.; Vermeculen, R.; Snell, C.; Rove, K. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Glassford, J.A.G. The neuroinflammatory etiopathology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front. Physiol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Słomko, J.; Newton, J.L.; Kujawski, S.; Tafil-Klawe, M.; Klawe, J.; Staines, D.; Marshall-Gradisnik, S.; Zalewski, P. Prevalence and characteristics of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) in Poland: A cross-sectional study. BMJ Open 2019, 9, e023955. [Google Scholar] [CrossRef] [PubMed]
- Castro-Marrero, J.; Faro, M.; Aliste, L.; Sáez-Francàs, N.; Calvo, N.; Martínez-Martínez, A.; de Sevilla, T.F.; Alegre, J. Comorbidity in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Nationwide Population-Based Cohort Study. Psychosomatics 2017, 58, 533–543. [Google Scholar] [CrossRef]
- Komaroff, A.L. Advances in Understanding the Pathophysiology of Chronic Fatigue Syndrome. JAMA 2019. [Google Scholar] [CrossRef]
- Noda, M.; Ifuku, M.; Hossain, M.S.; Katafuchi, T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front. Psychiatry 2018, 9, 589. [Google Scholar] [CrossRef]
- Skowera, A.; Cleare, A.; Blair, D. High levels of type 2 cytokine-producing cells in chronic fatigue syndrome. Clin. Exp. Immunol. 2004, 135, 294–302. [Google Scholar] [CrossRef]
- Rivas, J.L.; Palencia, T.; Fernández, G.; García, M. Association of T and NK Cell Phenotype with the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front. Immunol. 2018, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Bradley, A.S.; Ford, B.; Bansal, A.S. Altered functional B cell subset populations in patients with chronic fatigue syndrome compared to healthy controls. Clin. Exp. Immunol. 2013, 172, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Tomas, C.; Newton, J.; Watson, S. A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013, 2013, 784520. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.R.; Wakefield, D.; Boughton, C.; Dwyer, J. What Is Myalgic Encephalomyelitis? Lancet 1988, 331, 1286–1287. [Google Scholar] [CrossRef]
- Anderson, V.R.; Jason, L.A.; Hlavaty, L.E. A Qualitative Natural History Study of ME/CFS in the Community. Health Care Women Int. 2016, 35, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, A.M. ‘Epidemic neuromyasthenia’ 1955–1978. Postgrad. Med. J. 1978, 54, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N. History of chronic fatigue syndrome. Nihon Rinsho 2007, 65, 975–982. [Google Scholar]
- Holmes, G.P.; Kaplan, J.E.; Gantz, N.M.; Komaroff, A.L.; Schonberger, L.B.; Straus, S.E.; Jones, J.F.; Dubois, R.E.; Cunningham-Rundles, C.; Pahwa, S.; et al. Chronic Fatigue Syndrome: A Working Case Definition. Ann. Int. Med. 1988, 108, 387. [Google Scholar] [CrossRef]
- Twisk, F.N.M. A critical analysis of the proposal of the Institute of Medicine to replace myalgic encephalomyelitis and chronic fatigue syndrome by a new diagnostic entity called systemic exertion intolerance disease. Curr. Med. Res. Opin. 2015, 31, 1333–1347. [Google Scholar] [CrossRef]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Int. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, W.; Armstrong, D.; Kanaan, R. Chronic fatigue syndrome: Labels, meanings and consequences. J. Psychosom. Res. 2011, 70, 500–504. [Google Scholar] [CrossRef]
- Tobi, M.; Ravid, Z. Prolonged Atypical Illness Associated woth serological evidence of persistent Epstein-barr virus infection. Lancet 1982, 319, 61–64. [Google Scholar] [CrossRef]
- Sharpe, M.C.; Archard, L.C.; Banatvala, J.E. A report chronic fatigue syndrome: Guidelines for research. J. R. Soc. Med. 1991, 84, 118–121. [Google Scholar] [CrossRef]
- Bested, A.C.; Marshall, L.M. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An evidence-based approach to diagnosis and management by clinicians. Rev. Environ. Health 2015, 30, 223–249. [Google Scholar] [CrossRef]
- Nacul, L.; Kingdon, C.C.; Bowman, E.W.; Curran, H.; Lacerda, E.M.; Diseases, T.; Street, K. Differing case definitions point to the need for an accurate diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome. Fatigue 2017, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.; Evengard, B.; Jacks, A. Twin analyses of chronic fatigue in a Swedish national sample. Psychol. Med. 2005, 35, 1327–1336. [Google Scholar] [CrossRef]
- Marshall-Gradisnik, S.; Huth, T.; Chacko, A.; Johnston, S.; Smith, P.; Staines, D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. Appl. Clin. Genet. 2016, 9, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Nijhof, S.L.; Rutten, J.M.T.M.; Kimpen, J.L.L.; Putte, E.M.V.D. The role of hypocortisolism in chronic fatigue syndrome. Psychoneuroendocrinology 2014, 42, 199–206. [Google Scholar] [CrossRef]
- Wyller, V.B.; Vitelli, V.; Sulheim, D.; Fagermoen, E.; Winger, A.; Godang, K.; Bollerslev, J. Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: A cross-sectional study. J. Transl. Med. 2016, 14, 1–12. [Google Scholar] [CrossRef]
- Afari, N.; Buchwald, D. Chronic fatigue syndrome: A review. Am. J. Psychiatry 2003, 160, 221–236. [Google Scholar] [CrossRef]
- Nacul, L.C.; Lacerda, E.M.; Pheby, D.; Campion, P.; Molokhia, M.; Fayyaz, S.; Leite, J.C.D.C.; Poland, F.; Howe, A.; Drachler, M.L. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: A repeated cross-sectional study in primary care. BMC Med. 2011, 9, 91. [Google Scholar] [CrossRef]
- Ranjith, G. Epidemiology of chronic fatigue syndrome. Occup. Med. 2005, 55, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowska, T.; Chalder, T.; Hirsch, S.R.; Wallace, P.; Wright, D.J.M.; Wessely, S.C. Population based study of fatigue and psychological distress. Br. Med. J. 1994, 308, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Skapinakis, P.; Lewis, G.; Meltzer, H. Clarifying the relationship between unexplained chronic fatigue and psychiatric morbidity: Results from a community survey in Great Britain. Int. Rev. Psychiatry 2003, 15, 57–64. [Google Scholar] [CrossRef]
- Nijrolder, I.; Van Der Windt, D.A.W.M.; Twisk, J.W.; Van Der Horst, H.E. Fatigue in primary care: Longitudinal associations with pain. Pain 2010, 150, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Cathébras, P.J.; Robbins, J.M.; Kirmayer, L.J.; Hayton, B.C. Fatigue in primary care: Prevalence, psychiatric comorbidity, illness behavior, and outcome. J. Gen. Int. Med. 1992, 7, 276–286. [Google Scholar] [CrossRef]
- Lawrie, S.M.; Manders, D.N.; Geddes, J.R.; Pelosi, A.J. A population-based incidence study of chronic fatigue. Psychol. Med. 1997, 27, 343–353. [Google Scholar] [CrossRef]
- Faro, M.; Sàez-Francás, N.; Castro-Marrero, J.; Aliste, L.; Fernández de Sevilla, T.; Alegre, J. Gender differences in chronic fatigue syndrome. Reumatol. Clin. 2016, 12, 72–77. [Google Scholar] [CrossRef]
- Capellil, E.; Zola, R.; Loruss, L.; Sardi, L.V.F.; Ricevutp, G.; Immunologia, L.; Animale, B.; Pavia, U.; Ospedaliera, A.; Mellini, M.; et al. Chronic Fatigue Syndrome/Myalgic Encepahlomyelitis: An Update. Int. J. Immunopathol. Pharmacol. 2010, 23, 981–989. [Google Scholar] [CrossRef]
- Underhill, R.A. Myalgic encephalomyelitis, chronic fatigue syndrome: An infectious disease. Med. Hypotheses 2015, 85, 765–773. [Google Scholar] [CrossRef]
- Reynolds, K.J.; Vernon, S.D.; Bouchery, E.; Reeves, W.C. The economic impact of chronic fatigue syndrome. Cost Eff. Resour. Allocat. 2004, 2, 1–9. [Google Scholar]
- Kroenke, K.; Wood, D.R.; Mangelsdorff, D.; Meier, N.J.; Powell, J.B. Chronic Fatigue in Primary Care. JAMA 1988, 260, 929–934. [Google Scholar] [CrossRef]
- Griffith, J.P.; Zarrouf, F.A. A systematic review of chronic fatigue syndrome: Don’t assume it’s depression. Prim. Care Companion J. Clin. Psychiatry 2008, 10, 120–128. [Google Scholar] [CrossRef]
- Cairns, R.; Hotopf, M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup. Med. 2005, 55, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Jason, L.A.; Corradi, K.; Gress, S.; Williams, S.; Torres-Harding, S. Causes of Death Among Patients with Chronic Fatigue Syndrome. Health Care Women Int. 2006, 27, 615–626. [Google Scholar] [CrossRef]
- McManimen, S.; Devendorf, A.; Brown, A. Mortality in Patients with CFS/ME. Fatigue 2016, 4, 195–207. [Google Scholar]
- Wallis, A.; Ball, M.; McKechnie, S.; Butt, H.; Lewis, D.P.; Bruck, D. Examining clinical similarities between myalgic encephalomyelitis/chronic fatigue syndrome and d-lactic acidosis: A systematic review. J. Transl. Med. 2017, 15, 1–22. [Google Scholar] [CrossRef]
- Vermeulen, R.C.; Kurk, R.M.; Visser, F.C.; Sluiter, W.; Scholte, H.R. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J. Transl. Med. 2010, 8, 93. [Google Scholar] [CrossRef]
- Clauw, D.J. Perspectives on fatigue from the study of chronic fatigue syndrome and related conditions. PM R 2010, 2, 414–430. [Google Scholar] [CrossRef]
- Cockshell, S.J.; Mathias, J.L. Cognitive functioning in chronic fatigue syndrome: A meta-analysis. Psychol. Med. 2010, 40, 1253–1267. [Google Scholar] [CrossRef]
- Reynolds, G.K.; Lewis, D.P.; Richardson, A.M.; Lidbury, B.A. Comorbidity of postural orthostatic tachycardia syndrome and chronic fatigue syndrome in an Australian cohort. J. Intern. Med. 2014, 275, 409–417. [Google Scholar] [CrossRef]
- Prins, J.B.; van der Meer, J.W.M.; Bleijenberg, G.; Meer, J.W.M.V.D. Review Chronic fatigue syndrome. Rev. Lit. Arts Am. 2006, 367, 346–355. [Google Scholar]
- Lowenstein, O.; Feinberg, R.; Loewenfeld, I.I.E. Pupillary Movements During Acute and Chronic Fatigue A New Test for the Objective Evaluation of Tiredness. Investig. Ophthalmol. 1963, 2, 138–158. [Google Scholar]
- Lorusso, L.; Mikhaylova, S.V.; Capelli, E.; Ferrari, D.; Ngonga, G.K.; Ricevuti, G. Immunological aspects of chronic fatigue syndrome. Autoimmun. Rev. 2009, 8, 287–291. [Google Scholar] [CrossRef]
- Nguyen, T.; Johnston, S. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. J. Transl. Immunol. 2016, 187, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Mihaylova, I.; Kubera, M.; Leunis, J.C.; Twisk, F.N.M.; Geffard, M. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression. Metab. Brain Dis. 2012, 27, 415–423. [Google Scholar] [CrossRef]
- Maes, M.; Twisk, F.N.M.; Kubera, M.; Ringel, K. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin. J. Affect. Disord. 2012, 136, 933–939. [Google Scholar] [CrossRef]
- Torres-Harding, S.; Sorenson, M.; Jason, L.A.; Maher, K.; Fletcher, M.A. Evidence for T-helper 2 shift and association with illness parameters in chronic fatigue syndrome (CFS). Bull. IACFS/ME 2008, 16, 19–33. [Google Scholar]
- Jafari-Shakib, R.; Ajdary, S.; Amiri, Z.M.; Mohammadi, A.M.; Nourijelyani, K.; Mortazavi, H.; Shokrgozar, M.A.; Nikbin, B.; Khamesipour, A. CD26 expression on CD4+T cells in patients with cutaneous leishmaniasis. Clin. Exp. Immunol. 2008, 153, 31–36. [Google Scholar] [CrossRef]
- Kennedy, G.; Spence, V.A.; McLaren, M.; Hill, A.; Underwood, C.; Belch, J.J.F. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic. Biol. Med. 2005, 39, 584–589. [Google Scholar] [CrossRef]
- Kennedy, G.; Khan, F.; Hill, A.; Underwood, C.; Belch, J.J.F. Biochemical and vascular aspects of pediatric chronic fatigue syndrome. Arch. Pediatr. Adolesc. Med. 2010, 164, 817–823. [Google Scholar] [CrossRef]
- Maes, M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr. Opin. Psychiatry 2009, 22, 75–83. [Google Scholar] [CrossRef]
- Morris, G.; Maes, M. Mitochondrial dysfunctions in Myalgic Encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab. Brain Dis. 2014, 29, 19–36. [Google Scholar] [CrossRef]
- Schoeman, E.M.; Van Der Westhuizen, F.H.; Erasmus, E.; van Dyk, E.; Knowles, C.V.Y.; Al-Ali, S.; Ng, W.F.; Taylor, R.W.; Newton, J.L.; Elson, J.L. Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. BMC Med. Genet. 2017, 18, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.B.; Germain, A.; Ye, K.; Keinan, A.; Gu, Z.; Hanson, M.R. Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome. J. Transl. Med. 2016, 14, 1–12. [Google Scholar] [Green Version]
- Finsterer, J.; Mahjoub, S.Z. Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms? J. Transl. Med. 2016, 14, 1–2. [Google Scholar] [CrossRef]
- Tomas, C.; Brown, A.; Strassheim, V.; Elson, J.; Newton, J.; Manning, P. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef]
- Rutherford, G.; Manning, P.; Newton, J.L. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J. Aging Res. 2016, 2016. [Google Scholar] [CrossRef]
- Klimas, N.G.; Salvato, F.R.; Morgan, R.; Fletcher, M.A. Immunologic abnormalities in chronic fatigue syndrome. J. Clin. Microbiol. 1990, 28, 1403–1410. [Google Scholar] [Green Version]
- Mavilio, D.; Lombardo, G.; Benjamin, J.; Kim, D.; Follman, D.; Marcenaro, E.; O’Shea, M.A.; Kinter, A.; Kovacs, C.; Moretta, A.; et al. Characterization of CD56-/CD16+ natural killer (NK) cells: A highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. USA 2005, 102, 2886–2891. [Google Scholar] [CrossRef]
- Rebuli, M.E.; Pawlak, E.A.; Walsh, D.; Martin, E.M.; Jaspers, I. Distinguishing Human Peripheral Blood NK Cells from CD56dimCD16dimCD69+CD103+ Resident Nasal Mucosal Lavage Fluid Cells. Sci. Rep. 2018, 8, 3394. [Google Scholar] [CrossRef]
- Michel, T.; Poli, A.; Cuapio, A.; Briquemont, B.; Iserentant, G.; Ollert, M.; Zimmer, J. Human CD56bright NK Cells: An Update. J. Immunol. 2016, 196, 2923–2931. [Google Scholar] [CrossRef]
- Poli, A.; Michel, T.; Thérésine, M.; Andrès, E.; Hentges, F.; Zimmer, J. CD56bright natural killer (NK) cells: An important NK cell subset. Immunology 2009, 126, 458–465. [Google Scholar] [CrossRef]
- Brenu, E.W.; Huth, T.K.; Hardcastle, S.L.; Fuller, K.; Kaur, M.; Johnston, S.; Ramos, S.B.; Staines, D.R.; Marshall-Gradisnik, S.M. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int. Immunol. 2014, 26, 233–242. [Google Scholar] [CrossRef]
- Brenu, E.W.; van Driel, M.L.; Staines, D.R.; Ashton, K.J.; Hardcastle, S.L.; Keane, J.; Tajouri, L.; Peterson, D.; Ramos, S.B.; Marshall-Gradisnik, S.M. Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis. J. Transl. Med. 2012, 10, 1. [Google Scholar] [CrossRef]
- Lugli, E.; Marcenaro, E.; Mavilio, D. NK cell subset redistribution during the course of viral infections. Front. Immunol. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Curriu, M.; Carrillo, J.; Massanella, M.; Rigau, J.; Alegre, J.; Puig, J.; Garcia-Quintana, A.M.; Castro-Marrero, J.; Negredo, E.; Clotet, B.; et al. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome. J. Transl. Med. 2013, 11, 1–13. [Google Scholar] [CrossRef]
- Theorell, J.; Indre, B.-L.; Tesi, B.; Schlums, H.; Johnsgaard, M.S.; Babak, A.-A.; Strand, E.B.; Bryceson, Y.T. Unperturbed cytotoxic lymphocyte phenotype and function in myalgic encephalomyelitis/chronic fatigue syndrome patients. Front. Immunol. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genom. Biol. 2011, 12, 218. [Google Scholar] [CrossRef]
- Marshall-gradisnik, S.M.; Smith, P.; Brenu, E.W.; Nilius, B.; Ramos, S.B.; Staines, D.R. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunol. Immunogenet. Insights 2015, 7, 1–6. [Google Scholar] [CrossRef]
- Maes, M.; Mihaylova, I.; Leunis, J.C. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): Indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J. Affect. Disord. 2007, 99, 237–240. [Google Scholar] [CrossRef]
- Maes, M.; Twisk, F.N.M.; Kubera, M.; Ringel, K.; Leunis, J.C.; Geffard, M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J. Affect. Disord. 2012, 136, 909–917. [Google Scholar] [CrossRef]
- Maes, M.; Leunis, J.C. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: Effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. Neuroendocrinol. Lett. 2008, 29, 902. [Google Scholar]
- Sotzny, F.; Blanco, J.; Capelli, E.; Castro-Marrero, J.; Steiner, S.; Murovska, M.; Scheibenbogen, C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—Evidence for an autoimmune disease. Autoimmun. Rev. 2018, 17, 601–609. [Google Scholar] [CrossRef]
- Loebel, M.; Grabowski, P.; Heidecke, H.; Bauer, S.; Hanitsch, L.G.; Wittke, K.; Meisel, C.; Reinke, P.; Volk, H.D.; Fluge, O.; et al. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain Behav. Immun. 2016, 52, 32–39. [Google Scholar] [CrossRef]
- Maes, M.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med. Sci. Monit. 2011, 17, SC11. [Google Scholar] [CrossRef]
- Ortega-Hernandez, O.-D.; Cuccia, M.; Bozzini, S.; Bassi, N.; Moscavitch, S.; Diaz-Gallo, L.-M.; Blank, M.; Agmon-Levin, N.; Shoenfeld, Y. Autoantibodies, Polymorphisms in the Serotonin Pathway, and Human Leukocyte Antigen Class II Alleles in Chronic Fatigue Syndrome. Ann. N. Y. Acad. Sci. 2009, 1173, 589–599. [Google Scholar] [CrossRef]
- Tanaka, S.; Kuratsune, H.; Hidaka, Y.; Hakariya, Y.; Tatsumi, K.I.; Takano, T.; Kanakura, Y.; Amino, N. Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int. J. Mol. Med. 2003, 12, 225–230. [Google Scholar] [CrossRef]
- Scheibenbogen, C.; Loebel, M.; Freitag, H.; Krueger, A.; Bauer, S.; Antelmann, M.; Doehner, W.; Scherbakov, N.; Heidecke, H.; Reinke, P.; et al. Immunoadsorption to remove β2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME. PLoS ONE 2018, 13, 1–15. [Google Scholar] [CrossRef]
- Ortega-Hernandez, O.D.; Shoenfeld, Y. Infection, vaccination, and autoantibodies in chronic fatigue syndrome, cause or coincidence. Ann. N. Y. Acad. Sci. 2009, 1173, 600–609. [Google Scholar] [CrossRef]
- Klimas, N.; Broderick, G.; Fletcher, M.A. Biomarkers for CFS. Brain Behav. Immun. 2012, 26, 1202–1210. [Google Scholar] [CrossRef]
- Mensah, F.; Bansal, A.; Berkovitz, S.; Sharma, A.; Reddy, V.; Leandro, M.J.; Cambridge, G. Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: A cross-sectional study. Clin. Exp. Immunol. 2016, 184, 237–247. [Google Scholar] [CrossRef]
- Blomberg, J.; Gottfries, C.G.; Elfaitouri, A.; Rizwan, M.; Rosén, A. Infection elicited autoimmunity and Myalgic encephalomyelitis/chronic fatigue syndrome: An explanatory model. Front. Immunol. 2018, 9, 229. [Google Scholar] [CrossRef]
- Cherukuri, A.; Cheng, P.C.; Pierce, S.K. The Role of the CD19/CD21 Complex in B Cell Processing and Presentation of Complement-Tagged Antigens. J. Immunol. 2001, 167, 163–172. [Google Scholar] [CrossRef]
- Nijs, J.; de Meirleir, K. Impairments of the 2-5A synthetase/RNase L pathway on chronic fatigue syndrome. In Vivo 2005, 19, 1013–1022. [Google Scholar]
- Silverman, R.H. Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. J. Virol. 2007, 81, 12720–12729. [Google Scholar] [CrossRef]
- Bisbal, C.; Silhol, M.; Laubenthal, H.; Kaluza, T.; Carnac, G.; Milligan, L.; Roy, F.L.E.; Salehzada, T. The 2 J -5 J Oligoadenylate/RNase L/RNase L Inhibitor Pathway Regulates Both MyoD mRNA Stability and Muscle Cell Differentiation. Mol. Cell. Biol. 2000, 20, 4959–4969. [Google Scholar] [CrossRef]
- Banerjee, S.; Li, G.; Li, Y.; Gaughan, C.; Baskar, D.; Parker, Y.; Lindner, D.J.; Weiss, S.R.; Silverman, R.H. RNase L is a negative regulator of cell migration. Oncotarget 2015, 6, 44360. [Google Scholar] [CrossRef]
- Su Suhadolnik, R.J.; Lombardi, V.; Peterson, D.L.; Welsch, S.; Cheney, P.R.; Furr, E.G.; Horvath, S.E.; Charubala, R.; Reichenbach, N.L.; Pfleiderer, W.; et al. Biochemical Dysregulation of the 2-5A Synthetase/RNase L Antiviral Defense Pathway in Chronic Fatigue Syndrome Biochemical Dysregulation of the 2-5A Synthetase/RNase L Antiviral Defense Pathway in Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 1999, 5, 223–242. [Google Scholar] [CrossRef]
- Garcia, M.A.; Gil, J.; Ventoso, I.; Guerra, S.; Domingo, E.; Rivas, C.; Esteban, M. Impact of Protein Kinase PKR in Cell Biology: From Antiviral to Antiproliferative Action. Microbiol. Mol. Biol. Rev. 2006, 70, 1032–1060. [Google Scholar] [CrossRef]
- Garcia-Ortega, M.B.; Lopez, G.J.; Jimenez, G.; Garcia-Garcia, J.A.; Conde, V.; Boulaiz, H.; Carrillo, E.; Perán, M.; Marchal, J.A.; Garcia, M.A. Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev. Mol. Med. 2017, 19, 1–13. [Google Scholar] [CrossRef]
- Nakatomi, Y.; Mizuno, K.; Ishii, A.; Wada, Y.; Tanaka, M.; Tazawa, S.; Onoe, K.; Fukuda, S.; Kawabe, J.; Takahashi, K.; et al. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. J. Nucl. Med. 2014, 55, 945–950. [Google Scholar] [CrossRef]
- Chen, M.-K.; Guilarte, T.R. Translocator Protein 18kDA (TSPO): Molecular Sensor of Brain Injury & Repair. Pharmacol. Ther. 2009, 118, 1–17. [Google Scholar]
- De Lange, F.P.; Kalkman, J.S.; Bleijenberg, G.; Hagoort, P.; Werf, S.P.V.; Van Der Meer, J.W.M.; Toni, I. Neural correlates of the chronic fatigue syndrome—An fMRI study. Brain 2004, 127, 1948–1957. [Google Scholar] [CrossRef]
- Ji, R.-R.; Berta, T.; Nedergaard, M. Glia and Pain: Is chronic pain a gliopathy? Pain 2013, 154, 10–28. [Google Scholar] [CrossRef]
- Siemionow, V.; Fang, Y.; Calabrese, L.; Sahgal, V.; Yue, G.H. Altered central nervous system signal during motor performance in chronic fatigue syndrome. Clin. Neurophysiol. 2004, 115, 2372–2381. [Google Scholar] [CrossRef]
- Finkelmeyer, A.; He, J.; Maclachlan, L.; Watson, S.; Gallagher, P.; Newton, J.L.; Blamire, A.M. Grey and white matter differences in Chronic Fatigue Syndrome—A voxel-based morphometry study. NeuroImage Clin. 2018, 17, 24–30. [Google Scholar] [CrossRef]
- Zhu, C.B.; Blakely, R.D.; Hewlett, W.A. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006, 31, 2121–2131. [Google Scholar] [CrossRef]
- Dantzer, R. Cytokine, Sickness Behaviour, and Depression. Immunol. Allergy Clin. N. Am. 2009, 29, 247–264. [Google Scholar] [CrossRef]
- Hornig, M.; Gottschalk, G.; Peterson, D.L.; Knox, K.K.; Schultz, A.F.; Eddy, M.L.; Che, X.; Lipkin, W.I. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol. Psychiatry 2016, 21, 261–269. [Google Scholar] [CrossRef]
- Hornig, M.; Gottschalk, C.G.; Eddy, M.L.; Che, X.; Ukaigwe, J.E.; Peterson, D.L.; Lipkin, W.I. Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations. Transl. Psychiatry 2017, 7, e1080. [Google Scholar] [CrossRef]
- Morris, G.; Berk, M.; Galecki, P.; Walder, K.; Maes, M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol. Neurobiol. 2016, 53, 1195–1219. [Google Scholar] [CrossRef]
- Komaroff, A.L. Inflammation correlates with symptoms in chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, 8914–8916. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.N.; Meyer, R.A. Mechanisms of neuropathic pain. Neuron 2006, 52, 77–92. [Google Scholar] [CrossRef]
- Meeus, M.; Nijs, J. Central sensitization: A biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome. Clin. Rheumatol. 2007, 26, 465–473. [Google Scholar] [CrossRef]
- Pereira, M.P.; Agelopoulos, K.; Köllner, J.; Neufang, G.; Schmelz, M.; Ständer, S. Selective Nerve Fibre Activation in Patients with Chronic Generalized Pruritus May Indicate a Central Sensitization Mechanism. Acta Derm. Venereol. 2019. [Google Scholar] [CrossRef]
- Herring, B.E.; Nicoll, R.A. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. Annu. Rev. Physiol. 2016, 78, 351–365. [Google Scholar] [CrossRef]
- Miwa, S.; Takikawa, O. Chronic fatigue syndrome and neurotransmitters. Nihon Rinsho 2007, 65, 1005–1010. [Google Scholar]
- Ren, K.; Dubner, R. Neuron-glia crosstalk gets serious: Rolein pain hypersensitivity. Curr. Opin. Anaesthesiol. 2008, 21, 570–579. [Google Scholar] [CrossRef]
- Zhao, H.; Alam, A.; Chen, Q.; A Eusman, M.; Pal, A.; Eguchi, S.; Wu, L.; Ma, D. The role of microglia in the pathobiology of neuropathic pain development: What do we know? Br. J. Anaesth. 2017, 118, 504–516. [Google Scholar] [CrossRef]
- Ricci, G.; Volpi, L.; Pasquali, L.; Petrozzi, L.; Siciliano, G. Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 2009, 35, 317–336. [Google Scholar] [CrossRef]
- Puri, B.K.; Jakeman, P.M.; Agour, M.; Gunatilake, K.D.R.; Fernando, K.A.C.; Gurusinghe, A.I.; Treasaden, I.H.; Waldman, A.D.; Gishen, P. Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): A voxel-based morphometry 3 T MRI study. Br. J. Radiol. 2012, 85, e270–e273. [Google Scholar] [CrossRef]
- Svahn, K.S.; Göransson, U.; Chryssanthou, E.; Olsen, B.; Sjölin, J.; Strömstedt, A.A. Induction of gliotoxin secretion in Aspergillus fumigatus by bacteria-associated molecules. PLoS ONE 2014, 9, e93685. [Google Scholar] [CrossRef]
- Hulsebosch, C.E. Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury. Exp. Neurol. 2008, 214, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, Q. The variation of the 5-hydroxytryptamine system between chronic unpredictable mild stress rats and chronic fatigue syndrome rats induced by forced treadmill running. NeuroReport 2017, 28, 630–637. [Google Scholar] [CrossRef]
- Drevets, W.C.; Thase, M.; Moses, E.; Price, J.; Ph, D.; Kupfer, D.J.; Mathis, C. Serotonin-1A receptor imaging in recurrent depression: Replication and Literature Review. Nucl. Med. Biol. 2009, 34, 865–877. [Google Scholar] [CrossRef]
- Liu, J.Z.; Yao, B.; Siemionow, V.; Sahgal, V.; Wang, X.; Sun, J.; Yue, G.H. Fatigue induces greater brain signal reduction during sustained than preparation phase of maximal voluntary contraction. Brain Res. 2005, 1057, 113–126. [Google Scholar] [CrossRef]
- Cotel, F.; Exley, R.; Cragg, S.J.; Perrier, J.F. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation. Proc. Natl. Acad. Sci. USA 2013, 110, 4774–4779. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.; Nguyen, C.B.T.; Moen, A.; Fagermoen, E.; Sulheim, D.; Nilsen, H.; Wyller, V.B.; Gjerstad, J. Maintenance of chronic fatigue syndrome (CFS) in Young CFS patients is associated with the 5-HTTLPR and SNP rs25531 A> G Genotype. PLoS ONE 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Yamashita, M.; Yamamoto, T. Tryptophan circuit in fatigue: From blood to brain and cognition. Brain Res. 2017, 1675, 116–126. [Google Scholar] [CrossRef]
- Maratta, R.; Fenrich, K.K.; Zhao, E.; Neuber-Hess, M.S.; Rose, P.K. Distribution and density of contacts from noradrenergic and serotoninergic boutons on the denditres of neck flexor motoneurons in the adult cat. J. Comp. Neurol. 2015, 1, 1–40. [Google Scholar]
- Zuo, L.J.; Yu, S.Y.; Hu, Y.; Wang, F.; Piao, Y.S.; Lian, T.H.; Yu, Q.J.; Wang, R.D.; Li, L.X.; Guo, P.; et al. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Maes, M.; Ringel, K.; Kubera, M.; Anderson, G.; Morris, G.; Galecki, P.; Geffard, M. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J. Affect. Disord. 2013, 150, 223–230. [Google Scholar] [CrossRef]
- Farooq, R.K.; Asghar, K.; Kanwal, S.; Zulqernain, A. Role of inflammatory cytokines in depression: Focus on interleukin-1β. Biomed. Rep. 2017, 6, 15–20. [Google Scholar] [CrossRef]
- Hensler, J.G. Serotonin in Mood and Emotion; Elsevier: Amsterdam, The Netherlands, 2010; Volume 21, pp. 367–378. [Google Scholar]
- Morris, G.; Anderson, G.; Maes, M. Hypothalamic-Pituitary-Adrenal Hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a Consequence of Activated Immune-Inflammatory and Oxidative and Nitrosative Pathways. Mol. Neurobiol. 2017, 54, 6806–6819. [Google Scholar] [CrossRef]
- Hochberg, Z.E.; Pacak, K.; Chrousos, G.P. The Neuroendocrinology of Chronic Fatigue Syndrome. Endocr. Rev. 2003, 24, 236–252. [Google Scholar] [Green Version]
- Tak, L.M.; Cleare, A.J.; Ormel, J.; Manoharan, A.; Kok, I.C.; Wessely, S.; Rosmalen, J.G. Meta-analysis and meta-regression of hypothalamic-pituitary-adrenal axis activity in functional somatic disorders. Biol. Psychol. 2011, 87, 183–194. [Google Scholar] [CrossRef]
- Torres-Harding, S.; Sorenson, M.; Jason, L.; Reynolds, N.; Brown, M.; Maher, K.; Fletcher, M.A. The associations between basal salivary cortisol and illness symptomatology in CFS. J. Appl. Biobehav. Res. 2008, 13, 157–180. [Google Scholar] [CrossRef]
- Scott, L.V.; Burnett, F.; Medbak, S.; Dinan, T.G. Naloxone-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome. Psychol. Med. 1998, 28, 285–293. [Google Scholar] [CrossRef]
- Papadopoulos, A.S.; Cleare, A.J. Hypothalamic-pituitary-adrenal axis dysfunction in chronic fatigue syndrome. Nat. Rev. Endocrinol. 2012, 8, 22–32. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Tarasse, R.; Vogelaar, E.F.; Janneke Dijck-Brouwer, D.A.; Muskiet, F.A. Higher Prevalence of “Low T3 Syndrome” in Patients with Chronic Fatigue Syndrome: A Case-Control Study. Front. Endocrinol. 2018, 9, 97. [Google Scholar] [CrossRef]
- Tanriverdi, F.; Karaca, Z.; Unluhizarci, K.; Kelestimur, F. The hypothalamo-pituitary-adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress 2007, 10, 13–25. [Google Scholar] [CrossRef]
- Hall, D.; Lattie, E.G.; Antoni, M.H.; Fletcher, M.A.; Czaja, S.; Perdomo, D.; Klimas, N.G. Stress Manegement Skills, Cortisol Awakening Response and Post-Exertional Malaise in CFS. Psychoneuroendocrinology 2014, 49, 26–31. [Google Scholar] [CrossRef]
- Powell, D.J.H.; Liossi, C.; Moss-Morris, R.; Schlotz, W. Unstimulated cortisol secretory activity in everyday life and its relationship with fatigue and chronic fatigue syndrome: A systematic review and subset meta-analysis. Psychoneuroendocrinology 2013, 38, 2405–2422. [Google Scholar] [CrossRef] [Green Version]
- Lattie, E.G.; Antoni, M.H.; Fletcher, M.A.; Penedo, F.; Czaja, S.; Lopez, C.; Perdomo, D.; Sala, A.; Nair, S.; Fu, S.H.; et al. Stress management skills, neuroimmune processes and fatigue levels in persons with chronic fatigue syndrome. Brain Behav. Immun. 2012, 26, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Ehlert, U.; Gaab, J.; Heinrichs, M. Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus-pituitary-adrenal axis. Biol. Psychol. 2001, 57, 141–152. [Google Scholar] [CrossRef]
- Lopez, C.; Antoni, M.; Penedo, F.; Weiss, D.; Cruess, S.; Segotas, M.C.; Helder, L.; Siegel, S.; Klimas, N.; Fletcher, M.A. A pilot study of cognitive behavioral stress management effects on stress, quality of life, and symptoms in persons with chronic fatigue syndrome. J. Psychosom. Res. 2011, 70, 328–334. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.; O’Fallon, A.; Dale, J.; Demitrack, M.; Sharma, G.; Deloria, M.; Garcia-Borreguero, D.; Blackwelder, W.; Straus, S.E. Low-dose hydrocortisone for treatment of chronic fatigue syndrome: A randomized controlled trial. JAMA 1998, 280, 1061–1066. [Google Scholar] [CrossRef]
- Cleare, A.J.; Heap, E.; Malhi, G.S.; Wessely, S.; O’Keane, V.; Miell, J. Low-dose hydrocortisone in chronic fatigue syndrome: A randomised crossover trial. Lancet 1999, 353, 455–458. [Google Scholar] [CrossRef]
- Wang, T.; Yin, J.; Miller, A.H.; Xiao, C. A systematic review of the association between fatigue and genetic polymorphisms. Brain Behav. Immun. 2017, 62, 230–244. [Google Scholar] [CrossRef]
- Johnston, S.; Staines, D.; Klein, A.; Marshall-Gradisnik, S. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. BMC Med. Genet. 2016, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Narita, M.; Nishigami, N.; Narita, N.; Yamaguti, K.; Okado, N.; Watanabe, Y.; Kuratsune, H. Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochem. Biophys. Res. Commun. 2003, 311, 264–266. [Google Scholar] [CrossRef]
- Hanson, M.R.; Gu, Z.; Keinan, A.; Ye, K.; Germain, A.; Ross, P.B. Association of mitochondrial DNA variants with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) symptoms. J. Transl. Med. 2016, 14, 1–2. [Google Scholar] [CrossRef]
- oertzel, B.N.; Pennachin, C.; de Souza Coelho, L.; Gurbaxani, B.; Maloney, E.M.; Jones, J.F. Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Pharmacogenomics 2006, 7, 475–483. [Google Scholar] [CrossRef]
- De Vega, W.C.; Herrera, S.; Vernon, S.D.; McGowan, P.O. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). BMC Med. Genom. 2017, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.T.; Kossowsky, J.; Oberlander, T.F.; Ted, J.; Saul, J.P.; Wyller, V.B.; Fagermoen, E.; Sulheim, D.; Gjerstad, J.; Winger, A.; et al. Genetic Variation in catechol-O-methyltransferase modifies effects of clonidine treatment in CFS. Pharmacogenomics 2016, 16, 454–460. [Google Scholar] [CrossRef]
- Löbel, M.; Mooslechner, A.A.; Bauer, S.; Günther, S.; Letsch, A.; Hanitsch, L.G.; Grabowski, P.; Meisel, C.; Volk, H.D.; Scheibenbogen, C. Polymorphism in COMT is associated with IgG3 subclass level and susceptibility to infection in patients with chronic fatigue syndrome. J. Transl. Med. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Vernon, S.D.; Unger, E.R.; Dimulescu, I.M.; Ravjeevan, M.; Reeves, W.C. Utility of the blood for gene expression profiling and biomarker discovery in chronic fatigue syndrome. Dis. Mark. 2002, 18, 193–199. [Google Scholar] [CrossRef]
- Kerr, J.R.; Petty, R.; Burke, B.; Gough, J.; Fear, D.; Sinclair, L.I.; Mattey, D.L.; Richards, S.C.; Montgomery, J.; Baldwin, D.A.; et al. Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J. Infect. Dis. 2008, 197, 1171–1184. [Google Scholar] [CrossRef]
- Buchwald, D.; Herrell, R.; Ashton, S.; Belcourt, M.; Schmaling, K.; Sullivan, P.; Neale, M.; Goldberg, J. A twin study of chronic fatigue. Psychosom. Med. 2001, 63, 936–943. [Google Scholar] [CrossRef]
- Crawley, E.; Smith, G.D. Is chronic fatigue syndrome (CFS/ME) heritable in children, and if so, why does it matter? Arch. Dis. Child. 2007, 92, 1058–1061. [Google Scholar] [CrossRef] [Green Version]
- Ciregia, F.; Giusti, L.; Da Valle, Y.; Donadio, E.; Consensi, A.; Giacomelli, C.; Sernissi, F.; Scarpellini, P.; Maggi, F.; Lucacchini, A.; et al. A multidisciplinary approach to study a couple of monozygotic twins discordant for the chronic fatigue syndrome: A focus on potential salivary biomarkers. J. Transl. Med. 2013, 11, 1. [Google Scholar] [CrossRef]
- Whistler, T.; Unger, E.R.; Nisenbaum, R.; Vernon, S.D. Integration of gene expression, clinical, and epidemiologic data to characterize Chronic Fatigue Syndrome. J. Transl. Med. 2003, 1, 1–8. [Google Scholar] [CrossRef]
- Jonsjö, M.A.; Wicksell, R.K.; Holmström, L.; Andreasson, A.; Bileviciute-Ljungar, I.; Olsson, G.L. Identifying symptom subgroups in patients with ME/CFS – relationships to functioning and quality of life. Fatigue Biomed. Health Behav. 2017, 5, 33–42. [Google Scholar] [CrossRef]
- Jason, L.A.; Corradi, K.; Torres-Harding, S.; Taylor, R.R.; King, C. Chronic fatigue syndrome: The need for subtypes. Neuropsychol. Rev. 2005, 15, 29–58. [Google Scholar] [CrossRef]
- Zaturenskaya, M.; Jason, L.A.; Torres-Harding, S.; Tryon, W.W. Subgrouping in Chronic Fatigue Syndrome Based on Actigraphy and Illness Severity. Open Biol. J. 2009, 2, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Čikoš, Š.; Bukovská, A.; Koppel, J. Relative quantification of mRNA: Comparison of methods currently used for real-time PCR data analysis. BMC Mol. Biol. 2007, 8, 1–14. [Google Scholar] [CrossRef]
- Presson, A.P.; Sobel, E.M.; Papp, J.C.; Suarez, C.J.; Whistler, T.; Rajeevan, M.S.; Vernon, S.D.; Horvath, S. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst. Biol. 2008, 2, 1–21. [Google Scholar] [CrossRef]
- Trivedi, M.S.; Oltra, E.; Sarria, L.; Rose, N.; Beljanski, V.; Fletcher, M.A.; Klimas, N.G.; Nathanson, L. Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns. PLoS ONE 2018, 13, e0201066. [Google Scholar] [CrossRef]
- Falkenberg, V.R.; Whistler, T.; Murray, J.R.; Unger, E.R.; Rajeevan, M.S. Acute Psychosocial Stress-Mediated Changes in the Expression and Methylation of Perforin in Chronic Fatigue Syndrome. Genet. Epigenet. 2013, 5, 1–9. [Google Scholar] [CrossRef]
- Suarez-alvarez, B.; Rodriguez, R.M.; Fraga, M.F.; López-Larrea, C. DNA methylation: A promising landscape for immune system-related diseases. Trends Genet. 2012, 28, 506–514. [Google Scholar] [CrossRef]
- De Vega, W.C.; Vernon, S.D.; McGowan, P.O. DNA Methylation Modifications Associated with Chronic Fatigue Syndrome. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef]
- Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 2010, 465, 721–727. [Google Scholar] [CrossRef]
- Martino, D.; Loke, Y.J.; Gordon, L.; Ollikainen, M.; Cruickshank, M.N.; Saffery, R.; Craig, J.M. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genom. Biol. 2013, 14, 1–14. [Google Scholar] [CrossRef]
- Rajeevan, M.S.; Dimulescu, I.; Murray, J.; Falkenberg, V.R.; Unger, E.R. Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome. Hum. Immunol. 2015, 76, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.K.; Fang, H.; Whistler, T.; Unger, E.R.; Rajeevan, M.S. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Neuropsychobiology 2011, 64, 183–194. [Google Scholar] [CrossRef]
- Smith, A.K.; Dimulescu, I.; Falkenberg, V.R.; Narasimhan, S.; Heim, C.; Vernon, S.D.; Rajeevan, M.S. Genetic evaluation of the serotonergic system in chronic fatigue syndrome. Psychoneuroendocrinology 2008, 33, 188–197. [Google Scholar] [CrossRef]
- Sommerfeldt, L.; Portilla, H.; Jacobsen, L.; Gjerstad, J.; Wyller, V.B. Polymorphisms of adrenergic cardiovascular control genes are associated with adolescent chronic fatigue syndrome. Acta Paediatr. 2011, 100, 293–298. [Google Scholar] [CrossRef]
- Meyer-lindenberg, A.; Kohn, P.D.; Kolachana, B.; Kippenhan, S.; McInerney-Leo, A.; Nussbaum, R.; Weinberger, D.R.; Berman, K.F. Midbrain dopamine and prefrontal function in humans: Interaction and modulation by COMT genotype. Nat. Neurosci. 2005, 8, 594–596. [Google Scholar] [CrossRef]
- Marshall-gradisnik, S.; Johnston, S.; Chacko, A.; Nguyen, T.; Smith, P.; Staines, D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J. Int. Med. Res. 2016, 44, 1381–1394. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.K.; White, P.D.; Aslakson, E. Polymorphisms in genes regulating the HPA axis associated with empirically delineated classes of unexplained chronic fatigue. Pharmacogenomics 2006, 7, 387–394. [Google Scholar] [CrossRef]
- Rajeevan, M.S.; Smith, A.K.; Dimulescu, I. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome. Genes Brain Behav. 2007, 6, 167–176. [Google Scholar] [CrossRef]
- Bozzinp, S.; Silvestrp, A.D.E.; Pizzocher, C.; Loruss, L.; Martinettp, M.; Cuccin, M. Molecular study of receptor for advanced glycation endproduct gene promoter and identification of specific hla haplotypes possibly involved in chronic fatigue syndrome‘ Genetics and Microbiology Department, University ofPavia; ‘ Biometric Unit, Founda. Int. J. Immunopathol. Pharmacol. 2009, 22, 745–754. [Google Scholar]
- Smith, J.; Fritz, E.L.; Kerr, J.R.; Cleare, A.J.; Wessely, S. Association of chronic fatigue syndrome with human leucocyte antigen class II alleles. J. Clin. Pathol. 2005, 58, 860–863. [Google Scholar] [CrossRef] [Green Version]
- Petty, R.D.; McCarthy, N.E.; Dieu, R.L.; Kerr, J.R. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/Myalgic Encephalomyelitis (ME). PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef]
- Collatz, A.; Johnston, S.C.; Staines, D.R.; Marshall-Gradisnik, S.M. A Systematic Review of Drug Therapies for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Clin. Ther. 2016, 38, 1263–1271. [Google Scholar] [CrossRef]
- Olson, L.G.; Ambrogetti, A.; Sutherland, D.C. A Pilot Randomized Controlled Trial of Dexamphetamine in Patients with Chronic Fatigue Syndrome. Psychosomatics 2003, 44, 38–43. [Google Scholar] [CrossRef]
- Hickie, I. Nefazodone for Patients with Chronic Fatigue Syndrome. Aust. N. Z. J. Psychiatry 1999, 33, 278–280. [Google Scholar] [CrossRef]
- Mitchell, W.M. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Rev. Clin. Pharmacol. 2016, 9, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.R.; Carter, W.A.; Stouch, B.C.; Stevens, S.R.; Bateman, L.; Cimoch, P.J.; Lapp, C.W.; Peterson, D.L.; Mitchell, W.M. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS ONE 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Gargante, M.P.; Cristaldi, E.; Colonna, V.; Messano, M.; Koverech, A.; Neri, S.; Vacante, M.; Cammalleri, L.; Motta, M. Acetyl l-carnitine (ALC) treatment in elderly patients with fatigue. Arch. Gerontol. Geriatr. 2008, 46, 181–190. [Google Scholar] [CrossRef]
- Kerr, J.R.; Cunniffe, V.S.; Kelleher, P.; Bernstein, R.M.; Bruce, I.N. Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome. Clin. Infect. Dis. 2003, 36, 100–106. [Google Scholar] [CrossRef]
- Zanelli, S.; Solenski, N.; Rosenthal, R.; Fiskum, G. Mechanisms of ischemic Neuroprotection by Acetyl-L-carnetine. Ann. N. Y. Acad. Sci. 2005, 1053, 153–161. [Google Scholar] [CrossRef]
- Mitchell, W.M.; Nicodemus, C.F.; Carter, W.A.; Horvath, J.C.; Strayer, D.R. Discordant biological and toxicological species responses to TLR3 activation. Am. J. Pathol. 2014, 184, 1062–1072. [Google Scholar] [CrossRef]
- Bonnet, U. Moclobemide: Therapeutic Use and Clinical Studies. CNS Drug Rev. 2003, 9, 97–140. [Google Scholar] [CrossRef]
- Young, J.L. Use of lisdexamfetamine dimesylate in treatment of executive functioning deficits and chronic fatigue syndrome: A double blind, placebo-controlled study. Psychiatry Res. 2013, 207, 127–133. [Google Scholar] [CrossRef]
- Blitshteyn, S.; Chopra, P. Chronic Fatigue Syndrome: From Chronic Fatigue to More Specific Syndromes. Eur. Neurol. 2018, 80, 73–77. [Google Scholar] [CrossRef]
- Craig, C. Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets. Med. Hypotheses 2015, 85, 690–693. [Google Scholar] [CrossRef]
- Shungu, D.; Weiduschat, N.; Murrough, J.; Mao, X. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed. 2012, 25, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuroendocrinol. Lett. 2009, 30, 675–682. [Google Scholar]
- Anand, S.K.; Tikoo, S.K. Viruses as modulators of mitochondrial functions. Adv. Virol. 2013, 2013, 1–17. [Google Scholar] [CrossRef]
- Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol. Lett. 2009, 30, 470–476. [Google Scholar]
- Mattson, M.P. Challenging oneself intermittently to improve health. Dose-Response 2014, 12, 600–618. [Google Scholar] [CrossRef]
- Wang, X.; Qu, Y.; Zhang, Y.; Li, S.; Sun, Y.; Chen, Z.; Teng, L.; Wang, D. Antifatigue Potential Activity of Sarcodon imbricatus in acute excise-treated and chronic fatigue syndrome in mice via regulation of Nrf2-mediated oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 9140896. [Google Scholar] [CrossRef]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Moan, N.L.; Grueter, C.a.; Lim, H.; Laura, R.; Stevens, R.D.; Newgard, C.B.; et al. Suppression of Oxidative Stress by B-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Pen, J.J.; Chirumbolo, S.; Aaseth, J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed. Pharmacother. 2019, 109, 1000–1007. [Google Scholar] [CrossRef]
- Comhaire, F. Treating patients suffering from myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) with sodium dichloroacetate: An open-label, proof-of-principle pilot trial. Med. Hypotheses 2018, 114, 45–48. [Google Scholar] [CrossRef]
- Comhaire, F. Why do some ME/CFS patients benefit from treatment with sodium dichloroacetate, but others do not? Med. Hypotheses 2018, 120, 65–67. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Asadi, S.; Weng, Z.; Zhang, B. Serotonin-selective reuptake inhibitors and nonsteroidal anti-inflammatory drugs--important considerations of adverse interactions especially for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome. J. Clin. Psychopharmacol. 2011, 31, 403–405. [Google Scholar] [CrossRef]
- Kumar, A.; Garg, R. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations. Fundam. Clin. Pharmacol. 2009, 23, 89–95. [Google Scholar] [CrossRef]
- Li, D.Q.; Li, Z.C.; Dai, Z.Y. Selective serotonin reuptake inhibitor combined with dengzhanshengmai capsule improves the fatigue symptoms: A 12-week open-label pilot study. Int. J. Clin. Exp. Med. 2015, 8, 11811–11817. [Google Scholar]
- Beth Smith, M.E.; Haney, E.; McDonagh, M.; Pappas, M.; Daeges, M.; Wasson, N.; Fu, R.; Nelson, H.D. Treatment of myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review for a National Institutes of health pathways to prevention workshop. Ann. Intern. Med. 2015, 162, 841–850. [Google Scholar] [CrossRef]
- Fluge, Ø.; Bruland, O.; Risa, K.; Storstein, A.; Kristoffersen, E.K.; Sapkota, D.; Næss, H.; Dahl, O.; Nyland, H.; Mella, O. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS ONE 2011, 6, e26358. [Google Scholar] [CrossRef]
- Fluge, Ø.; Risa, K.; Lunde, S.; Alme, K.; Rekeland, I.G.; Sapkota, D.; Kristoffersen, E.K.; Sørland, K.; Bruland, O.; Dahl, O.; et al. B-Lymphocyte Depletion in Myalgic Encephalopathy/Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment. PLoS ONE 2015, 10, e0129898. [Google Scholar] [CrossRef]
- Chambers, D.; Bagnall, A.M.; Hempel, S.; Forbes, C. Interventions for the treatment, management and rehabilitation of patients with chronic fatigue syndrome/myalgic encephalomyelitis: An updated systematic review. J. R. Soc. Med. 2006, 99, 506–520. [Google Scholar]
- Castro-Marrero, J.; Sáez-Francás, N.; Santillo, D.; Alegre, J. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: All roads lead to Rome. Br. J. Pharmacol. 2017, 174, 345–369. [Google Scholar] [CrossRef]
- Corbitt, M.; Campagnolo, N.; Staines, D.; Marshall-Gradisnik, S. A Systematic Review of Probiotic Interventions for Gastrointestinal Symptoms and Irritable Bowel Syndrome in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). Probiotics Antimicrob. Proteins 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Molina-Holgado, E.; Molina-Holgado, F. Mending the broken brain: Neuroimmune interactions in neurogenesis: REVIEW. J. Neurochem. 2010, 114, 1277–1290. [Google Scholar]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar] [CrossRef]
- De Pablos-Velasco, P.; Parhofer, K.G.; Bradley, C.; Eschwège, E.; Gönder-Frederick, L.; Maheux, P.; Wood, I.; Simon, D. Current level of glycaemic control and its associated factors in patients with type 2 diabetes across Europe: Data from the PANORAMA study. Clin. Endocrinol. 2014, 80, 47–56. [Google Scholar] [CrossRef]
- Yehuda, R.; Bierer, L.; Sarapas, C.; Makotkine, I.; Andrew, R. Cortisol metabolic predictors of response to psychotherapy for symtpms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology 2009, 34, 1304–1312. [Google Scholar] [CrossRef]
- Wessely, S.; White, P.D. There is only one functional somatic syndrome. Br. J. Psychiatry 2004, 185, 95–96. [Google Scholar] [CrossRef]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory Action of Glucocorticoids—New Mechanisms for Old Drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef]
- Liberzon, I.; King, A.P.; Britton, J.C.; Phan, K.L.; Abelson, J.L.; Taylor, S.F. Paralimbic and Medial Prefrontal Cortical Involvement in Neuroendocrine Responses to Traumatic Stimuli. Am. J. Psychiatry 2007, 164, 1250–1258. [Google Scholar] [CrossRef]
- Armstrong, C.W.; McGregor, N.R.; Butt, H.L.; Gooley, P.R. Metabolism in chronic fatigue syndrome. Adv. Clin. Chem. 2014, 66, 121–172. [Google Scholar]
- Germain, A.; Ruppert, D.; Levine, S.M.; Hanson, M.R. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism. Mol. Biosyst. 2017, 13, 371–379. [Google Scholar] [CrossRef]
- Gerwyn, M.; Maes, M. Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Review of Recent Findings. Curr. Rheumatol. Rep. 2017, 19, 1. [Google Scholar] [CrossRef]
- Lloyd, A.; Hickie, I.; Wakefield, D.; Boughton, C.; Dwyer, J.; Australia, S. A Double-Blind, Placebo-Controlled Trial of Intravenous Immunoglobulin Therapy in Patients with Chronic Fatigue Syndrome. Am. J. Med. 1989, 89, 561. [Google Scholar] [CrossRef]
- Price, J.R.; Mitchell, E.; Tidy, E.; Hunot, V. Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- White, P.D.; Goldsmith, K.A.; Johnson, A.L.; Potts, L.; Walwyn, R.; DeCesare, J.C.; Baber, H.L.; Burgess, M.; Clark, L.V.; Cox, D.L.; et al. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): A randomised trial. Lancet 2011, 377, 823–836. [Google Scholar] [CrossRef]
- Wilshire, C.E.; Kindlon, T. Response: Sharpe, Goldsmith and Chalder fail to restore confidence in the PACE trial findings. BMC Psychol. 2019, 7, 19. [Google Scholar] [CrossRef]
- Peterson, P.K.; Pheley, A.; Schroeppel, J.; Schenck, C.; Marshall, P.; Kind, A.; Haugland, J.M.; Lambrecht, L.J.; Swan, S.; Goldsmith, S. A Preliminary Placebo-Controlled Crossover Trial of Fludrocortisone for Chronic Fatigue Syndrome. Arch. Intern. Med. 1998, 158, 908. [Google Scholar] [CrossRef]
- Rowe, P.C.; Calkins, H.; DeBusk, K.; McKenzie, R.; Anand, R.; Sharma, G.; Cuccherini, B.A.; Soto, N.; Hohman, P.; Snader, S.; et al. Fludrocortisone Acetate to Treat Neurally Mediated Hypotension in CFS. JAMA 2001, 285, 52–59. [Google Scholar] [CrossRef]
- Vercoulen, J.H.; Swanink, C.M.; Fennis, J.F.; Galama, J.M.; van der Meer, J.W.; Bleijenberg, G. Randomised, double-blind, placebo-controlled study of fluoxetine in chronic fatigue syndrome. Lancet 1996, 347, 858–861. [Google Scholar] [CrossRef] [Green Version]
- Vercoulen, J.H.; Swanink, C.M.; Fennis, J.F.; Galama, J.M.; van der Meer, J.W.; Bleijenberg, G. Prognosis in chronic fatigue syndrome: A prospective study on the natural course. J. Neurol. Neurosurg. Psychiatry 1996, 60, 489–494. [Google Scholar] [CrossRef]
- Rasa, S.; Nora-Krukle, Z.; Henning, N.; Eliassen, E.; Shikova, E.; Harrer, T.; Scheibenbogen, C.; Murovska, M.; Prusty, B.K. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2018, 16, 268. [Google Scholar] [CrossRef]
- Ahn, B.H.; Kim, H.S.; Song, S.; Lee, I.H.; Liu, J.; Vassilopoulos, A.; Deng, C.X.; Finkel, T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 2008, 105, 14447–14452. [Google Scholar] [CrossRef] [Green Version]
System | Tissue/Cell | Feature | Ref. |
---|---|---|---|
Central Neurological System | Neuron | The symptomatology is related to a variety of sources of chronic neurological disturbance and associated distortions and chronicity in noxious sensory signaling and neuroimmune activation | [9] |
Glial cells | There is a significant blood–brain barrier permeability, microglia activation through toll-like receptors (TLR) signaling, secretion of IL-1B, upregulation of 5-HTT in astrocytes, reduced extracellular 5-HT levels, and hence a reduced activation of 5-HT receptors | [10] | |
Immune System | Lymphocytes Th1/Th2 | Significant bias toward Th2 immune responses in CFS patients leading to an effector memory cell bias toward type 2 responsiveness | [11] |
NK cells | Reduction of cytotoxic activity in CFS, leading to a higher susceptibility of infection | [12] | |
B cells | Persistence of autoreactive cells that can generate autoantibodies during common infections | [13] | |
Endocrine System | Hypothalamus–pituitary–adrenal (HPA) axis | Enhanced corticosteroid-induced negative feedback, basal hypocortisolism, attenuated diurnal variation, and a reduced responsivity to challenge | [14] |
Symptom | Description | Reference |
---|---|---|
Fatigue | Fatigue is not the result of ongoing exertion, is not relieved by rest, and is medically unexplained. Fatigue can worsen with prolonged upright posture or even low-energy consumption tasks. | [50] |
Sleep Dysfunction | Sleep is unrefreshing with disturbed quantity or rhythm that can include daytime hypersomnia, night time insomnia, and day/night reversal. | [3] |
Muscle Pain | Muscle pain is more common in the pediatric population and can be explained by a comorbid fibromyalgia. | [51] |
Joint Pain | Joint pain is not a common condition and can be related to autoimmune comorbidities. | |
Cognitive Dysfunction | Slow mental processing speed, impaired working memory, poor learning of new information, difficulty with word retrieval, increased distractibility, decreased concentration and attention span, and inability to multitask; all of which are collectively described by patients as “brain fog”. | [52] |
Headaches | Frequently, patients suffer chronic, daily, new onset headaches, which can fluctuate in severity from week to week. If they are episodic, a diagnosis of migraine should be considered. | [3] |
Post-Exertional Malaise | Normal activity or moderate exertion is followed by worsening of malaise, intense fatigue, and other symptoms. Recovery is difficult for the patient and usually takes more than 24 h. | |
One of the following:
| Autonomic manifestations: orthostatic hypotension, exercise intolerance, sweating abnormalities digestive, urinary and sexual alterations. Neuroendocrine manifestations: Tolerance for stress, anxiety, or panic attacks, anorexia, recurrent feeling of feverishness Immune manifestations: Tender lymphadenopathy, sore throat, new sensitivities to food or medications. | [26] |
Medication | Examples | Intervention | Adverse Reactions |
---|---|---|---|
NSAIDs | Ibuprofen, Naproxen | Relieve frequent or severe joint and muscle pain, headaches, reduce fevers and inflammation [212]. | Gastrointestinal distress and bleeding |
Tricyclic antidepressants | Amitriptyline, Doxepin, Nortriptyline, Desipramine | Symptom relieve, improve sleep, and relieve pain in much lower doses than those used to treat depression. Has anti-anxiety effect and improve locomotor activity [213]. | Sedation, urinary retention, sexual dysfunction, weight-gain comorbidities. |
Selective serotonin-reuptake inhibitors | Fluoxetine, Sertraline, Paroxetine | Helpful for anxiety/depression and other mood disorders in patients with ME/CFS, as well as patients with chronic neuropathic pain [214]. | No specific adverse reactions have been described in the RCT |
Antiviral Drugs | Rintatolimod, Valganciclovir | Enhance the NK-function and influence the 2-5A-synthetase pathway, producing an objective improvement in exercise tolerance and a reduction in ME/CFS-related concomitant medication usage [193,215]. | Is a well-tolerated medication in the right dosage |
Monoclonal Antibodies | Rituximab | Decrease the activity and number B-cell by inhibiting CD20, thus reducing inflammation. Studies demonstrate symptoms alleviation and improvement in quality of life within a 12-month follow-up [216,217]. | Neutropenia, and increase of severe infections |
Complementary and alternative medicine | Nutritional supplements, Acetyl-l-carnitine, Essential fatty acids, Magnesium, Vitamins, Coenzyme Q10 plus | Nutritional supplements may improve ME/CFS-related physical and mental fatigue in patients with specific nutritional deficiencies [215]. There are discrepant results in most of the RCT, and further research is needed in order to conclude a specific therapeutic role. | No specific adverse reactions have been described in the RCT of nutritional supplements |
Corticosteroids | Hydrocortisone, Frudocortisone | Associated with statistical improvement in ME/CFS symptoms, especially in physical fatigue [218]. | Adrenal suppression, mood disorders, weight-gain comorbidities. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes Rivera, M.; Mastronardi, C.; Silva-Aldana, C.T.; Arcos-Burgos, M.; Lidbury, B.A. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics 2019, 9, 91. https://doi.org/10.3390/diagnostics9030091
Cortes Rivera M, Mastronardi C, Silva-Aldana CT, Arcos-Burgos M, Lidbury BA. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics. 2019; 9(3):91. https://doi.org/10.3390/diagnostics9030091
Chicago/Turabian StyleCortes Rivera, Mateo, Claudio Mastronardi, Claudia T. Silva-Aldana, Mauricio Arcos-Burgos, and Brett A. Lidbury. 2019. "Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review" Diagnostics 9, no. 3: 91. https://doi.org/10.3390/diagnostics9030091