Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases
Abstract
1. Introduction
2. Literature Review
3. Methods
3.1. Study Design and Datasets
3.2. Preprocessing and Augmentation
3.3. Model Architecture
3.4. Evaluation Metrics
| Model Performance Parameter | Corresponding Formula |
| Area Under the ROC Curve (AUC) | Calculated as the area under the Receiver Operating Characteristic (ROC) curve. |
| Sensitivity | Sensitivity = TP/(TP + FN) TP = True Positive TN = True Negative FP = False Positive FN = False Negative |
| Specificity | Specificity = TN/(TN + FP) TP = True Positive TN = True Negative FP = False Positive FN = False Negative |
| Mean Average Precision (mAP) | , where is the average precision for class at an Intersection-over-Union (IoU) threshold of 0.5. N = represents the total number of distinct object classes (pathologies) |
3.5. Deployment and Clinical Integration
4. Results
4.1. Demographics and Diagnostic Performance
4.2. Co-Occurrence Detection and Visualization
4.3. Radiologist Performance Enhancement
4.4. Robustness and Generalization
4.5. Explainable AI (XAI) Analysis
4.6. Deployment and Integration
4.7. Error Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LMIC | Low- and Middle-Income Countries |
| AI | Artificial Intelligence |
| CNN | Convolutional Neural Network |
| AP | Average Precision |
| PA | Posteroanterior (commonly used in radiology for chest X-rays) |
| ER | Emergency Room |
| OPD | Outpatient Department |
| mAP | Mean Average Precision |
| PACS | Picture Archiving and Communication System |
| ILD | Interstitial Lung Disease |
References
- Speets, A.M.; van der Graaf, Y.; Hoes, A.W.; Kalmijn, S.; Sachs, A.P.; Rutten, M.J.; Gratama, J.W.C.; Montauban van Swijndregt, A.D.; Mali, W.P. Chest radiography in general practice: Indications, diagnostic yield and consequences for patient management. Br. J. Gen. Pract. 2006, 56, 574–578. [Google Scholar] [PubMed]
- Broder, J. Imaging the Chest. In Diagnostic Imaging for the Emergency Physician; Elsevier: Amsterdam, The Netherlands, 2011; pp. 185–296. ISBN 978-1-4160-6113-7. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9781416061137100055 (accessed on 9 July 2025).
- Macdonald, C.; Jayathissa, S.; Leadbetter, M. Is post-pneumonia chest X-ray for lung malignancy useful? Results of an audit of current practice. Intern. Med. J. 2015, 45, 329–334. [Google Scholar] [CrossRef]
- Lindow, T.; Quadrelli, S.; Ugander, M. Noninvasive Imaging Methods for Quantification of Pulmonary Edema and Congestion: A Systematic Review. JACC Cardiovasc. Imaging 2023, 16, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Haussner, W.; Shah, K. Traumatic Pneumothorax: A Review of Current Diagnostic Practices And Evolving Management. J. Emerg. Med. 2021, 61, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Vizioli, L.; Ciccarese, F.; Forti, P.; Chiesa, A.M.; Giovagnoli, M.; Mughetti, M.; Zompatori, M.; Zoli, M. Integrated Use of Lung Ultrasound and Chest X-Ray in the Detection of Interstitial Lung Disease. Respir. Int. Rev. Thorac. Dis. 2017, 93, 15–22. [Google Scholar] [CrossRef]
- Del Ciello, A.; Franchi, P.; Contegiacomo, A.; Cicchetti, G.; Bonomo, L.; Larici, A.R. Missed lung cancer: When, where, and why? Diagn. Interv. Radiol. Ank. Turk. 2017, 23, 118–126. [Google Scholar] [CrossRef]
- Akhter, Y.; Singh, R.; Vatsa, M. AI-based radiodiagnosis using chest X-rays: A review. Front. Big Data 2023, 6, 1120989. [Google Scholar] [CrossRef]
- Ramli, N.M.; Mohd Zain, N.R. The Growing Problem of Radiologist Shortage: Malaysia’s Perspective. Korean J. Radiol. 2023, 24, 936–937. [Google Scholar] [CrossRef]
- Marey, A.; Mehrtabar, S.; Afify, A.; Pal, B.; Trvalik, A.; Adeleke, S.; Umair, M. From Echocardiography to CT/MRI: Lessons for AI Implementation in Cardiovascular Imaging in LMICs—A Systematic Review and Narrative Synthesis. Bioengineering 2025, 12, 1038. [Google Scholar] [CrossRef]
- Nakajima, Y.; Yamada, K.; Imamura, K.; Kobayashi, K. Radiologist supply and workload: International comparison: Working Group of Japanese College of Radiology. Radiat. Med. 2008, 26, 455–465. [Google Scholar] [CrossRef]
- Gefter, W.B.; Hatabu, H. Reducing Errors Resulting From Commonly Missed Chest Radiography Findings. Chest 2023, 163, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, A. Radiologist shortage leaves patient care at risk, warns royal college. BMJ 2017, 359, j4683. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, N.A.; Tahir, M.J.; Saeed, A.; Ghosheh, M.J.; Alsheikh, T.; Ahmed, A.; Lee, K.Y.; Yousaf, Z. Incidence and factors associated with burnout in radiologists: A systematic review. Eur. J. Radiol. Open 2023, 11, 100530. [Google Scholar] [CrossRef] [PubMed]
- Eakins, C.; Ellis, W.D.; Pruthi, S.; Johnson, D.P.; Hernanz-Schulman, M.; Yu, C.; Kan, J.H. Second opinion interpretations by specialty radiologists at a pediatric hospital: Rate of disagreement and clinical implications. AJR Am. J. Roentgenol. 2012, 199, 916–920. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hamzi, W.; Sharifi, T.; Zaman, S.; Alsadder, L.; Lee, E.; Hakim, A.; Hamzi, B. AI-Driven Thoracic X-ray Diagnostics: Transformative Transfer Learning for Clinical Validation in Pulmonary Radiography. J. Pers. Med. 2024, 14, 856. [Google Scholar] [CrossRef]
- Anari, P.Y.; Obiezu, F.; Lay, N.; Firouzabadi, F.D.; Chaurasia, A.; Golagha, M.; Singh, S.; Homayounieh, F.; Zahergivar, A.; Harmon, S.; et al. Using YOLO v7 to Detect Kidney in Magnetic Resonance Imaging. arXiv 2024, arXiv:2402.05817v2. [Google Scholar]
- Chen, Z.; Pawar, K.; Ekanayake, M.; Pain, C.; Zhong, S.; Egan, G.F. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging—State-of-the-Art and Challenges. J. Digit. Imaging 2022, 36, 204–230. [Google Scholar] [CrossRef]
- Zhong, B.; Yi, J.; Jin, Z. AC-Faster R-CNN: An improved detection architecture with high precision and sensitivity for abnormality in spine x-ray images. Phys. Med. Biol. 2023, 68, 195021. [Google Scholar] [CrossRef]
- Rajaraman, S.; Zamzmi, G.; Folio, L.R.; Antani, S. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Front. Genet. 2022, 13, 864724. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Lam, K.; Le, L.T.; Pham, H.H.; Tran, D.Q.; Nguyen, D.B.; Le, D.D.; Pham, C.M.; Tong, H.T.T.; Dinh, D.H.; et al. VinDr-CXR: An open dataset of chest X-rays with radiolo-gist’s annotations. Sci. Data 2022, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv 2017. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Berkowitz, S.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.-Y.; Mark, R.G.; Horng, S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 2019, 6, 317. [Google Scholar] [CrossRef] [PubMed]
- Majkowska, A.; Mittal, S.; Steiner, D.F.; Reicher, J.J.; McKinney, S.M.; Duggan, G.E.; Eswaran, K.; Cameron Chen, P.-H.; Liu, Y.; Kalidindi, S.R.; et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology 2020, 294, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Seyyed-Kalantari, L.; Zhang, H.; McDermott, M.B.A.; Chen, I.Y.; Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 2021, 27, 2176–2182. [Google Scholar] [CrossRef]
- Hashir, M.; Bertrand, H.; Cohen, J.P. Quantifying the Value of Lateral Views in Deep Learning for Chest X-rays. arXiv 2020. [Google Scholar] [CrossRef]
- Liong-Rung, L.; Hung-Wen, C.; Ming-Yuan, H.; Shu-Tien, H.; Ming-Feng, T.; Chia-Yu, C.; Kuo-Song, C. Using Artificial Intelligence to Establish Chest X-Ray Image Recognition Model to Assist Crucial Diagnosis in Elder Patients With Dyspnea. Front. Med. 2022, 9, 893208. [Google Scholar] [CrossRef]
- Kaewwilai, L.; Yoshioka, H.; Choppin, A.; Prueksaritanond, T.; Ayuthaya, T.P.N.; Brukesawan, C.; Matupumanon, S.; Kawabe, S.; Shimahara, Y.; Phosri, A.; et al. Development and evaluation of an artificial intelligence (AI)-assisted chest x-ray diagnostic system for detecting, diagnosing, and monitoring tuberculosis. Glob. Transit. 2025, 7, 87–93. [Google Scholar] [CrossRef]
- Singh, A.R.; Athisayamani, S.; Hariharasitaraman, S.; Karim, F.K.; Varela-Aldás, J.; Mostafa, S.M. Depth-Enhanced Tumor Detection Framework for Breast Histopathology Images by Integrating Adaptive Multi-Scale Fusion, Semantic Depth Calibration, and Boundary-Guided Detection. IEEE Access 2025, 13, 58735–58745. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp. 3462–3471. Available online: http://ieeexplore.ieee.org/document/8099852/ (accessed on 25 October 2025).
- Hofmeister, J.; Garin, N.; Montet, X.; Scheffler, M.; Platon, A.; Poletti, P.-A.; Stirnemann, J.; Debray, M.-P.; Claessens, Y.-E.; Duval, X.; et al. Validating the accuracy of deep learning for the diagnosis of pneumonia on chest x-ray against a robust multimodal reference diagnosis: A post hoc analysis of two prospective studies. Eur. Radiol. Exp. 2024, 8, 20. [Google Scholar] [CrossRef]
- Gaber, K.A.; McGavin, C.R.; Wells, I.P. Lateral chest X-ray for physicians. J. R. Soc. Med. 2005, 98, 310–312. [Google Scholar] [CrossRef]
- Gibson, E.; Georgescu, B.; Ceccaldi, P.; Trigan, P.-H.; Yoo, Y.; Das, J.; Re, T.J.; Rs, V.; Balachandran, A.; Eibenberger, E.; et al. Artificial Intelligence with Statistical Confidence Scores for Detection of Acute or Subacute Hemorrhage on Noncontrast CT Head Scans. Radiol. Artif. Intell. 2022, 4, e210115. [Google Scholar] [CrossRef]
- Chen, C.-F.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. arXiv 2021. [Google Scholar] [CrossRef]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. arXiv 2020. [Google Scholar] [CrossRef]
- Kong, Z.; Xu, D.; Li, Z.; Dong, P.; Tang, H.; Wang, Y.; Mukherjee, S. AutoViT: Achieving Real-Time Vision Transformers on Mobile via Latency-aware Coarse-to-Fine Search. Int. J. Comput. Vis. 2025, 133, 6170–6186. [Google Scholar] [CrossRef]








| Pathology | Positive Cases | Prevalence | Prevalence (%) |
|---|---|---|---|
| Consolidation | 155 | 0.2931 | 29.31 |
| Opacity | 14 | 0.0265 | 2.65 |
| Aortic Enlargement | 22 | 0.0416 | 4.16 |
| Pleural Effusion | 33 | 0.0624 | 6.24 |
| Pleural Thickening | 15 | 0.0284 | 2.84 |
| Nodule/Mass | 19 | 0.0359 | 3.59 |
| Cardiomegaly | 36 | 0.0681 | 6.81 |
| Calcification | 2 | 0.0038 | 0.38 |
| Pneumothorax | 20 | 0.0378 | 3.78 |
| ILD | 8 | 0.0151 | 1.51 |
| Atelectasis | 148 | 0.2798 | 27.98 |
| Pulmonary Fibrosis | 15 | 0.0284 | 2.84 |
| Infiltration | 24 | 0.0454 | 4.54 |
| Other Lesion | 5 | 0.0095 | 0.95 |
| Pathology | Sensitivity | Specificity | Precision | F1_Score | Accuracy | NPV |
|---|---|---|---|---|---|---|
| Consolidation | 0.9615 | 0.9974 | 0.9921 | 0.9766 | 0.9885 | 0.9874 |
| Opacity | 0.4375 | 1.0000 | 1.0000 | 0.6087 | 0.9828 | 0.9825 |
| Aortic Enlargement | 0.3448 | 1.0000 | 1.0000 | 0.5128 | 0.9636 | 0.9629 |
| Pleural Effusion | 0.6757 | 1.0000 | 1.0000 | 0.8065 | 0.9770 | 0.9759 |
| Pleural Thickening | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Nodule/Mass | 0.8750 | 0.9980 | 0.9545 | 0.9130 | 0.9923 | 0.9940 |
| Cardiomegaly | 0.6000 | 1.0000 | 1.0000 | 0.7500 | 0.9655 | 0.9636 |
| Calcification | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Pneumothorax | 0.7500 | 0.9880 | 0.7143 | 0.7317 | 0.9789 | 0.9900 |
| ILD | 0.5000 | 1.0000 | 1.0000 | 0.6667 | 0.9962 | 0.9962 |
| Atelectasis | 0.9730 | 0.9947 | 0.9863 | 0.9796 | 0.9885 | 0.9894 |
| Pulmonary Fibrosis | 0.9333 | 1.0000 | 1.0000 | 0.9655 | 0.9981 | 0.9980 |
| Infiltration | 0.5000 | 1.0000 | 1.0000 | 0.6667 | 0.9713 | 0.9704 |
| Other Lesion | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.9923 | 0.9923 |
| Mean | 0.6822 | 0.9984 | 0.9034 | 0.7556 | 0.9854 | 0.9859 |
| Pathology Pair | Co-Occurrence Count | Co-Detection Prevalence | Co-Detection (%) |
|---|---|---|---|
| Consolidation + Atelectasis | 21 | 0.0397 | 3.97 |
| Consolidation + Pleural Effusion | 8 | 0.0151 | 1.51 |
| Consolidation + Pleural Thickening | 7 | 0.0132 | 1.32 |
| Consolidation + Nodule/Mass | 6 | 0.0113 | 1.13 |
| Consolidation + Cardiomegaly | 6 | 0.0113 | 1.13 |
| Atelectasis + Pleural Effusion | 6 | 0.0113 | 1.13 |
| Consolidation + Pulmonary Fibrosis | 5 | 0.0095 | 0.95 |
| Atelectasis + Pleural Thickening | 5 | 0.0095 | 0.95 |
| Consolidation + Opacity | 4 | 0.0076 | 0.76 |
| Atelectasis + Nodule/Mass | 4 | 0.0076 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Giri, L.; Regmi, P.R.; Gurung, G.; Gurung, G.; Aryal, S.; Mandal, S.; Giri, S.; Chaulagain, S.; Acharya, S.; Umair, M. Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases. Diagnostics 2026, 16, 66. https://doi.org/10.3390/diagnostics16010066
Giri L, Regmi PR, Gurung G, Gurung G, Aryal S, Mandal S, Giri S, Chaulagain S, Acharya S, Umair M. Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases. Diagnostics. 2026; 16(1):66. https://doi.org/10.3390/diagnostics16010066
Chicago/Turabian StyleGiri, Latika, Pradeep Raj Regmi, Ghanshyam Gurung, Grusha Gurung, Shova Aryal, Sagar Mandal, Samyam Giri, Sahadev Chaulagain, Sandip Acharya, and Muhammad Umair. 2026. "Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases" Diagnostics 16, no. 1: 66. https://doi.org/10.3390/diagnostics16010066
APA StyleGiri, L., Regmi, P. R., Gurung, G., Gurung, G., Aryal, S., Mandal, S., Giri, S., Chaulagain, S., Acharya, S., & Umair, M. (2026). Diagnostic Accuracy of an Offline CNN Framework Utilizing Multi-View Chest X-Rays for Screening 14 Co-Occurring Communicable and Non-Communicable Diseases. Diagnostics, 16(1), 66. https://doi.org/10.3390/diagnostics16010066

