Cellular Immunological Memory T Cells and IL15RA Gene Polymorphism in COVID-19 Vaccinated Individuals from Southern Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Ethical Considerations
2.2. PBMC Isolation and Culture
2.3. Flow Cytometry Assay
2.4. rs2228059 Polymorphism Genotyping
2.5. Set of Controls
2.6. Statistical Analyses
3. Results
3.1. Descriptive Overview of the Studied Population
3.2. T Cell Subsets in the Vaccination Groups
3.3. rs2228059 Genotyping Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| COVID-19 | Coronavirus Disease 2019 |
| HCPA | Hospital de Clínicas de Porto Alegre |
| PBMC | Peripheral blood mononuclear cells |
| PHA-M | Phytohemagglutinin, M form |
| TCM | T cell central memory |
| TEM | T cell effector memory |
| TEMRA | T cells effector memory expressing RA+ |
| TE | T cell effector memory |
| STREGA | STrengthening the REporting of Genetic Association Studies |
| AIM | Activation-induced marker |
| ELISpot | enzyme-linked immunospot |
| Th2 | T helper 2 |
| cTfh | Circulating T follicular helper |
| MAIT | Mucosa-associated invariant T |
| ABraOM | Online Archive of Brazilian Mutations |
References
- Arabi, Y.M.; Murthy, S.; Webb, S. COVID-19: A novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020, 46, 833–836. [Google Scholar] [CrossRef]
- COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 15 January 2025).
- Farhud, D.D.; Zokaei, S. A Brief Overview of COVID-19 Vaccines. Iran. J. Public Health 2021, 50, i–vi. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Vacinometro COVID-19. Available online: https://infoms.saude.gov.br/extensions/SEIDIGI_DEMAS_Vacina_C19/SEIDIGI_DEMAS_Vacina_C19.html (accessed on 15 January 2025).
- Siqueira, P.C.; Cola, J.P.; Comerio, T.; Sales, C.M.M.; Maciel, E.L. Herd immunity threshold for SARS-CoV-2 and vaccination effectiveness in Brazil. J. Bras. Pneumol. 2022, 48, e20210401. [Google Scholar] [PubMed]
- Agência Nacional de Vigilância Sanitária—Anvisa. Available online: https://www.gov.br/anvisa/pt-br/assuntos/campanhas/coronavirus/vacinas/vacinas (accessed on 15 January 2025).
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef] [PubMed]
- Hvidt, A.K.; Guo, H.; Andersen, R.; Lende, S.S.F.; Vibholm, L.K.; Søgaard, O.S.; Schleimann, M.H.; Russell, V.; Cheung, A.M.-W.; Paramithiotis, E.; et al. Long-term humoral and cellular immunity after primary SARS-CoV-2 infection: A 20-month longitudinal study. BMC Immunol. 2023, 24, 45. [Google Scholar] [CrossRef]
- Linterman, M.A. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin. Immunol. 2023, 69, 101801. [Google Scholar] [CrossRef]
- Gil-Etayo, F.J.; Suàrez-Fernández, P.; Cabrera-Marante, O.; Arroyo, D.; Garcinuño, S.; Naranjo, L.; Pleguezuelo, D.E.; Allende, L.M.; Mancebo, E.; Lalueza, A.; et al. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front. Cell. Infect. Microbiol. 2021, 11, 624483. [Google Scholar] [CrossRef]
- Laing, A.G.; Lorenc, A.; del Barrio, I.D.M.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Gálvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e17. [Google Scholar] [CrossRef]
- Nesamari, R.; Omondi, M.A.; Baguma, R.; Höft, M.A.; Ngomti, A.; Nkayi, A.A.; Besethi, A.S.; Magugu, S.F.; Mosala, P.; Walters, A.; et al. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 2024, 32, 162–169.e3. [Google Scholar] [CrossRef]
- rs2228059, Reference SNP (rs) Report—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs2228059 (accessed on 5 October 2025).
- VCV0012320284—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/1232028/ (accessed on 5 October 2025).
- rs2228059 (SNP)—Population Genetics—Homo_Sapiens—Ensembl Genome Browser 115. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=10:5959905-5960905;v=rs2228059;vdb=variation;vf=654418215#population_freq_AMR (accessed on 5 October 2025).
- Raeber, M.E.; Zurbuchen, Y.; Impellizzieri, D.; Boyman, O. The role of cytokines in T-cell memory in health and disease. Immunol. Rev. 2018, 283, 176–193. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Hassan, K.M.-A.; Azeez, D.M.; Qadir, F.A.; Salihi, A.B. IL-15 gene mutation as a molecular risk factor in acute lymphoid leukemia. Cell. Mol. Biol. 2024, 70, 10–17. [Google Scholar] [CrossRef]
- Israni, A.; Leduc, R.; Holmes, J.; Jacobson, P.A.; Lamba, V.; Guan, W.; Schladt, D.; Chen, J.; Matas, A.J.; Oetting, W.S. Single Nucleotide Polymorphisms, Acute Rejection and Severity of Tubulitis in Kidney Transplantation, Accounting for Center-to-Center Variation. Transplantation 2010, 90, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Durso, D.F.; Bydlowski, S.P.; Hutz, M.H.; Suarez-Kurtz, G.; Magalhães, T.R.; Pena, S.D.J. Association of Genetic Variants with Self-Assessed Color Categories in Brazilians. PLoS ONE 2014, 9, e83926. [Google Scholar] [CrossRef]
- 10-5960405-T-G|g.n.o.m.A.D.v.4.1.0|gnomAD. Available online: https://gnomad.broadinstitute.org/variant/10-5960405-T-G?dataset=gnomad_r4 (accessed on 16 January 2025).
- PepTivator® SARS-CoV-2 Select. Available online: https://www.miltenyibiotec.com/DE-en/products/peptivator-sars-cov-2-select.html (accessed on 13 January 2025).
- van der Burg, M.; Kalina, T.; Perez-Andres, M.; Vlkova, M.; Lopez-Granados, E.; Blanco, E.; Bonroy, C.; Sousa, A.E.; Kienzler, A.-K.; Wentink, M.; et al. The EuroFlow PID Orientation Tube for Flow Cytometric Diagnostic Screening of Primary Immunodeficiencies of the Lymphoid System. Front. Immunol. 2019, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Biobanco COVID-19 GPPG/HCPA. Available online: https://biobanco-covid-19.hcpa.edu.br/amostras (accessed on 16 January 2025).
- Nunes, K.; e Silva, M.A.C.; Rodrigues, M.R.; Lemes, R.B.; Pezo-Valderrama, P.; Kimura, L.; de Sena, L.S.; Krieger, J.E.; Varela, M.C.; de Azevedo, L.O.; et al. Admixture’s impact on Brazilian population evolution and health. Science 2025, 388, eadl3564. [Google Scholar] [CrossRef]
- Little, J.; Higgins, J.P.; Ioannidis, J.P.; Moher, D.; Gagnon, F.; Von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)—An extension of the STROBE statement. Genet. Epidemiol. 2009, 33, 581–598. [Google Scholar] [CrossRef]
- Adams, O.; Andrée, M.; Rabl, D.; Ostermann, P.N.; Schaal, H.; Lehnert, E.; Ackerstaff, S.; Müller, L.; Fischer, J.C. Humoral response to SARS-CoV-2 and seasonal coronaviruses in COVID-19 patients. J. Med. Virol. 2022, 94, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Movsisyan, M.; Truzyan, N.; Kasparova, I.; Chopikyan, A.; Sawaqed, R.; Bedross, A.; Sukiasyan, M.; Dilbaryan, K.; Shariff, S.; Kantawala, B.; et al. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci. Rep. 2024, 14, 13417. [Google Scholar] [CrossRef]
- Cox, R.J.; Brokstad, K.A. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat. Rev. Immunol. 2020, 20, 581–582. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Sette, A.; Sidney, J.; Crotty, S. T Cell Responses to SARS-CoV-2. Annu. Rev. Immunol. 2023, 41, 343–373. [Google Scholar] [CrossRef]
- Cohen, K.W.; Linderman, S.L.; Moodie, Z.; Czartoski, J.; Lai, L.; Mantus, G.; Norwood, C.; Nyhoff, L.E.; Edara, V.V.; Floyd, K.; et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2021, 2, 100354. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Schulte, S.; Wildner, N.H.; Wittner, M.; Brehm, T.T.; Ramharter, M.; Woost, R.; Lohse, A.W.; Jacobs, T.; Wiesch, J.S.Z. Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease. Front. Immunol. 2020, 11, 1870. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Chi, W.-Y.; Li, Y.-D.; Huang, H.-C.; Chan, T.E.H.; Chow, S.-Y.; Su, J.-H.; Ferrall, L.; Hung, C.-F.; Wu, T.-C. COVID-19 vaccine update: Vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J. Biomed. Sci. 2022, 29, 82. [Google Scholar] [CrossRef]
- Björkander, S.; Du, L.; Zuo, F.; Ekström, S.; Wang, Y.; Wan, H.; Sherina, N.; Schoutens, L.; Andréll, J.; Andersson, N.; et al. SARS-CoV-2–specific B- and T-cell immunity in a population-based study of young Swedish adults. J. Allergy Clin. Immunol. 2022, 149, 65–75.e8. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.T.; Linster, M.; Tan, C.W.; Le Bert, N.; Ni Chia, W.; Kunasegaran, K.; Zhuang, Y.; Tham, C.Y.L.; Chia, A.; Smith, G.J.D.; et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021, 34, 108728. [Google Scholar] [CrossRef]
- Keeton, R.; Tincho, M.B.; Ngomti, A.; Baguma, R.; Benede, N.; Suzuki, A.; Khan, K.; Cele, S.; Bernstein, M.; Karim, F.; et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022, 603, 488–492. [Google Scholar] [CrossRef]
- Poloni, C.; Schonhofer, C.; Ivison, S.; Levings, M.K.; Steiner, T.S.; Cook, L. T-cell activation–induced marker assays in health and disease. Immunol. Cell Biol. 2023, 101, 491–503. [Google Scholar] [CrossRef]
- Salgado Del Riego, E.; Saiz, M.L.; Corte-Iglesias, V.; Leoz Gordillo, B.; Martin-Martin, C.; Rodríguez-Pérez, M.; Escudero, D.; Lopez-Larrea, C.; Suarez-Alvarez, B. Divergent SARS-CoV-2-specific T cell responses in intensive care unit workers following mRNA COVID-19 vaccination. Front. Immunol. 2022, 13, 942192. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.-E.; Grifoni, A.; Dave, H.; Wang, J.; Johnson, D.; Zellner, J.; Sidney, J.; Chambers, C.; Franco, A. SARS-CoV-2-specific T cell responses and immune regulation in infected pregnant women. J. Reprod. Immunol. 2022, 149, 103464. [Google Scholar] [CrossRef] [PubMed]
- Tarke, A.; Sidney, J.; Methot, N.; Yu, E.D.; Zhang, Y.; Dan, J.M.; Goodwin, B.; Rubiro, P.; Sutherland, A.; Wang, E.; et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021, 2, 100355. [Google Scholar] [CrossRef] [PubMed]
- Parrot, T.; Gorin, J.-B.; Ponzetta, A.; Maleki, K.T.; Kammann, T.; Emgård, J.; Perez-Potti, A.; Sekine, T.; Rivera-Ballesteros, O.; Gredmark-Russ, S.; et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci. Immunol. 2020, 5, eabe1670. [Google Scholar] [CrossRef]
- Grau-Expósito, J.; Sánchez-Gaona, N.; Massana, N.; Suppi, M.; Astorga-Gamaza, A.; Perea, D.; Rosado, J.; Falcó, A.; Kirkegaard, C.; Torrella, A.; et al. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun. 2021, 12, 3010. [Google Scholar] [CrossRef]
- Maciel, E.; Fernandez, M.; Calife, K.; Garrett, D.; Domingues, C.; Kerr, L.; Dalcolmo, M. The SARS-CoV-2 vaccination campaign in Brazil and the invisibility of science evidences. Ciênc Saúde Coletiva 2022, 27, 951–956. [Google Scholar] [CrossRef]
- Sapkota, B.; Saud, B.; Shrestha, R.; Al-Fahad, D.; Sah, R.; Shrestha, S.; Rodriguez-Morales, A.J. Heterologous prime–boost strategies for COVID-19 vaccines. J. Travel. Med. 2022, 29, taab191. [Google Scholar] [CrossRef]
- Kawabe, T.; Yi, J.; Sprent, J. Homeostasis of Naive and Memory T Lymphocytes. Cold Spring Harb. Perspect. Biol. 2021, 13, a037879. [Google Scholar] [CrossRef]
- Exomic Variants of an Elderly Cohort of Brazilians in the ABraOM Database—Naslavsky—2017—Human Mutation. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.23220 (accessed on 13 January 2025).



| Group 1 | Group 2 | Group 3 | |
|---|---|---|---|
| Characteristic | CoronVac | ChAdOx1 | BNT162b2 |
| Sinovac | Astrazeneca/Oxford | Pfizer/BioNTech | |
| Individuals, n | 23 | 24 | 7 |
| Gender, n (%) | |||
| Male | 4 (17.4%) | 7 (29.2%) | 2 (28.6%) |
| Female | 19 (82.6%) | 17 (70.8%) | 5 (71.4%) |
| Age, years (mean ± SD) | 41.52 (±13) | 39.54 (±15) | 37.4 (±16) |
| COVID-19 previous infection, n (%) | |||
| Yes | 17 (73.9%) | 20 (83.3%) | 6 (85.7%) |
| No | 6 (26.1%) | 4 (16.7%) | 1 (14.3%) |
| Months since last dose (median ± SD) | 9 (±7) | 13 (±5) | 14 (±6) |
| Other COVID-like symptoms (last 6 months) n (%) | |||
| Sore throat and cough | 2 (8.7%) | 1 (4.2%) | 0 |
| Flu-like | 0 | 1 (4.2%) | 0 |
| Other viral disease | 1 (4.3%) | 0 | 0 |
| Other bacterial disease | 1 (4.3%) | 2 (8.3%) | 0 |
| Other non-infectious comorbidities | 2 (8.7%) | 5 (20.8%) | 1 (14.3%) |
| Asymptomatic | 17 (74%) | 15 (62.5%) | 6 (85.7%) |
| CD4+ T Cell and Subsets | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| % CD3 Stimulated Cells | % CD3 Unstimulated Cells | % CD4 Stimulated Cells | % CD4 Unstimulated Cells | % CD4 Naive Stimulated Cells | % CD4 Naive Unstimulated Cells | % CD4 TCM Stimulated Cells | % CD4 TCM Unstimulated Cells | % CD4 TEM Stimulated Cells | % CD4 TEM Unstimulated Cells | % CD4 TEMRA Stimulated Cells | % CD4 TEMRA Unstimulated Cells | ||
| Group 1 | Mean | 77.03 | 78.53 | 34.20 | 36.99 | 13.42 | 14.69 | 13.24 | 13.86 | 6.02 | 6.73 | 1.50 | 1.70 |
| SD | 6.9 | 5.52 | 12.59 | 12.16 | 8.03 | 9.30 | 6.84 | 6.13 | 4.54 | 4.79 | 2.33 | 2.83 | |
| Group 2 | Mean | 78.00 | 80.17 | 39.98 | 42.74 | 17.33 | 18.13 | 15.53 | 16.54 | 6.41 | 6.69 | 1.45 | 1.40 |
| SD | 8.13 | 8.94 | 13.03 | 11.24 | 10.06 | 9.92 | 5.24 | 4.91 | 3.62 | 3.45 | 1.67 | 2.01 | |
| Group 3 | Mean | 76.78 | 78.29 | 32.21 | 35.55 | 11.35 | 12.78 | 14.02 | 15.74 | 6.41 | 6.59 | 0.41 | 0.43 |
| SD | 11.29 | 10.45 | 10.48 | 12.08 | 6.54 | 7.59 | 5.27 | 5.95 | 2.83 | 3.56 | 0.34 | 0.46 | |
| Stimulated T cells (p value) | 0.005 | 0.007 | 0.045 | 0.021 | 0.038 | 0.579 | |||||||
| Stimulated T cell vs. Vaccine (p value) | 0.868 | 0.983 | 0.895 | 0.676 | 0.569 | 0.654 | |||||||
| CD8+ T Cell and Subsets | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| % CD3 Stimulated Cells | % CD3 Unstimulated Cells | % CD8 Stimulated Cells | % CD8 Unstimulated Cells | % CD8 Naive Stimulated Cells | % CD8 Naive Unstimulated Cells | % CD8 TCM Stimulated Cells | % CD8 TCM Unstimulated Cells | % CD8 TEM Stimulated Cells | % CD8 TEM Unstimulated Cells | % CD8 TE dim Stimulated Cells | % CD8 TE dim Unstimulated Cells | % CD8 TEMRA Stimulated Cells | % CD8 TEMRA Unstimulated Cells | ||
| Group 1 | Mean | 77.03 | 78.53 | 27.60 | 28.11 | 6.68 | 7.45 | 4.40 | 4.35 | 5.42 | 5.02 | 1.05 | 0.99 | 10.02 | 10.02 |
| SD | 6.9 | 5.52 | 8.50 | 8.09 | 4.33 | 4.65 | 2.82 | 2.49 | 4.01 | 3.54 | 0.62 | 0.58 | 8.86 | 8.42 | |
| Group 2 | Mean | 78.00 | 80.17 | 26.12 | 27.25 | 7.65 | 8.53 | 4.91 | 5.39 | 3.68 | 3.56 | 2.16 | 1.38 | 7.70 | 8.37 |
| SD | 8.13 | 8.94 | 6.52 | 7.49 | 3.53 | 4.42 | 2.71 | 3.26 | 2.02 | 2.00 | 4.23 | 0.63 | 5.59 | 5.90 | |
| Group 3 | Mean | 76.78 | 78.29 | 32.79 | 33.14 | 7.67 | 8.27 | 7.38 | 7.77 | 6.74 | 6.29 | 1.63 | 1.74 | 9.35 | 9.05 |
| SD | 11.29 | 10.45 | 7.63 | 7.06 | 5.32 | 5.80 | 4.12 | 3.68 | 4.00 | 4.53 | 1.40 | 1.72 | 5.06 | 4.93 | |
| Stimulated cells (p value) | 0.005 | 0.016 | 0.004 | 0.315 | 0.327 | 0.346 | 0.541 | ||||||||
| Stimulated cell vs. Vaccine (p value) | 0.868 | 0.576 | 0.943 | 0.579 | 0.877 | 0.612 | 0.679 | ||||||||
| Allele | Genotype | ||||
|---|---|---|---|---|---|
| T | G | TT | GG | TG | |
| Biobank cohort n = 381 | 381 | 381 | 93 | 95 | 193 |
| Frequencies | 0.500 | 0.500 | 0.244 | 0.249 | 0.506 |
| % | 50 | 50 | 24.4 | 24.9 | 50.7 |
| Study participants cohort n = 62 | 60 | 64 | 14 | 16 | 32 |
| Frequencies | 0.484 | 0.516 | 0.225 | 0.258 | 0.516 |
| % | 48.4 | 51.6 | 22.6 | 25.8 | 51.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rodrigues, G.M.; da Silva, P.P.; Pinho, M.C.d.F.; Fischer, T.d.S.; de Paris, F.; Campos, F.S.; Garcia, A.B.d.M.; Jataí, L.F.; Ashton-Prolla, P.; Vianna, F.S.L.; et al. Cellular Immunological Memory T Cells and IL15RA Gene Polymorphism in COVID-19 Vaccinated Individuals from Southern Brazil. Diagnostics 2026, 16, 89. https://doi.org/10.3390/diagnostics16010089
Rodrigues GM, da Silva PP, Pinho MCdF, Fischer TdS, de Paris F, Campos FS, Garcia ABdM, Jataí LF, Ashton-Prolla P, Vianna FSL, et al. Cellular Immunological Memory T Cells and IL15RA Gene Polymorphism in COVID-19 Vaccinated Individuals from Southern Brazil. Diagnostics. 2026; 16(1):89. https://doi.org/10.3390/diagnostics16010089
Chicago/Turabian StyleRodrigues, Grazielle Motta, Pâmela Portela da Silva, Maria Clara de Freitas Pinho, Taís da Silveira Fischer, Fernanda de Paris, Fabrício Souza Campos, Arthur Bandeira de Mello Garcia, Lucas Fernandes Jataí, Patricia Ashton-Prolla, Fernanda Sales Luiz Vianna, and et al. 2026. "Cellular Immunological Memory T Cells and IL15RA Gene Polymorphism in COVID-19 Vaccinated Individuals from Southern Brazil" Diagnostics 16, no. 1: 89. https://doi.org/10.3390/diagnostics16010089
APA StyleRodrigues, G. M., da Silva, P. P., Pinho, M. C. d. F., Fischer, T. d. S., de Paris, F., Campos, F. S., Garcia, A. B. d. M., Jataí, L. F., Ashton-Prolla, P., Vianna, F. S. L., & Rosset, C. (2026). Cellular Immunological Memory T Cells and IL15RA Gene Polymorphism in COVID-19 Vaccinated Individuals from Southern Brazil. Diagnostics, 16(1), 89. https://doi.org/10.3390/diagnostics16010089

