The Effect of Exercise on Salivary Viscosity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Saliva Collection and Analysis
2.4. Viscosity Measurement
2.5. Saliva Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol. 2007, 103, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Pyne, D.B. Exercise effects on mucosal immunity. Immunol. Cell Biol. 2000, 78, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.M.; Bateman, E.D. Ultramarathon running and upper respiratory tract infections. An epidemiological survey. S. Afr. Med. J. 1983, 64, 582–584. [Google Scholar] [PubMed]
- Nieman, D.C. Exercise, upper respiratory tract infection, and the immune system. Med. Sci. Sports Exerc. 1994, 26, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Heath, G.W.; Macera, C.A.; Nieman, D.C. Exercise and upper respiratory tract infections. Is there a relationship? Sports Med. 1992, 14, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, J.L.; Lucia, A.; Perez, M.; Vaquero, A.F.; Urena, R. Saliva composition and exercise. Sports Med. 1998, 26, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Bishop, N.C.; Gleeson, M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci. 2009, 14, 4444–4456. [Google Scholar] [CrossRef] [Green Version]
- Wickstrom, C.; Christersson, C.; Davies, J.R.; Carlstedt, I. Macromolecular organization of saliva: Identification of ‘insoluble’ MUC5B assemblies and non-mucin proteins in the gel phase. Biochem. J. 2000, 351, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gibbins, H.L.; Proctor, G.B.; Yakubov, G.E.; Wilson, S.; Carpenter, G.H. Concentration of salivary protective proteins within the bound oral mucosal pellicle. Oral Dis. 2014, 20, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Bortolini, M.J.; De Agostini, G.G.; Reis, I.T.; Lamounier, R.P.; Blumberg, J.B.; Espindola, F.S. Total protein of whole saliva as a biomarker of anaerobic threshold. Res. Q. Exerc. Sport 2009, 80, 604–610. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, V.; Bessa, A.; Lamounier, R.P.; de Santana, M.G.; de Mello, M.T.; Espindola, F.S. Changes in the salivary biomarkers induced by an effort test. Int. J. Sports Med. 2010, 31, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Bocanegra, O.L.; Diaz, M.M.; Teixeira, R.R.; Soares, S.S.; Espindola, F.S. Determination of the lactate threshold by means of salivary biomarkers: Chromogranin A as novel marker of exercise intensity. Eur. J. Appl. Physiol. 2012, 112, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Kunz, H.; Bishop, N.C.; Spielmann, G.; Pistillo, M.; Reed, J.; Ograjsek, T.; Park, Y.; Mehta, S.K.; Pierson, D.L.; Simpson, R.J. Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise. Eur. J. Appl. Physiol. 2015, 115, 1015–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligtenberg, A.J.; Brand, H.S.; van den Keijbus, P.A.; Veerman, E.C. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme. Arch. Oral Biol. 2015, 60, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Proctor, G.B.; Carpenter, G.H. Salivary secretion: Mechanism and neural regulation. Monogr. Oral Sci. 2014, 24, 14–29. [Google Scholar] [PubMed]
- Chatterton, R.T., Jr.; Vogelsong, K.M.; Lu, Y.C.; Ellman, A.B.; Hudgens, G.A. Salivary α-amylase as a measure of endogenous adrenergic activity. Clin. Physiol. 1996, 16, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A.; Brand, H.S.; Ligtenberg, T.J.M.; Bermond, B.; Hoogstraten, J.; Nieuw Amerongen, A.V. Psychological stress as a determinant of protein levels and salivary-induced aggregation of Streptococcus gordonii in human whole saliva. Psychosom. Med. 1996, 58, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C. The effects of exercise on protein and electrolyte secretion in parotid saliva. J. Physiol. 1981, 320, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, G.; Ericson, T.; Ekblom, B.; Birkhed, D. Saliva and marathon running. Scand. J. Med. Sci. Sports 1997, 7, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Droghetti, P.; Borsetto, C.; Casoni, I.; Cellini, M.; Ferrari, M.; Paolini, A.R.; Ziglio, P.G.; Conconi, F. Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller, and ice-skating, rowing, and walking. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 53, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Van der Reijden, W.A.; Veerman, E.C.; Nieuw Amerongen, A.V. Shear rate dependent viscoelastic behavior of human glandular salivas. Biorheology 1993, 30, 141–152. [Google Scholar] [PubMed]
- Prodan, A.; Brand, H.S.; Ligtenberg, A.J.; Imangaliyev, S.; Tsivtsivadze, E.; van der Weijden, F.; Crielaard, W.; Keijser, B.J.; Veerman, E.C. Interindividual variation, correlations, and sex-related differences in the salivary biochemistry of young healthy adults. Eur. J. Oral Sci. 2015, 123, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kilcoyne, M.; Gerlach, J.Q.; Farrell, M.P.; Bhavanandan, V.P.; Joshi, L. Periodic acid-Schiff's reagent assay for carbohydrates in a microtiter plate format. Anal. Biochem. 2011, 416, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Akizuki, K.; Yazaki, S.; Echizenya, Y.; Ohashi, Y. Anaerobic threshold and salivary α-amylase during incremental exercise. J. Phys. Ther. Sci. 2014, 26, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.; Chicharro, J.L.; Bandres, F.; Lucia, A.; Perez, M.; Alvarez, J.; Mojares, L.L.; Vaquero, A.F.; Legido, J.C. Anaerobic threshold determination with analysis of salivary amylase. Can. J. Appl. Physiol. 1997, 22, 553–561. [Google Scholar] [CrossRef] [PubMed]
- West, N.P.; Pyne, D.B.; Kyd, J.M.; Renshaw, G.M.; Fricker, P.A.; Cripps, A.W. The effect of exercise on innate mucosal immunity. Br. J. Sports Med. 2010, 44, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Bardon, A.; Ceder, O.; Kollberg, H. Cystic fibrosis-like changes in saliva of healthy persons subjected to anaerobic exercise. Clin. Chim. Acta 1983, 133, 311–316. [Google Scholar] [CrossRef]
- Chicharro, J.L.; Legido, J.C.; Alvarez, J.; Serratosa, L.; Bandres, F.; Gamella, C. Saliva electrolytes as a useful tool for anaerobic threshold determination. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Q.; Yang, G.; Kolosov, V.P.; Perelman, J.M.; Zhou, X.D. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy Clin. Immunol. 2011, 128, 626–634. [Google Scholar] [CrossRef] [PubMed]
Time Point | Before Exercise | Immediately after Exercise | After 30 Min Recovery |
---|---|---|---|
Saliva flow rate (mL/min) | 0.56 ± 0.21 | 0.58 ± 0.20 | 0.64 ± 0.30 |
pH | 7.31 ± 0.39 | 7.32 ± 0.44 | 7.31 ± 0.33 |
Viscosity (mP/s) * | 3.19 ± 3.39 | 3.86 ± 3.78 | 2.23 ± 1.45 |
Protein concentration (mg/mL) | 1.18 ± 0.41 | 1.20 ± 0.50 | 1.15 ± 0.39 |
Protein secretion rate (mg/min) | 0.63 ± 0.26 | 0.65 ± 0.19 | 0.71 ± 0.36 |
MUC5B concentration (units/mL) * | 1.28 ± 0.94 | 1.47 ± 1.15 | 0.92 ± 0.68 |
MUC5B secretion rate (units/min) * | 0.64 ± 0.46 | 0.75 ± 0.49 | 0.55 ± 0.42 |
MUC5B/protein (units/mg) * | 1.05 ± 0.66 | 1.16 ± 0.64 | 0.81 ± 0.55 |
Carbohydrate concentration (mg/mL) * | 1.23 ± 0.40 | 1.34 ± 0.42 | 1.21 ± 0.51 |
Carbohydrate secretion rate (mg/min) | 0.65 ± 0.18 | 0.76 ± 0.24 | 0.76 ± 0.39 |
Carbohydrate/protein (mg/mg) | 1.19 ± 0.54 | 1.27 ± 0.41 | 1.18 ± 0.53 |
Amylase concentration (units/mL) | 128 ± 74 | 140 ± 77 | 128 ± 88 |
Amylase secretion rate (units/min) | 73 ± 55 | 80 ± 49 | 83 ± 70 |
Amylase/protein (units/mg) | 105 ± 43 | 120 ± 56 | 106 ± 57 |
Overall Comparison | Time Points Compared | |||
---|---|---|---|---|
1–2 | 1–3 | 2–3 | ||
Viscosity (mP/s) | 0.011 * | 0.040 * | 0.370 | 0.006 * |
MUC5B concentration (units/mL) | 0.001 * | 0.104 | 0.008 * | 0.001 * |
MUC5B secretion rate (units/min) | 0.026 * | 0.117 | 0.191 | 0.008 * |
MUC5B/mg protein (units/mg) | 0.003 * | 0.086 | 0.030 * | 0.007 * |
Carbohydrate concentration (mg/mL) | 0.006 * | 0.036 | 0.398 | 0.022 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligtenberg, A.J.M.; Liem, E.H.S.; Brand, H.S.; Veerman, E.C.I. The Effect of Exercise on Salivary Viscosity. Diagnostics 2016, 6, 40. https://doi.org/10.3390/diagnostics6040040
Ligtenberg AJM, Liem EHS, Brand HS, Veerman ECI. The Effect of Exercise on Salivary Viscosity. Diagnostics. 2016; 6(4):40. https://doi.org/10.3390/diagnostics6040040
Chicago/Turabian StyleLigtenberg, Antoon J. M., Erwin H. S. Liem, Henk S. Brand, and Enno C. I. Veerman. 2016. "The Effect of Exercise on Salivary Viscosity" Diagnostics 6, no. 4: 40. https://doi.org/10.3390/diagnostics6040040
APA StyleLigtenberg, A. J. M., Liem, E. H. S., Brand, H. S., & Veerman, E. C. I. (2016). The Effect of Exercise on Salivary Viscosity. Diagnostics, 6(4), 40. https://doi.org/10.3390/diagnostics6040040