Association Between Sclerostin and Sarcopenia-Related Functional Decline in Older Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Assessments
2.3. Diagnostic Criteria
2.4. Statistical Analysis and Sample Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASM | Appendicular Skeletal Muscle Mass |
| BMD | Bone Mineral Density |
| BMI | Body Mass Index |
| DEXA | Dual-Energy X-ray Absorptiometry |
ELISA | Enzyme-Linked Immunosorbent Assay |
| KWGS | Korean Working Group on Sarcopenia |
References
- Edwards, M.; Dennison, E.; Sayer, A.A.; Fielding, R.; Cooper, C. Osteoporosis and sarcopenia in older age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.K. Sarcopenia and aging. Nutr. Rev. 2003, 61, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Atik, O.S.; Gunal, I.; Korkusuz, F. Burden of osteoporosis. Clin. Orthop. Relat. Res. (1976–2007) 2006, 443, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, U.; Baldi, J.; Celi, M.; Rao, C.; Liuni, F.M.; Iundusi, R.; Gasbarra, E. Osteoporosis and sarcopenia: The connections. Aging Clin. Exp. Res. 2013, 25, 93–95. [Google Scholar] [CrossRef]
- Paintin, J.; Cooper, C.; Dennison, E. Osteosarcopenia. Br. J. Hosp. Med. 2018, 79, 253–258. [Google Scholar] [CrossRef]
- Cianferotti, L.; Brandi, M.L. Muscle–bone interactions: Basic and clinical aspects. Endocrine 2014, 45, 165–177. [Google Scholar] [CrossRef]
- Brotto, M.; Bonewald, L. Bone and muscle: Interactions beyond mechanical. Bone 2015, 80, 109–114. [Google Scholar] [CrossRef]
- Weivoda, M.M.; Youssef, S.J.; Oursler, M.J. Sclerostin expression and functions beyond the osteocyte. Bone 2017, 96, 45–50. [Google Scholar] [CrossRef]
- Poole, K.E.; Van Bezooijen, R.L.; Loveridge, N.; Hamersma, H.; Papapoulos, S.E.; Löwik, C.W.; Reeve, J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005, 19, 1842–1844. [Google Scholar] [CrossRef]
- Bonewald, L.F. Mechanosensation and transduction in osteocytes. BoneKEy Osteovision 2006, 3, 7. [Google Scholar] [CrossRef]
- Moustafa, A.; Sugiyama, T.; Prasad, J.; Zaman, G.; Gross, T.; Lanyon, L.E.; Price, J. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos. Int. 2012, 23, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Tang, S.Y.; Nguyen, D.; Alliston, T. Load regulates bone formation and Sclerostin expression through a TGFβ-dependent mechanism. PLoS ONE 2013, 8, e53813. [Google Scholar] [CrossRef] [PubMed]
- Morse, L.R.; Sudhakar, S.; Danilack, V.; Tun, C.; Lazzari, A.; Gagnon, D.R.; Garshick, E.; Battaglino, R.A. Association between sclerostin and bone density in chronic spinal cord injury. J. Bone Miner. Res. 2012, 27, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, J.H.; Lee, D.G. Sclerostin concentration and bone biomarker trends in patients with spinal cord injury: A prospective study. Healthcare 2022, 10, 983. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Kaczmarek, A.; Kaczmarek, M.; Ciałowicz, M.; Arslan, E.; Silva, A.F.; Clemente, F.M.; Murawska-Ciałowicz, E. Sclerostin as a biomarker of physical exercise in osteoporosis: A narrative review. Front. Endocrinol. 2022, 13, 954895. [Google Scholar] [CrossRef]
- Mödder, U.I.; Hoey, K.A.; Amin, S.; McCready, L.K.; Achenbach, S.J.; Riggs, B.L.; Melton, L.J., III; Khosla, S. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 2011, 26, 373–379. [Google Scholar] [CrossRef]
- McClung, M.R. Romosozumab for the treatment of osteoporosis. Osteoporos. Sarcopenia 2018, 4, 11–15. [Google Scholar] [CrossRef]
- Pillard, F.; Laoudj-Chenivesse, D.; Carnac, G.; Mercier, J.; Rami, J.; Rivière, D.; Rolland, Y. Physical activity and sarcopenia. Clin. Geriatr. Med. 2011, 27, 449–470. [Google Scholar] [CrossRef]
- Kim, J.A.; Roh, E.; Hong, S.-h.; Lee, Y.-B.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, N.H.; Kim, S.G.; Baik, S.H. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone 2019, 128, 115053. [Google Scholar] [CrossRef]
- Enns, D.L.; Tiidus, P.M. The influence of estrogen on skeletal muscle: Sex matters. Sports Med. 2010, 40, 41–58. [Google Scholar] [CrossRef]
- Abdalla, P.P.; da Silva, L.S.L.; Venturini, A.C.R.; Júnior, M.F.T.; Schneider, G.; Dos Santos, A.P.; Gomide, E.B.G.; dos Santos Carvalho, A.; Bohn, L. Anthropometric equations to estimate appendicular muscle mass from dual-energy X-ray absorptiometry (DXA): A scoping review. Arch. Gerontol. Geriatr. 2023, 110, 104972. [Google Scholar] [CrossRef]
- Baek, J.Y.; Jung, H.-W.; Kim, K.M.; Kim, M.; Park, C.Y.; Lee, K.-P.; Lee, S.Y.; Jang, I.-Y.; Jeon, O.H.; Lim, J.-Y. Korean Working Group on Sarcopenia guideline: Expert consensus on sarcopenia screening and diagnosis by the Korean Society of Sarcopenia, the Korean Society for Bone and Mineral Research, and the Korean Geriatrics Society. Ann. Geriatr. Med. Res. 2023, 27, 9. [Google Scholar] [CrossRef]
- Lee, S.; Gong, H. Measurement and interpretation of handgrip strength for research on sarcopenia and osteoporosis. J. Bone Metab. 2020, 27, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D. Guidelines for the diagnosis of osteoporosis: T-scores vs fractures. Rev. Endocr. Metab. Disord. 2006, 7, 75–89. [Google Scholar] [CrossRef]
- Lin, C.; Jiang, X.; Dai, Z.; Guo, X.; Weng, T.; Wang, J.; Li, Y.; Feng, G.; Gao, X.; He, L. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J. Bone Miner. Res. 2009, 24, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Ott, S.M. Sclerostin and Wnt signaling—The pathway to bone strength. J. Clin. Endocrinol. Metab. 2005, 90, 6741–6743. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Robling, A.G.; Niziolek, P.J.; Baldridge, L.A.; Condon, K.W.; Allen, M.R.; Alam, I.; Mantila, S.M.; Gluhak-Heinrich, J.; Bellido, T.M.; Harris, S.E. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 2008, 283, 5866–5875. [Google Scholar] [CrossRef]
- Qin, L.; Liu, W.; Cao, H.; Xiao, G. Molecular mechanosensors in osteocytes. Bone Res. 2020, 8, 23. [Google Scholar] [CrossRef]
- Devarajan-Ketha, H.; Craig, T.A.; Madden, B.J.; Bergen, H.R., III; Kumar, R. The sclerostin-bone protein interactome. Biochem. Biophys. Res. Commun. 2012, 417, 830–835. [Google Scholar] [CrossRef]
- Amrein, K.; Amrein, S.; Drexler, C.; Dimai, H.P.; Dobnig, H.; Pfeifer, K.; Tomaschitz, A.; Pieber, T.R.; Fahrleitner-Pammer, A. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 2012, 97, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Sapir-Koren, R.; Livshits, G. Osteocyte control of bone remodeling: Is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporos. Int. 2014, 25, 2685–2700. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Guido, D.; Opizzi, A.; Faliva, M.; Perna, S.; Grassi, M. A path model of sarcopenia on bone mass loss in elderly subjects. J. Nutr. Health Aging 2014, 18, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Gorter, E.A.; Reinders, C.R.; Krijnen, P.; Appelman-Dijkstra, N.M.; Schipper, I.B. Serum sclerostin levels in osteoporotic fracture patients. Eur. J. Trauma Emerg. Surg. 2022, 48, 4857–4865. [Google Scholar] [CrossRef]
- Yamamoto, M.; Yamauchi, M.; Sugimoto, T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2013, 98, 4030–4037. [Google Scholar] [CrossRef]
- Ueland, T.; Stilgren, L.; Bollerslev, J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int. J. Mol. Sci. 2019, 20, 2896. [Google Scholar] [CrossRef]
- Dreyer, T.J.; Keen, J.A.; Wells, L.M.; Roberts, S.J. Novel insights on the effect of sclerostin on bone and other organs. J. Endocrinol. 2023, 257, e220209. [Google Scholar] [CrossRef]
- Maccarone, M.C.; Coraci, D.; Bernini, A.; Sarandria, N.; Valente, M.R.; Frigo, A.C.; Dionyssiotis, Y.; Masiero, S. Sarcopenia prevalence and association with nutritional status in cohort of elderly patients affected by musculoskeletal concerns: A real-life analysis. Front. Endocrinol. 2023, 14, 1194676. [Google Scholar] [CrossRef]

| Variable | Non-Sarcopenia (40) (Mean ± SD) | Sarcopenia (39) (Mean ± SD) | p-Value | ||
|---|---|---|---|---|---|
| Age | 77.2 ± 5.76 | 80.1 ± 5.32 | 0.015 * | ||
| BMI | 25.0 ± 2.90 | 23.2 ± 4.05 | 0.018 * | ||
| ASM | 5.33 ± 0.87 | 4.85 ± 0.45 | <0.001 *** | ||
| Grip Strength | 20.0 ± 4.70 | 14.4 ± 3.19 | <0.001 *** | ||
| Sclerostin (pg/mL) | 126 ± 75.7 | 158 ± 52.4 | 0.036 * | ||
| Femur BMD | Neck | Rt. (g/cm2) | 0.599 ± 0.084 | 0.572 ± 0.077 | 0.364 |
| Lt. (g/cm2) | 0.611 ± 0.108 | 0.567 ± 0.089 | 0.097 | ||
| Rt. T-score | −1.92 ± 0.795 | −2.16 ± 0.716 | 0.379 | ||
| Lt. T-score | −1.81 ± 1.03 | −2.29 ± 0.665 | 0.065 | ||
| Total | Rt. (g/cm2) | 0.724 ± 0.103 | 0.709 ± 0.102 | 0.922 | |
| Lt. (g/cm2) | 0.734 ± 0.112 | 0.706 ± 0.088 | 0.364 | ||
| Rt. T-score | −1.14 ± 0.933 | −1.24 ± 0.889 | 0.980 | ||
| Lt. T-score | −1.01 ± 0.984 | −1.26 ± 0.775 | 0.393 | ||
| Variable | Pearson’s r | p-Value | |||
|---|---|---|---|---|---|
| Age | 0.208 | 0.065 | |||
| BMI (kg/m2) | 0.088 | 0.440 | |||
| Grip Strength (kg) | −0.298 ** | 0.008 * | |||
| ASM (kg/m2) | −0.003 | 0.976 | |||
| Femur BMD | Neck | BMD (g/cm2) | Rt. | 0.313 ** | 0.005 * |
| Lt. | 0.185 | 0.102 | |||
| T-score | Rt. | 0.308 ** | 0.006 * | ||
| Lt. | 0.221 | 0.051 | |||
| Total | BMD (g/cm2) | Rt. | 0.391 *** | <0.001 *** | |
| Lt. | 0.342 ** | 0.002 * | |||
| T-score | Rt. | 0.381 *** | <0.001 *** | ||
| Lt. | 0.342 ** | 0.002 * | |||
| Outcome | Analysis Type | Cut-Off (pg/mL) | OR | 95% CI | p-Value |
|---|---|---|---|---|---|
| Sarcopenia | Continuous | 1.008 | 1.000–1.020 | 0.045 * | |
| Cut-off (≥124.6) | ≥124.6 | 5.39 | 2.04–14.19 | <0.001 * | |
| Osteoporosis | Continuous | 1.004 | 0.998–1.010 | 0.257 | |
| Cut-off (≥83.2) | ≥83.2 | 0.26 | 0.007–0.96 | 0.043 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, D.G.; Lee, J.H.; Kong, E. Association Between Sclerostin and Sarcopenia-Related Functional Decline in Older Women. Diagnostics 2026, 16, 272. https://doi.org/10.3390/diagnostics16020272
Lee DG, Lee JH, Kong E. Association Between Sclerostin and Sarcopenia-Related Functional Decline in Older Women. Diagnostics. 2026; 16(2):272. https://doi.org/10.3390/diagnostics16020272
Chicago/Turabian StyleLee, Dong Gyu, Jong Ho Lee, and Eunjung Kong. 2026. "Association Between Sclerostin and Sarcopenia-Related Functional Decline in Older Women" Diagnostics 16, no. 2: 272. https://doi.org/10.3390/diagnostics16020272
APA StyleLee, D. G., Lee, J. H., & Kong, E. (2026). Association Between Sclerostin and Sarcopenia-Related Functional Decline in Older Women. Diagnostics, 16(2), 272. https://doi.org/10.3390/diagnostics16020272

