Evaluation of CD3 and CD20 Lymphocytes and Mast Cells in the Microenvironment of Central Giant Cell Granuloma, Peripheral Giant Cell Granuloma, and Giant Cell Tumor of Bone
Abstract
1. Introduction
2. Materials and Methods
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GCLs | Giant cell lesions |
| CGCG | Central giant cell granuloma |
| PGCG | Peripheral giant cell granuloma |
| GCT | Giant cell tumor of long bone |
| OSSC | Oral squamous cell carcinoma |
| MGCs | Multinucleated giant cells |
| MCs | Mast cells |
| IQR | Interquartile range |
References
- Gupta, S.; Sharma, D.; Hooda, A.; Sharma, V.K.; Kamboj, M. Unravelling the role of immunohistochemistry in giant cell lesions of jaws: A systematic review. J. Oral Maxillofac. Pathol. JOMFP 2023, 27, 181–194. [Google Scholar] [CrossRef]
- Chi, Y.; Qin, Z.; Bai, J.; Yan, J.; Xu, Z.; Yang, S.; Li, B. Update on the nature of central giant cell granuloma of the jaw with a focus on the aggressive subtype. Pathology 2025, 57, 461–469. [Google Scholar] [CrossRef]
- Nilesh, K.; Dadhich, A.; Patil, R. Management of recurrent central giant cell granuloma of mandible using intralesional corticosteroid with long-term follow-up. BMJ Case Rep. 2020, 13, e237200. [Google Scholar] [CrossRef]
- Ramesh, V. “Central giant cell granuloma”—An update. J. Oral Maxillofac. Pathol. JOMFP 2020, 24, 413–415. [Google Scholar] [CrossRef]
- Peacock, Z.S.; Resnick, C.M.; Susarla, S.M.; Faquin, W.C.; Rosenberg, A.E.; Nielsen, G.P.; Schwab, J.H.; Hornicek, F.; Ebb, D.H.; Dodson, T.B.; et al. Do histologic criteria predict biologic behavior of giant cell lesions? J. Oral Maxillofac. Surg. 2012, 70, 2573–2580. [Google Scholar] [CrossRef] [PubMed]
- Boffano, P.; Neirotti, F.; Brucoli, M.; Ruslin, M.; Stathopoulos, P.; Tsekoura, K.; Laco, J.; Mottl, R.; Dediol, E.; Kos, B.; et al. Diagnosis and management of central giant cell granulomas of the jaws: A European and multicenter study. J. Cranio-Maxillofac. Surg. 2025, 53, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R.; Gomes, C.C.; Gomez, R.S. Peripheral giant cell granuloma: An updated analysis of 2824 cases reported in the literature. J. Oral Pathol. Med. Off. Pub. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2018, 47, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.G.; Vasconcelos, M.G.; Queiroz, L.M.G. Peripheral and central giant cell lesions: Etiology, origin of giant cells, diagnosis and treatment. J. Bras. Patol. Med. Lab. 2013, 49, 446–452. [Google Scholar] [CrossRef]
- Errani, C.; Tsukamoto, S.; Angulo Alvarado, R.; Righi, A.; Nitta, Y.; Donati, D.M.; Mavrogenis, A.F. Multicentric giant cell tumor of bone. Orthopedics 2023, 46, e376–e380. [Google Scholar] [CrossRef]
- Saputra, R.D.; Kusuma, D.A.; Kaldani, F.; Fahmi, K. Comparative analysis of aggressiveness in giant cell tumor of bone between upper and lower extremities: A systematic review and meta-analysis. J. Bone Oncol. 2025, 51, 100663. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Mavrogenis, A.F.; Kido, A.; Errani, C. Current concepts in the treatment of giant cell tumors of bone. Cancers 2021, 13, 3647. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, J.; Rao, S.; Guo, S.; Shen, J.; Du, F.; Wu, X.; Chen, Y.; Li, M.; Chen, M.; et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: Progressions and challenges. Cancers 2022, 14, 4160. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, D.L.; Ayerza, M.A. Lymphocyte in vitro response to human giant cell tumors. Clin. Orthop. 1996, 326, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.L.; Wang, X.B.; Li, J.; Zheng, B.W. The tumor-stroma ratio in giant cell tumor of bone: Associations with the immune microenvironment and responsiveness to denosumab treatment. J. Orthop. Surg. 2024, 19, 405. [Google Scholar] [CrossRef] [PubMed]
- Campoli, M.; Ferrone, S. HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene 2008, 27, 5869–5885. [Google Scholar] [CrossRef]
- Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular pathways: Targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 2016, 22, 3425–3431. [Google Scholar] [CrossRef]
- Largeot, A.; Pagano, G.; Gonder, S.; Moussay, E.; Paggetti, J. The B-side of cancer immunity: The underrated tune. Cells 2019, 8, 449. [Google Scholar] [CrossRef]
- Wongpattaraworakul, W.; Choi, A.; Buchakjian, M.R.; Lanzel, E.A.; Kd, A.R.; Simons, A.L. Prognostic role of tumor-infiltrating lymphocytes in oral squamous cell carcinoma. BMC Cancer 2024, 24, 766. [Google Scholar] [CrossRef]
- Sales de Sá, R.; Miranda Galvis, M.; Mariz, B.A.L.A.; Leite, A.A.; Schultz, L.; Almeida, O.P.; Santos-Silva, A.R.; Pinto, C.A.L.; Vargas, P.A.; Gollob, K.J.; et al. Increased tumor immune microenvironment CD3+ and CD20+ lymphocytes predict a better prognosis in oral tongue squamous cell carcinoma. Front. Cell Dev. Biol. 2020, 8, 622161. [Google Scholar] [CrossRef]
- Hussein, R.R.; Garib, B.T. CD3 and CD20 expressions and infiltrating patterns in salivary gland tumors. Diagnostics 2024, 14, 959. [Google Scholar] [CrossRef]
- Bulfone-Paus, S.; Bahri, R. Mast cells as regulators of T cell responses. Front. Immunol. 2015, 6, 394. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2015.00394/full (accessed on 29 August 2025).
- Puebla-Osorio, N.; Sarchio, S.N.E.; Ullrich, S.E.; Byrne, S.N. Detection of infiltrating mast cells using a modified toluidine blue staining. In Fibrosis: Methods and Protocols; Humana Press: New York, NY, USA, 2017; Volume 1627, pp. 213–222. [Google Scholar]
- Khazaie, K.; Blatner, N.R.; Khan, M.W.; Gounari, F.; Gounaris, E.; Dennis, K.; Bonertz, A.; Tsai, F.-N.; Strouch, M.J.T.; Cheon, E.; et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011, 30, 45–60. [Google Scholar] [CrossRef]
- Mehtani, D.; Puri, N. Steering mast cells or their mediators as a prospective novel therapeutic approach for the treatment of hematological malignancies. Front. Oncol. 2021, 11, 731323. Available online: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.731323/full (accessed on 28 July 2025).
- Spoorthi, B.R.; Vidya, G.S. Mast cell count analysis in oral inflammatory lesions, Potentially Malignant Disorders and Oral Squamous Cell Carcinomas. Int. J. Sci. Res. Public 2013, 3, 1–4. [Google Scholar]
- Vidal, M.T.A.; de Oliveira Araújo, I.B.; Gurgel, C.A.S.; Pereira, F.D.A.C.; Vilas-Boas, D.S.; Ramos, E.A.G.; Agra, I.M.G.; Barros, A.C.; Freitas, V.S.; Dos Santos, J.N. Density of mast cells and micro vessels in minor salivary gland tumors. Tumor Biol. J. Int. Soc. Oncodev. Biol. Med. 2013, 34, 309–316. [Google Scholar] [CrossRef]
- Farhadi, S.; Shahsavari, F.; Taleghani, F.; Komasi, E. Mast cell concentrations in peripheral and central giant cell granulomas: Is there any angiogenetic role? Asian Pac. J. Cancer Prev. 2016, 17, 673–676. [Google Scholar] [CrossRef]
- Yadav, S.S. A New Clinical and radiological classification of grading GCT and its impact on the management. Indian J. Orthop. 2023, 57, 1689–1696. [Google Scholar] [CrossRef]
- Vered, M.; Shnaiderman-Shapiro, A.; Malouf, R.; Hirschhorn, A.; Buchner, A.; Reiter, S.; Kats, L. Deep learning for classification of aggressive versus non-aggressive central giant cell granuloma using whole-slide histopathology images. Virchow’s Arch. Int. J. Pathol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukaini, A.; Hornicek, F.J.; Peacock, Z.S.; Kaban, L.B.; Ferrone, S.; Schwab, J.H. Immune surveillance plays a role in locally aggressive giant cell lesions of Bone. Clin. Orthop. 2017, 475, 3071–3081. [Google Scholar] [CrossRef] [PubMed]
- Badri, G.H.; Hameed, O.F. The prevalence of reactive oral masses during period 2017–2023: Clinical and histological Study. Eurasian J. Oncol. 2025, 13, 162–169. [Google Scholar] [CrossRef]
- Hallikeri, K.; Acharya, S.; Koneru, A.; Trivedi, D.J. Evaluation of micro vessel density in central and peripheral giant cell granulomas. J. Adv. Clin. Res. Insights 2015, 2, 20–25. [Google Scholar] [CrossRef]
- Kujan, O.; Al-Shawaf, A.Z.; Azzeghaiby, S.; AlManadille, A.; Aziz, K.; Raheel, S.A. Immunohistochemical comparison of p53, Ki-67, CD68, vimentin, α-smooth muscle actin and alpha-1-antichymotrypsin in oral peripheral and central giant cell granuloma. J. Contemp. Dent. Pract. 2015, 16, 20–24. [Google Scholar] [CrossRef]
- Chandna, P.; Srivastava, N.; Bansal, V.; Wadhwan, V.; Dubey, P. Peripheral and central giant cell lesions in children: Institutional experience at subharti dental college and hospital. Indian J. Med. Pediatr. Oncol. Off. J. Indian Soc. Med. Pediatr. Oncol. 2017, 38, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Merza, M.S. Immunohistochemical assessment of tumor suppressor gene Wwox in relation to proliferative marker KI67 proteins expression in giant cell lesions of the jaws and giant cell tumor of long bones. J. Baghdad Coll. Dent. 2015, 27, 121–127. [Google Scholar] [CrossRef]
- Naji, S.F.; Younis, W.H.; Abdullah, B.H. A comparative study of immunohistochemical expression of tumor necrosis factor-alpha, interleukin-6 and vascular endothelial growth factor in giant cell granuloma of the jaws and giant cell tumor of long bones. Iraqi Dent. J. 2016, 38, 70–79. [Google Scholar] [CrossRef]
- da Silva Barros, C.C.; da Rocha Santos, L.M.; Severo, M.L.B.; da Costa Miguel, M.C.; Squarize, C.H.; da Silveira, É.J.D. Morphological analysis of cell cannibalism: An auxiliary tool in the prediction of central giant cell granuloma clinical behavior. Acta Histochem. 2023, 125, 152091. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.C.; Diniz, M.G.; Amaral, F.R.; Antonini Guimaraes, B.V.; Gomez, R.S. The highly prevalent H3F3A mutation in giant cell tumors of bone is not shared by sporadic central giant cell lesion of the jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 583–585. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 2013, 45, 1479–1482. [Google Scholar] [CrossRef]
- Resnick, C.M.; Margolis, J.; Susarla, S.M.; Schwab, J.H.; Hornicek, F.J.; Dodson, T.B.; Kaban, L.B. Maxillofacial and axial/appendicular giant cell lesions: Unique tumors or variants of the same disease? A comparison of phenotypic, clinical, and radiographic characteristics. J. Oral Maxillofac. Surg. 2010, 68, 130–137. [Google Scholar] [CrossRef]
- Ingold Heppner, B.; Loibl, S.; Denkert, C. Tumor-infiltrating lymphocytes: A promising biomarker in breast Cancer. Breast Care 2016, 11, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Rajoub, S.; Basha, S.R.; Einhorn, E.; Cohen, M.C.; Marvel, D.M.; Sewell, D.A. Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J. 2007, 86, 506–511. [Google Scholar] [CrossRef]
- Erasha, A.M.; EL-Gendy, H.; Aly, A.S.; Fernández-Ortiz, M.; Sayed, R.K.A. The role of the tumor microenvironment (TME) in advancing cancer therapies: Immune system interactions, tumor-infiltrating lymphocytes (TILs), and the role of exosomes and inflammasomes. Int. J. Mol. Sci. 2025, 26, 2716. [Google Scholar] [CrossRef]
- Miguita, L.; de Souza, J.C.; Bastos, V.C.; Pereira, N.B.; de Freitas, R.A.B.; Guimarães, L.M.; de Avelar, G.F.; Andrade, L.O.; Dutra, W.O.; Nunes, F.D.; et al. Central giant cell granulomas of the jaws stromal cells harbor mutations and have osteogenic differentiation capacity, in vivo and in vitro. J. Oral Pathol. Med. 2022, 51, 206–216. [Google Scholar] [CrossRef]
- Noh, B.J.; Park, Y.K. Giant cell tumor of bone: Updated molecular pathogenesis and tumor biology. Hum. Pathol. 2018, 81, 1–8. [Google Scholar] [CrossRef]
- Mansor, S.M. Clinicopathological and Immunohistochemical Comparison of Peripheral and Central Giant Cell Granuloma of the Jaws Using CD68 and CD 163. J. Res. Med. Dent. Sci. 2022, 10, 213–218. [Google Scholar]
- Sargolzaei, S.; Taghavi, N.; Poursafar, F. Are CD68 and Factor VIII-RA Expression Different in Central and Peripheral Giant Cell Granuloma of Jaw: An Immunohistochemical Comparative Study. Turk. Pathol. Derg. 2017, 1, 49–56. [Google Scholar] [CrossRef] [PubMed]
- de Matos, F.R.; de Moraes, M.; Nonaka, C.F.W.; de Souza, L.B.; de Almeida Freitas, R. Immunoexpression of TNF-α and TGF-β in central and peripheral giant cell lesions of the jaws. J. Oral Pathol. Med. Off. Pub. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2012, 41, 194–199. [Google Scholar] [CrossRef]
- Pang, J.; Koh, T.J. Proliferation of monocytes and macrophages in homeostasis, infection, injury, and disease. J. Leukoc. Biol. 2023, 114, 532–546. [Google Scholar] [CrossRef] [PubMed]
- De Souza, P.E.A.; Gomez, R.S.; Xavier, G.M.; Coelho Dos Santos, J.S.; Gollob, K.J.; Dutra, W.O. Systemic leukocyte activation in patients with central giant cell lesions. J. Oral Pathol. Med. 2005, 34, 312–317. [Google Scholar] [CrossRef]
- Baddireddy, S.M.; Akula, S.T.; Nagilla, J.; Manyam, R. Quantification of mast cells in oral reactive lesions—An immunohistochemical study. Acta Bio Medica Atenei Parm. 2022, 93, e2022219. [Google Scholar]
- Kabiraj, A.; Vishal; Naik, S.R.; Gupta, P.; Khaitan, T.; Samanta, J. Amplification of mast cell density in oral squamous cell carcinoma and normal oral mucosa: A comparative study. J. Indian Acad. Oral Med. Radiol. 2023, 35, 511. [Google Scholar] [CrossRef]
- Shekar, S.; Angadi, P.V. Quantification of mast cells in reactive oral lesions—A clue to the morphologic diversity. Indian J. Health Sci. Biomed. Res. 2019, 12, 123. [Google Scholar]
- Walsh, L.J. Mast cells and oral inflammation. Crit. Rev. Oral Biol. Med. Off. Pub. Am. Assoc. Oral Biol. 2003, 14, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, G.; Kelley, J.; Johnson, D.; Youngberg, G.; Stone, W.; Huang, S.K.; Bieber, J.; Chi, D.S. The human mast cell: Functions in physiology and disease. Front. Biosci. J. Virtual Libr. 2001, 6, D1109–D1127. [Google Scholar] [CrossRef] [PubMed]
- Mohtasham, N.; Saghravanian, N.; Fatemi, B.; Vahedi, M.; Afzal-Aghaee, M.; Kadeh, H. A comparative study of osteopontin and MMP-2 protein expression in peripheral and central giant cell granuloma of the jaw. Braz. J. Otorhinolaryngol. 2017, 85, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, K.; Vanoppen, M.; Rose, C.D.; Matthys, P.; Wouters, C.H. Multinucleated giant cells: Current insights in phenotype, biological activities, and mechanism of formation. Front. Cell Dev. Biol. 2022, 10, 873226. Available online: https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.873226/full (accessed on 26 September 2025). [CrossRef]
- Phong, B.L.; D’Souza, S.J.; Baudier, R.L.; Wu, E.; Immethun, V.E.; Bauer, D.L.; McLachlan, J.B. IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4+ T cell responses. Sci. Rep. 2021, 11, 9686. [Google Scholar] [CrossRef]
- Feyerabend, T.B.; Weiser, A.; Tietz, A.; Stassen, M.; Harris, N.; Kopf, M.; Radermacher, P.; Möller, P.; Benoist, C.; Mathis, D.; et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 2011, 35, 832–844. [Google Scholar] [CrossRef]
- Gutierrez, D.A.; Fu, W.; Schonefeldt, S.; Feyerabend, T.B.; Ortiz-Lopez, A.; Lampi, Y.; Liston, A.; Mathis, D.; Rodewald, H.-R. Type 1 diabetes in NOD mice unaffected by mast cell deficiency. Diabetes 2014, 63, 3827–3834. [Google Scholar] [CrossRef]
- Laumont, C.M.; Nelson, B.H. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023, 41, 466–489. [Google Scholar] [CrossRef]




| Study Groups | Sex | Age | Site | Aggressiveness | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Male n (%) | Female n (%) | p Value | Mean ± SD | p Value | Maxilla | Mandible | p Value | No. | No. | ||
| CGCG | 5 (50) | 5 (50) | 0.315 | 27.90 ± 16.73 | 0.023 | 2 (20) | 8 (80) | 0.628 | 6 | 4 | |
| PGCG | 7 (70) | 3 (30) | 38.90 ± 18.55 | 4 (40) | 6 (60) | 10 | 0 | ||||
| Radius | Femur | Tibia | 0.502 | ||||||||
| GCT | 2 (20) | 8 (80) | 30.33 ± 7.71 | 5 (50) | 3 (30) | 2 (20) | 5 | 5 | |||
| Study Groups | CD3+ Cells | CD20+ Cells | Mast Cells | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Median | IQR | * p Value | Median | IQR | p Value | Mean ± SD | Mini | Maxi | $p Value | |
| CGCG | 41.5 | 73.8 | 0.03 | 15.8 | 35.6 | 0.001 | 12.1 ± 5.3 | 5.00 | 21.40 | 0.035 |
| PGCG | 61.6 | 86.7 | <0.000 | 29.7 | 125.1 | 6.3 ± 6.0 | 1.00 | 17.20 | ||
| GCT | 33.7 | 18.6 | 0.04 | 0.45 | 3.6 | 13.1 ± 6.3 | 1.00 | 20.9 | ||
| Lesion Behavior | Group | CD3+ | p-Value | CD20+ | p-Value | Mast Cells (Mean ± SD) | p-Value | ||
|---|---|---|---|---|---|---|---|---|---|
| Median | IQR | Median | IQR | ||||||
| Nonaggressive | CGCG | 58.9 | 27.7 | 0.005 | 18.4 | 16.7 | 0.13 | 12.11 ± 6.36 | 0.62 |
| GCT | 41.5 | 36.7 | 15.75 | 11.14 | 16.36 ± 6.03 | ||||
| Aggressive | CGCG | 33.78 | 11.9 | 0.003 | 1.45 | 3.7 | 0.053 | 16.03 ± 2.82 | 0.001 |
| GCT | 24.35 | 3.6 | 0.4 | 0.3 | 30.0 ± 6.72 | ||||
| Nonaggressive | CGCG | 58.9 | 27.7 | 0.009 | 18.4 | 16.7 | 0.0006 | 12.11 ± 6.36 | 0.045 |
| PGCG | 61.6 | 86.7 | 29.7 | 125.1 | 6.3 ± 6.0 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fayaq, K.A.; Gharib, B.T. Evaluation of CD3 and CD20 Lymphocytes and Mast Cells in the Microenvironment of Central Giant Cell Granuloma, Peripheral Giant Cell Granuloma, and Giant Cell Tumor of Bone. Diagnostics 2026, 16, 90. https://doi.org/10.3390/diagnostics16010090
Fayaq KA, Gharib BT. Evaluation of CD3 and CD20 Lymphocytes and Mast Cells in the Microenvironment of Central Giant Cell Granuloma, Peripheral Giant Cell Granuloma, and Giant Cell Tumor of Bone. Diagnostics. 2026; 16(1):90. https://doi.org/10.3390/diagnostics16010090
Chicago/Turabian StyleFayaq, Khelan A., and Balkees T. Gharib. 2026. "Evaluation of CD3 and CD20 Lymphocytes and Mast Cells in the Microenvironment of Central Giant Cell Granuloma, Peripheral Giant Cell Granuloma, and Giant Cell Tumor of Bone" Diagnostics 16, no. 1: 90. https://doi.org/10.3390/diagnostics16010090
APA StyleFayaq, K. A., & Gharib, B. T. (2026). Evaluation of CD3 and CD20 Lymphocytes and Mast Cells in the Microenvironment of Central Giant Cell Granuloma, Peripheral Giant Cell Granuloma, and Giant Cell Tumor of Bone. Diagnostics, 16(1), 90. https://doi.org/10.3390/diagnostics16010090

