Diagnosis and Surgical Management for Advanced Pancreatic Cancer Requiring Vascular Resection
Abstract
1. Introduction
2. Materials and Methods
3. Diagnosis
Definitions of Vascular Involvement and Resectability
4. Management of PDAC with Vascular Involvement
5. Surgical Management
5.1. Venous Resections and Reconstructions in PDAC
5.1.1. Oncologic Outcomes of Pancreatectomy with Venous Resection
5.1.2. Reconstruction Technique, Patency and Thrombosis
5.2. Arterial Resections and Reconstructions in PDAC
5.2.1. Oncologic Outcomes of Pancreatectomy with Arterial Resection and Arterial Divestment
5.2.2. Patency and Thrombotic Events Following Arterial Reconstruction
6. Antithrombotic Practice
7. Discussion
Limitations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Słodkowski, M.; Wroński, M.; Karkocha, D.; Kraj, L.; Śmigielska, K.; Jachnis, A. Current Approaches for the Curative-Intent Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers 2023, 15, 2584. [Google Scholar] [CrossRef]
- Owens, D.K.; Davidson, K.W.; Krist, A.H.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Curry, S.J.; Doubeni, C.A.; Epling, J.W.; Kubik, M.; et al. Screening for pancreatic cancer. JAMA 2019, 322, 438. [Google Scholar]
- Frampas, E.; David, A.; Regenet, N.; Touchefeu, Y.; Meyer, J.; Morla, O. Pancreatic carcinoma: Key-points from diagnosis to treatment. Diagn. Interv. Imaging 2016, 97, 1207–1223. [Google Scholar] [CrossRef]
- Hayat, U.; Croce, P.S.; Saadeh, A.; Desai, K.; Appiah, J.; Khan, S.; Khan, Y.I.; Kumar, K.; Hanif, A. Current and emerging treatment options for Pancreatic Cancer: A Comprehensive review. J. Clin. Med. 2025, 14, 1129. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.H.; Khan, M.N. Developments in pancreatic cancer emerging therapies, diagnostic methods, and epidemiology. Pathol. -Res. Pract. 2025, 271, 156012. [Google Scholar] [CrossRef]
- Weniger, M.; Miksch, R.C.; Maisonneuve, P.; Werner, J.; D’Haese, J.G. Improvement of survival after surgical resection of pancreatic cancer independent of adjuvant chemotherapy in the past two decades—A meta-regression. Eur. J. Surg. Oncol. 2020, 46, 1516–1523. [Google Scholar] [CrossRef]
- Guenther, M.; Boeck, S.; Heinemann, V.; Werner, J.; Engel, J.; Ormanns, S. The impact of adjuvant therapy on outcome in UICC stage I pancreatic cancer. International journal of cancer 2022, 151, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xie, Y.; Huang, J.; Liang, Y.; Chang, S.; Wang, H.; Wang, Y.; Gao, C.; Wang, X.; Zhao, T.; et al. Survival outcomes of adjuvant chemotherapy in patients with stage I pancreatic cancer stratified by pathologic risk. Surgery 2024, 176, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, L.; Feng, X.; Yang, L.; Chen, G.; Jiang, Y.; Huang, T.; Wang, H.; Li, F. Advances in neoadjuvant therapy for pancreatic cancer: Current trends and future directions. World J. Clin. Oncol. 2025, 16, 105849. [Google Scholar] [CrossRef]
- Kwaśniewska, D.; Fudalej, M.; Badowska-Kozakiewicz, A.M.; Czerw, A.; Deptała, A. Neoadjuvant therapy or Upfront Surgery for Pancreatic Cancer—To whom, when, and how? Cancers 2025, 17, 2584. [Google Scholar] [CrossRef] [PubMed]
- Cassese, G.; Han, H.; Yoon, Y.; Lee, J.S.; Lee, B.; Cubisino, A.; Panaro, F.; Troisi, R.I. Role of neoadjuvant therapy for nonmetastatic pancreatic cancer: Current evidence and future perspectives. World J. Gastrointest. Oncol. 2023, 15, 911–924. [Google Scholar] [CrossRef]
- Heinrich, S.; Besselink, M.; Moehler, M.; Van Laethem, J.; Ducreux, M.; Grimminger, P.; Mittler, J.; Lang, H.; Lutz, M.P.; Lesurtel, M. Opinions and use of neoadjuvant therapy for resectable, borderline resectable, and locally advanced pancreatic cancer: International survey and case-vignette study. BMC Cancer 2019, 19, 675. [Google Scholar] [CrossRef]
- Tanadi, C.; Tandarto, K.; Stella, M.M.; Adiwinata, R.; Tenggara, J.B.; Simadibrata, P.; Simadibrata, M. Neoadjuvant therapy versus upfront surgery approach in resectable pancreatic cancer: A systematic review and meta-analysis. Ann. Gastroenterol. 2025, 38, 453–461. [Google Scholar] [CrossRef]
- Bockhorn, M.; Uzunoglu, F.G.; Adham, M.; Imrie, C.; Milicevic, M.; Sandberg, A.A.; Asbun, H.J.; Bassi, C.; Büchler, M.; Charnley, R.M.; et al. Borderline resectable pancreatic cancer: A consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2014, 155, 977–988. [Google Scholar] [CrossRef]
- Giannone, F.; Capretti, G.; Hilal, M.A.; Boggi, U.; Campra, D.; Cappelli, C.; Casadei, R.; De Luca, R.; Falconi, M.; Giannotti, G.; et al. Resectability of pancreatic cancer is in the eye of the observer. Ann. Surg. Open 2021, 2, e087. [Google Scholar] [CrossRef]
- NCCN Guidelines on Pancreatic Adenocarcinoma. NCCN. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455 (accessed on 1 November 2025).
- Pedrazzoli, S. Surgical treatment of pancreatic Cancer: Currently debated topics on vascular resection. Cancer Control 2023, 30, 10732748231153094. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.; Ronellenfitsch, U.; Döbereiner, J.; Ukkat, J.; Kleeff, J. Do arterial resections improve survival in pancreatic cancer?—A narrative review. Chin. Clin. Oncol. 2021, 10, 48. [Google Scholar] [CrossRef]
- Vincente, E.; Quijano, Y.; Ielpo, B. Arterial resection for pancreatic cancer: A modern surgeon should change its behavior according to the new therapeutic options. G. Chir. 2014, 35, 5–14. [Google Scholar] [PubMed]
- Miao, Y.; Cai, B.; Lu, Z. Technical options in surgery for artery-involving pancreatic cancer: Invasion depth matters. Surg. Open Sci. 2023, 12, 55–61. [Google Scholar] [CrossRef]
- Elbanna, K.Y.; Jang, H.J.; Kim, T.K. Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: A comprehensive review. Insights Imaging 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.D.; Clarke, S.E.; Costa, A.F. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. Eur. Radiol. 2021, 31, 2422–2432. [Google Scholar] [CrossRef]
- Salgado, D.; Kang, J.; Costa, A.F. Mimics of pancreatic neoplasms at cross-sectional imaging: Pearls for characterization and diagnostic work-up. Curr. Probl. Diagn. Radiol. 2024, 54, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Álvarez, R.; Gallego, J.; Guillén-Ponce, C.; Laquente, B.; Macarulla, T.; Muñoz, A.; Salgado, M.; Vera, R.; Adeva, J.; et al. Consensus guidelines for diagnosis, treatment and follow-up of patients with pancreatic cancer in Spain. Clin. Transl. Oncol. 2016, 19, 667–681. [Google Scholar] [CrossRef]
- Meziani, J.; de Jong, J.G.Y.; Fuhler, G.M.; Koopmann, B.D.M.; Levink, I.J.M.; Fockens, P.; Vleggaar, F.P.; Bruno, M.J.; Cahen, D.L. Assessment of Glucose and HbA1c Monitoring in a Pancreatic Cancer Surveillance Program for High-Risk Individuals. Clin. Transl. Gastroenterol. 2024, 15, e00777. [Google Scholar] [CrossRef]
- Rassy, E.; Delaloge, S.; Slaouti, Y.; Pudlarz, T.; Lekens, B.; Boilève, A.; Michiels, S.; Karimi, M. Identifying health conditions associated with an increased risk of pancreatic ductal adenocarcinoma at medium term in nationwide electronic health records of primary care physicians. Br. J. Cancer 2025, 133, 1317–1325. [Google Scholar] [CrossRef]
- Lee, T.; Teng, T.Z.J.; Shelat, V.G. Carbohydrate antigen 19-9—Tumor marker: Past, present, and future. World J. Gastrointest. Surg. 2020, 12, 468–490. [Google Scholar] [CrossRef]
- Zhao, B.; Cheng, Q.; Cao, H.; Zhou, X.; Li, T.; Dong, L.; Wang, W. Dynamic change of serum CA19-9 levels in benign and malignant patients with obstructive jaundice after biliary drainage and new correction formulas. BMC Cancer 2021, 21, 517. [Google Scholar] [CrossRef]
- Balaban, D.V.; Marin, F.S.; Manucu, G.; Zoican, A.; Ciochina, M.; Mina, V.; Patoni, C.; Vladut, C.; Bucurica, S.; Costache, R.S.; et al. Clinical characteristics and outcomes in carbohydrate antigen 19-9 negative pancreatic cancer. World J. Clin. Oncol. 2022, 13, 630–640. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: A meta-analysis. Tumour Biol. 2014, 35, 7459–7465. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, B.; Chen, F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef]
- Raza, S.S.; Khan, H.; Hajibandeh, S.; Hajibandeh, S.; Bartlett, D.; Chatzizacharias, N.; Roberts, K.; Marudanayagam, R.; Sutcliffe, R.P. Can preoperative Carbohydrate Antigen 19-9 predict metastatic pancreatic cancer? Results of a systematic review and meta-analysis. HPB 2024, 26, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.M.; Wang, H.; Li, R.; Pan, G. Prognostic Role of Carbohydrate Antigen 19 to 9 in Predicting Survival of Patients with Pancreatic Cancer: A Meta-Analysis. Technol. Cancer Res. Treat. 2021, 20, 15330338211043030. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Lee, J.M. Imaging diagnosis of pancreatic cancer: A state-of-the-art review. World J. Gastroenterol. 2014, 20, 7864–7877. [Google Scholar] [CrossRef]
- Kang, J.; Abdolell, M.; Costa, A.F. Transabdominal ultrasound of pancreatic ductal adenocarcinoma: A multi-centered population-based study in sensitivity, associated diagnostic intervals, and survival. Curr. Probl. Diagn. Radiol. 2022, 51, 842–847. [Google Scholar] [CrossRef]
- Toft, J.; Hadden, W.J.; Laurence, J.M.; Lam, V.; Yuen, L.; Janssen, A.; Pleass, H. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. Eur. J. Radiol. 2017, 92, 17–23. [Google Scholar] [CrossRef]
- Bipat, S.; Phoa, S.S.; van Delden, O.M.; Bossuyt, P.M.; Gouma, D.J.; Laméris, J.S.; Stoker, J. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: A meta-analysis. J. Comput. Assist. Tomogr. 2005, 29, 438–445. [Google Scholar] [CrossRef]
- Bilreiro, C.; Andrade, L.; Santiago, I.; Marques, R.M.; Matos, C. Imaging of pancreatic ductal adenocarcinoma—An update for all stages of patient management. Eur. J. Radiol. Open 2024, 12, 100553. [Google Scholar] [CrossRef]
- Nakaoka, K.; Ohno, E.; Kawabe, N.; Kuzuya, T.; Funasaka, K.; Nakagawa, Y.; Nagasaka, M.; Ishikawa, T.; Watanabe, A.; Tochio, T.; et al. Current Status of the Diagnosis of Early-Stage Pancreatic Ductal Adenocarcinoma. Diagnostics 2023, 13, 215. [Google Scholar] [CrossRef]
- Loizou, L.; Albiin, N.; Ansorge, C.; Andersson, M.; Segersvärd, R.; Leidner, B.; Sundin, A.; Lundell, L.; Kartalis, N. Computed tomography staging of pancreatic cancer: A validation study addressing interobserver agreement. Pancreatology 2013, 13, 570–575. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, T.; Hu, Y.; Xu, Y.; Wang, J.; Guo, S.; Xie, S.; Sun, H. Assessment of vascular invasion of pancreatic ductal adenocarcinoma based on CE-boost black blood CT technique. Insights Imaging 2024, 15, 293. [Google Scholar] [CrossRef]
- Somers, I.; Bipat, S. Contrast-enhanced CT in determining resectability in patients with pancreatic carcinoma: A meta-analysis of the positive predictive values of CT. Eur. Radiol. 2017, 27, 3408–3435. [Google Scholar] [CrossRef]
- Chatterjee, A.; Shah, J. Role of Endoscopic Ultrasound in Diagnosis of Pancreatic Ductal Adenocarcinoma. Diagnostics 2023, 14, 78. [Google Scholar] [CrossRef]
- Salom, F.; Prat, F. Current role of endoscopic ultrasound in the diagnosis and management of pancreatic cancer. World J. Gastrointest. Endosc. 2022, 14, 35–48. [Google Scholar] [CrossRef]
- Yang, R.; Lu, M.; Qian, X.; Chen, J.; Li, L.; Wang, J.; Zhang, Y. Diagnostic accuracy of EUS and CT of vascular invasion in pancreatic cancer: A systematic review. J. Cancer Res. Clin. Oncol. 2014, 140, 2077–2086. [Google Scholar] [CrossRef]
- Dewitt, J.; Devereaux, B.M.; Lehman, G.A.; Sherman, S.; Imperiale, T.F. Comparison of endoscopic ultrasound and computed tomography for the preoperative evaluation of pancreatic cancer: A systematic review. Clin. Gastroenterol. Hepatol. 2006, 4, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.F.; Meyenberger, C.; Bertschinger, P.; Schaer, R.; Marincek, B. Pancreatic tumors: Evaluation with endoscopic US, CT, and MR imaging. Radiology 1994, 190, 745–751. [Google Scholar] [CrossRef]
- Facciorusso, A.; Mohan, B.P.; Crinò, S.F.; Ofosu, A.; Ramai, D.; Lisotti, A.; Chandan, S.; Fusaroli, P. Contrast-enhanced harmonic endoscopic ultrasound-guided fine-needle aspiration versus standard fine-needle aspiration in pancreatic masses: A meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Cotsoglou, C.; Chierici, A.; Mare, R.; Crinò, S.F.; Muscatiello, N. Contrast-Enhanced Harmonic Endoscopic Ultrasound-Guided Fine-Needle Aspiration versus Standard Fine-Needle Aspiration in Pancreatic Masses: A Propensity Score Analysis. Diagnostics 2020, 10, 792. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kawashima, H.; Ohno, E.; Ishikawa, T.; Tanaka, H.; Nakamura, M.; Miyahara, R.; Ishigami, M.; Hirooka, Y.; Fujishiro, M. Diagnosis of vascular invasion in pancreatic ductal adenocarcinoma using endoscopic ultrasound elastography. BMC Gastroenterol. 2020, 20, 81. [Google Scholar] [CrossRef]
- Facciorusso, A.; Di Maso, M.; Serviddio, G.; Larghi, A.; Costamagna, G.; Muscatiello, N. Echoendoscopic ethanol ablation of tumor combined with celiac plexus neurolysis in patients with pancreatic adenocarcinoma. J. Gastroenterol. Hepatol. 2017, 32, 439–445. [Google Scholar] [CrossRef]
- Jajodia, A.; Wang, A.; Alabousi, M.; Wilks, C.; Kulkarni, A.; van der Pol, C.B. MRI vs. CT for pancreatic adenocarcinoma vascular invasion: Comparative diagnostic test accuracy systematic review and meta-analysis. Eur. Radiol. 2023, 33, 6883–6891. [Google Scholar] [CrossRef]
- Li, A.E.; Li, B.T.; Ng, B.H.K.; McCormack, S.; Vedelago, J.; Clarke, S.; Pavlakis, N.; Samra, J. Diagnostic Accuracy of Imaging Modalities in the Evaluation of Vascular Invasion in Pancreatic Adenocarcinoma: A Meta-Analysis. World J. Oncol. 2013, 4, 74–82. [Google Scholar] [CrossRef]
- Alabousi, M.; McInnes, M.D.; Salameh, J.P.; Satkunasingham, J.; Kagoma, Y.K.; Ruo, L.; Meyers, B.M.; Aziz, T.; van der Pol, C.B. MRI vs. CT for the Detection of Liver Metastases in Patients with Pancreatic Carcinoma: A Comparative Diagnostic Test Accuracy Systematic Review and Meta-Analysis. J. Magn. Reson. Imaging 2021, 53, 38–48. [Google Scholar] [CrossRef]
- Horvat, N.; Ryan, D.E.; LaGratta, M.D.; Shah, P.M.; Do, R.K. Imaging for pancreatic ductal adenocarcinoma. Chinese clinical oncology 2017, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Wang, C.; Zhao, S.; Xie, R.; Zhao, L.; Li, K.; Yang, C.; Zhang, R.; Tian, Y.; Tan, L.; et al. The clinical application of 18F-FDG PET/CT in pancreatic cancer: A narrative review. Transl. Cancer Res. 2021, 10, 3560–3575. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.C.; Versteijne, E.; Bonsing, B.A.; Mieog, J.S.D.; de Hingh, I.H.J.T.; Festen, S.; Patijn, G.A.; van Dam, R.; van der Harst, E.; Wijsman, J.H.; et al. The yield of staging laparoscopy for resectable and borderline resectable pancreatic cancer in the PREOPANC randomized controlled trial. Eur. J. Surg. Oncol. 2023, 49, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, H.; Yonkus, J.A.; Alva-Ruiz, R.; Kendrick, M.L.; Smoot, R.L.; Warner, S.G.; Starlinger, P.; Thiels, C.A.; Nagorney, D.M.; Cleary, S.P.; et al. Yield of Staging Laparoscopy for Pancreatic Cancer in the Modern Era: Analysis of More than 1,000 Consecutive Patients. J. Am. Coll. Surg. 2023, 237, 49–57. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Conroy, T.; Castan, F.; Lopez, A.; Turpin, A.; Ben Abdelghani, M.; Wei, A.C.; Mitry, E.; Biagi, J.J.; Evesque, L.; Artru, P.; et al. Five-Year Outcomes of FOLFIRINOX vs Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1571–1578. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Tempero, M.A.; Pelzer, U.; O’Reilly, E.M.; Winter, J.; Oh, D.Y.; Li, C.P.; Tortora, G.; Chang, H.M.; Lopez, C.D.; Bekaii-Saab, T.; et al. Adjuvant nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phase III Trial. J. Clin. Oncol. 2023, 41, 2007–2019. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Kamarajah, S.K.; Bundred, J.R.; Alrawashdeh, W.; Manas, D.; White, S.A. A systematic review and network meta-analysis of phase III randomised controlled trials for adjuvant therapy following resection of pancreatic ductal adenocarcinoma (PDAC). HPB 2020, 22, 649–659. [Google Scholar] [CrossRef]
- de Jesus, V.H.F.; Riechelmann, R.P. Comparative efficacy of modified FOLFIRINOX, gemcitabine plus capecitabine and gemcitabine plus nab-paclitaxel as adjuvant treatment for resected pancreatic cancer: A Bayesian network meta-analysis. Ecancermedicalscience 2021, 15, 1276. [Google Scholar] [CrossRef]
- Aliseda, D.; Martí-Cruchaga, P.; Zozaya, G.; Blanco, N.; Ponz, M.; Chopitea, A.; Rodríguez, J.; Castañón, E.; Pardo, F.; Rotellar, F. Neoadjuvant therapy versus upfront surgery in resectable pancreatic cancer: Reconstructed patient-level meta-analysis of randomized clinical trials. BJS Open 2024, 8, zrae087. [Google Scholar] [CrossRef]
- Roesel, R.; Deantonio, L.; Bernardi, L.; Garo, M.L.; Majno-Hurst, P.; Vannelli, A.; Cefalì, M.; Palmarocchi, M.C.; Valli, M.C.; Pesola, G.; et al. Neo-Adjuvant Treatment in Primary Resectable Pancreatic Cancer: A Systematic Review and PRISMA-Compliant Updated Metanalysis of Oncological Outcomes. Cancers 2023, 15, 4627. [Google Scholar] [CrossRef]
- Labori, K.J.; Bratlie, S.O.; Andersson, B.; Angelsen, J.H.; Biörserud, C.; Björnsson, B.; Bringeland, E.A.; Elander, N.; Garresori, H.; Grønbech, J.E.; et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2024, 9, 205–217. [Google Scholar] [CrossRef]
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef]
- Cecchini, M.; Salem, R.R.; Robert, M.; Czerniak, S.; Blaha, O.; Zelterman, D.; Rajaei, M.; Townsend, J.P.; Cai, G.; Chowdhury, S.; et al. Perioperative Modified FOLFIRINOX for Resectable Pancreatic Cancer: A Nonrandomized Controlled Trial. JAMA Oncol. 2024, 10, 1027–1035. [Google Scholar] [CrossRef]
- Cui, J.; Jiao, F.; Li, Q.; Wang, Z.; Fu, D.; Liang, J.; Liang, H.; Xia, T.; Zhang, T.; Zhang, Y.; et al. Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of pancreatic cancer. J. Natl. Cancer Cent. 2022, 2, 205–215. [Google Scholar] [CrossRef]
- Ghaneh, P.; Palmer, D.; Cicconi, S.; Jackson, R.; Halloran, C.M.; Rawcliffe, C.; Sripadam, R.; Mukherjee, S.; Soonawalla, Z.; Wadsley, J.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): A four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.; Herman, J.M.; Chuong, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.; Schwartz, L.; Behr, S.; et al. Efficacy of Preoperative mFOLFIRINOX vs mFOLFIRINOX Plus Hypofractionated Radiotherapy for Borderline Resectable Adenocarcinoma of the Pancreas: The A021501 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1263–1270. [Google Scholar] [CrossRef]
- Wu, H.Y.; Tsou, H.H.; Lu, L.S.; Lee, H.L.; Chiou, J.F.; Ch’ang, H.J. Role of Neoadjuvant Chemoradiation Therapy for Resectable and Borderline Resectable Pancreatic Adenocarcinoma-A Systematic Review and Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2025, 122, 1257–1271. [Google Scholar] [CrossRef]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; Faris, J.E.; Mellon, E.A.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, R.; Abe, S.; Chiyoda, T.; Kogure, R.; Kimura, A.; Komagome, M.; Maki, A.; Beck, Y. Predicting conversion surgery in patients with locally advanced pancreatic cancer after modified FOLFIRINOX treatment. Asian J. Surg. 2023, 46, 3542–3548. [Google Scholar] [CrossRef] [PubMed]
- van Veldhuisen, E.; van den Oord, C.; Brada, L.J.; Walma, M.S.; Vogel, J.A.; Wilmink, J.W.; Del Chiaro, M.; van Lienden, K.P.; Meijerink, M.R.; van Tienhoven, G.; et al. Locally Advanced Pancreatic Cancer: Work-Up, Staging, and Local Intervention Strategies. Cancers 2019, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, P.; Chen, Z.; Yang, L. Conversion therapy, palliative chemotherapy and surgery, which of these is the best treatment for locally advanced and advanced pancreatic cancer. Anticancer. Drugs 2022, 33, e686–e691. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Yoshioka, R.; Yanagisawa, N.; Ishii, S.; Sugitani, J.; Furuya, R.; Fujisawa, M.; Imamura, H.; Mise, Y.; Isayama, H.; et al. Survival Analysis of Conversion Surgery in Borderline Resectable and Locally Advanced Unresectable Pancreatic Ductal Adenocarcinoma Addressing Selection and Immortal Time Bias: A Retrospective Single-Center Study. Ann. Surg. Oncol. 2024, 31, 8744–8755. [Google Scholar] [CrossRef]
- Yousaf, M.N.; Ehsan, H.; Wahab, A.; Muneeb, A.; Chaudhary, F.S.; Williams, R.; Haas, C.J. Endoscopic retrograde cholangiopancreatography guided interventions in the management of pancreatic cancer. World J. Gastrointest. Endosc. 2020, 12, 323–340. [Google Scholar] [CrossRef]
- Nakai, Y.; Isayama, H.; Wang, H.P.; Rerknimitr, R.; Khor, C.; Yasuda, I.; Kogure, H.; Moon, J.H.; Lau, J.; Lakhtakia, S.; et al. International consensus statements for endoscopic management of distal biliary stricture. J. Gastroenterol. Hepatol. 2020, 35, 967–979. [Google Scholar] [CrossRef]
- van der Gaag, N.A.; Rauws, E.A.; van Eijck, C.H.; Bruno, M.J.; van der Harst, E.; Kubben, F.J.; Gerritsen, J.J.; Greve, J.W.; Gerhards, M.F.; de Hingh, I.H.; et al. Preoperative biliary drainage for cancer of the head of the pancreas. N. Engl. J. Med. 2010, 362, 129–137. [Google Scholar] [CrossRef]
- Nehme, F.; Lee, J.H. Preoperative biliary drainage for pancreatic cancer. Dig. Endosc. 2022, 34, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lang, Z.; Zhu, K.; Luo, W.; Zhao, Z.; Zhang, Z.; Wang, Z. Whether preoperative biliary drainage leads to better patient outcomes of pancreaticoduodenectomy: A meta-analysis and systematic review. BMC Gastroenterol. 2025, 25, 161. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, J.E.; Lariño-Noia, J.; Iglesias-Garcia, J. Biliary drainage in pancreatic cancer: The endoscopic retrograde cholangiopancreatography perspective. Endosc. Ultrasound 2017, 6, S119–S121. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, C.S.; Hank, T.; Pils, D.; Gustorff, C.; Sahora, K.; Schindl, M.; Verbeke, C.S.; Strobel, O.; Klaiber, U. Prognostic impact of resection margin status on survival after neoadjuvant treatment for pancreatic cancer: Systematic review and meta-analysis. Int. J. Surg. 2024, 110, 453–463. [Google Scholar] [CrossRef]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.M.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef]
- Coco, D.; Leanza, S.; Guerra, F. Total Pancreatectomy: Indications, Advantages and Disadvantages—A Review. Maedica 2019, 14, 391–396. [Google Scholar] [CrossRef]
- Andreou, A.; Aeschbacher, P.; Candinas, D.; Gloor, B. The Impact of Patient Age ≥80 Years on Postoperative Outcomes and Treatment Costs Following Pancreatic Surgery. J. Clin. Med. 2021, 10, 696. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, D.; Meng, L.; Cao, Y.; Zhang, H.; Pan, Z.; Lin, C. The value of combined vein resection in pancreaticoduodenectomy for pancreatic head carcinoma: A meta-analysis. BMC Surg. 2019, 19, 84. [Google Scholar] [CrossRef]
- Rebelo, A.; Büdeyri, I.; Heckler, M.; Partsakhashvili, J.; Ukkat, J.; Ronellenfitsch, U.; Michalski, C.W.; Kleeff, J. Systematic review and meta-analysis of contemporary pancreas surgery with arterial resection. Langenbeck’s Arch. Surg. 2020, 405, 903–919. [Google Scholar] [CrossRef]
- Tol, J.A.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andrén-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Büchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef]
- Groen, J.V.; Michiels, N.; van Roessel, S.; Besselink, M.G.; Bosscha, K.; Busch, O.R.; van Dam, R.; van Eijck, C.H.J.; Koerkamp, B.G.; van der Harst, E.; et al. Venous wedge and segment resection during pancreatoduodenectomy for pancreatic cancer: Impact on short- and long-term outcomes in a nationwide cohort analysis. Br. J. Surg. 2021, 109, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Tinguely, P.; Hidalgo Salinas, C.; Staubli, S.M.; Raptis, D.A.; Fusai, G.K.; Pancreasgroup.org Chief Investigator; Pancreasgroup.org Scientific Committee Collaborators; Pancreasgroup.org Management Committee Collaborators; Pancreasgroup.org Country Leaders; All Pancreasgroup.org Collaborators. Analysis of Short-Term Outcomes in Pancreatic Surgery with Vascular Resection from a Prospective Multicenter Global Study. Ann. Surg. Oncol. 2025, 32, 8870–8880. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, B.; Król, R.; Mrowiec, S. Vascular Resection in Pancreatectomy-Is It Safe and Useful for Patients with Advanced Pancreatic Cancer? Cancers 2022, 14, 1193. [Google Scholar] [CrossRef]
- Bachellier, P.; Rosso, E.; Fuchshuber, P.; Addeo, P.; David, P.; Oussoultzoglou, E.; Lucescu, I. Use of a temporary intraoperative mesentericoportal shunt for pancreatic resection for locally advanced pancreatic cancer with portal vein occlusion and portal hypertension. Surgery 2014, 155, 449–456. [Google Scholar] [CrossRef]
- Nakao, A. Isolated pancreatectomy using mesenteric approach. J. Hepato-Biliary-Pancreatic Sci. 2022, 29, 293–300. [Google Scholar] [CrossRef]
- Giovinazzo, F.; Turri, G.; Katz, M.H.; Heaton, N.; Ahmed, I. Meta-analysis of benefits of portal-superior mesenteric vein resection in pancreatic resection for ductal adenocarcinoma. Br. J. Surg. 2016, 103, 179–191. [Google Scholar] [CrossRef]
- Zwart, E.S.; Yilmaz, B.S.; Halimi, A.; Ahola, R.; Kurlinkus, B.; Laukkarinen, J.; Ceyhan, G.O. Venous resection for pancreatic cancer, a safe and feasible option? A systematic review and meta-analysis. Pancreatology 2022, 22, 803–809. [Google Scholar] [CrossRef]
- Papakonstantinou, M.; Fiflis, S.; Giakoustidis, A.; Christodoulidis, G.; Myriskou, A.; Louri, E.; Papalavrentios, L.; Papadopoulos, V.N.; Giakoustidis, D. Survival after vascular resections in patients with borderline resectable or locally advanced pancreatic head cancer: A systematic review. Ann. Hepato-Biliary-Pancreat. Surg. 2024, 28, 423–432. [Google Scholar] [CrossRef]
- Yu, X.Z.; Li, J.; Fu, D.L.; Di, Y.; Yang, F.; Hao, S.J.; Jin, C. Benefit from synchronous portal-superior mesenteric vein resection during pancreaticoduodenectomy for cancer: A meta-analysis. Eur. J. Surg. Oncol. 2014, 40, 371–378. [Google Scholar] [CrossRef]
- Wang, X.; Demir, I.E.; Schorn, S.; Jäger, C.; Scheufele, F.; Friess, H.; Ceyhan, G.O. Venous resection during pancreatectomy for pancreatic cancer: A systematic review. Transl. Gastroenterol. Hepatol. 2019, 4, 46. [Google Scholar] [CrossRef]
- Tsiotos, G.G.; Ballian, N.; Milas, F.; Ziogou, P.; Papaioannou, D.; Salla, C.; Athanasiadis, I.; Stavridi, F.; Strimpakos, A.; Psomas, M.; et al. Portal-mesenteric vein resection for pancreatic cancer: Results in par with the defined benchmark outcomes. Front. Surg. 2023, 9, 1069802. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, R.; Aroori, S.; Cardini, B.; Ponholzer, F.; Russell, T.B.; Labib, P.L.; Schneeberger, S.; Ausania, F.; Pando, E.; Roberts, K.J.; et al. Venous Resection During Pancreatoduodenectomy for Pancreatic Ductal Adenocarcinoma-A Multicentre Propensity Score Matching Analysis of the Recurrence After Whipple’s (RAW) Study. Cancers 2025, 17, 1223. [Google Scholar] [CrossRef]
- Dua, M.M.; Tran, T.B.; Klausner, J.; Hwa, K.J.; Poultsides, G.A.; Norton, J.A.; Visser, B.C. Pancreatectomy with vein reconstruction: Technique matters. HPB 2015, 17, 824–831. [Google Scholar] [CrossRef]
- Chan, K.S.; Srinivasan, N.; Koh, Y.X.; Tan, E.K.; Teo, J.Y.; Lee, S.Y.; Cheow, P.C.; Jeyaraj, P.R.; Chow, P.K.H.; Ooi, L.L.P.J.; et al. Comparison between long and short-term venous patencies after pancreatoduodenectomy or total pancreatectomy with portal/superior mesenteric vein resection stratified by reconstruction type. PLoS ONE 2020, 15, e0240737. [Google Scholar] [CrossRef] [PubMed]
- Malinka, T.; Klein, F.; Denecke, T.; Pelzer, U.; Pratschke, J.; Bahra, M. The Falciform Ligament for Mesenteric and Portal Vein Reconstruction in Local Advanced Pancreatic Tumor: A Surgical Guide and Single-Center Experience. HPB Surg. 2018, 2018, 2943879. [Google Scholar] [CrossRef] [PubMed]
- Dokmak, S.; Aussilhou, B.; Sauvanet, A.; Nagarajan, G.; Farges, O.; Belghiti, J. Parietal Peritoneum as an Autologous Substitute for Venous Reconstruction in Hepatopancreatobiliary Surgery. Ann. Surg. 2015, 262, 366–371. [Google Scholar] [CrossRef]
- Cillo, U.; Perri, G.; Bassi, D.; Pellegrini, R.; Canitano, N.; Serafini, S.; Gringeri, E.; Marchegiani, G. Pancreatectomy with venous resection and peritoneal patch reconstruction: Bridging transplantation and pancreatic surgery to combine the advantages of tangential and segmental resections. HPB 2025, 27, 1318–1327. [Google Scholar] [CrossRef]
- Shao, Y.; Feng, J.; Jiang, Y.; Hu, Z.; Wu, J.; Zhang, M.; Shen, Y.; Zheng, S. Feasibility of mesentericoportal vein reconstruction by autologous falciform ligament during pancreaticoduodenectomy-cohort study. BMC Surg. 2021, 21, 4. [Google Scholar] [CrossRef]
- Lee, D.Y.; Mitchell, E.L.; Jones, M.A.; Landry, G.J.; Liem, T.K.; Sheppard, B.C.; Billingsley, K.G.; Moneta, G.L. Techniques and results of portal vein/superior mesenteric vein reconstruction using femoral and saphenous vein during pancreaticoduodenectomy. J. Vasc. Surg. 2010, 51, 662–666. [Google Scholar] [CrossRef]
- Oba, A.; Kato, T.; Inoue, Y.; Wu, Y.H.A.; Ono, Y.; Sato, T.; Ito, H.; Saiura, A.; Takahashi, Y. Extent of venous resection during pancreatectomy-finding the balance of technical possibility and feasibility. J. Gastrointest. Oncol. 2021, 12, 2495–2502. [Google Scholar] [CrossRef]
- Sarfaty, E.; Khajoueinejad, N.; Zewde, M.G.; Yu, A.T.; Cohen, N.A. Surgical management of pancreatic ductal adenocarcinoma: A narrative review. Transl. Gastroenterol. Hepatol. 2023, 8, 39. [Google Scholar] [CrossRef]
- Labori, K.J.; Kleive, D.; Khan, A.; Farnes, I.; Fosby, B.; Line, P.D. Graft type for superior mesenteric and portal vein reconstruction in pancreatic surgery—A systematic review. HPB 2021, 23, 483–494. [Google Scholar] [CrossRef]
- Asaoka, T.; Furukawa, K.; Mikamori, M.; Hyuga, S.; Ohashi, T.; Kazuya, I.; Nakahara, Y.; Naito, A.; Takahashi, H.; Moon, J.; et al. Portal vein wedge resection and patch venoplasty with autologous vein grafts for hepatobiliary-pancreatic cancer. Surg. Case Rep. 2024, 10, 27. [Google Scholar] [CrossRef]
- Smoot, R.L.; Christein, J.D.; Farnell, M.B. An innovative option for venous reconstruction after pancreaticoduodenectomy: The left renal vein. J. Gastrointest. Surg. 2007, 11, 425–431. [Google Scholar] [CrossRef]
- Klaiber, U.; Mihaljevic, A.; Hackert, T. Radical pancreatic cancer surgery-with arterial resection. Transl. Gastroenterol. Hepatol. 2019, 4, 8. [Google Scholar] [CrossRef]
- Christians, K.K.; Evans, D.B. Pancreaticoduodenectomy and Vascular Reconstruction: Indications and Techniques. Surg. Oncol. Clin. N. Am. 2021, 30, 731–746. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, H.H.; Luong, T.H.; Dang, K.K.; Le, V.D.; Tran, D.D.; Do, V.M.; Pham, H.Q.; Pham, H.M.; Tran, T.L.; et al. Pancreaticoduodenectomy with superior mesenteric artery first-approach combined total meso-pancreas excision for periampullary malignancies: A high-volume single-center experience with short-term outcomes. Ann. Hepato-Biliary-Pancreat. Surg. 2024, 28, 59–69. [Google Scholar] [CrossRef]
- Diener, M.K.; Mihaljevic, A.L.; Strobel, O.; Loos, M.; Schmidt, T.; Schneider, M.; Berchtold, C.; Mehrabi, A.; Müller-Stich, B.P.; Jiang, K.; et al. Periarterial divestment in pancreatic cancer surgery. Surgery 2021, 169, 1019–1025. [Google Scholar] [CrossRef]
- Hirose, Y.; Oba, A.; Inoue, Y.; Maekawa, A.; Kobayashi, K.; Omiya, K.; Takahashi, A.; Ono, Y.; Sato, T.; Ito, H.; et al. Arterial resection and divestment in pancreatic cancer surgery in the era of multidisciplinary treatment: Decadal comparative study. BJS Open 2025, 9, zraf026. [Google Scholar] [CrossRef]
- Noel, C.; Azeez, A.; Du Preez, A.; Noel, K. Arterial Resections in Pancreatic Cancer-An Updated Systematic Review and Meta-Analysis. Cancers 2025, 17, 1540. [Google Scholar] [CrossRef]
- Xue, K.; Huang, X.; Zhao, P.; Zhang, Y.; Tian, B. Perioperative and long-term survival outcomes of pancreatectomy with arterial resection in borderline resectable or locally advanced pancreatic cancer following neoadjuvant therapy: A systematic review and meta-analysis. Int. J. Surg. 2023, 109, 4309–4321. [Google Scholar] [CrossRef]
- Ren, L.; Jäger, C.; Schorn, S.; Pergolini, I.; Göß, R.; Safak, O.; Kießler, M.; Martignoni, M.E.; Novotny, A.R.; Friess, H.; et al. Arterial Resection for Pancreatic Cancer: Feasibility and Current Standing in a High-Volume Center. Ann. Surg. Open 2023, 4, e302. [Google Scholar] [CrossRef]
- Tsiotos, G.G.; Ballian, N.; Milas, F.; Ziogou, P.; Athanasiadis, I. Distal pancreatectomy with celiac axis resection (DP-CAR): Optimal perioperative outcome in a patient with locally advanced pancreas adenocarcinoma. Int. J. Surg. Case Rep. 2020, 76, 399–403. [Google Scholar] [CrossRef]
- Yonkus, J.A.; Alva-Ruiz, R.; Colglazier, J.J.; Kendrick, M.L.; Kalra, M.; Rasmussen, T.E.; Demartino, R.D.; Bower, T.C.; Truty, M.J.; Mendes, B.C. Outcomes of Visceral Arterial Interposition Graft Reconstruction for Locally Advanced Pancreatic Cancer. Ann. Surg. 2025, 281, 1006–1014. [Google Scholar] [CrossRef]
- Alva-Ruiz, R.; Abdelrahman, A.M.; Starlinger, P.P.; Yonkus, J.A.; Moravec, D.N.; Busch, J.J.; Fleming, C.J.; Andrews, J.C.; Mendes, B.C.; Colglazier, J.J.; et al. Patency rates of hepatic arterial resection and revascularization in locally advanced pancreatic cancer. HPB 2022, 24, 1957–1966. [Google Scholar] [CrossRef]
- Heckler, M.; Polychronidis, G.; Kinny-Köster, B.; Roth, S.; Hank, T.; Kaiser, J.; Michalski, C.; Loos, M. Thrombosis and anticoagulation after portal vein reconstruction during pancreatic surgery: A systematic review. J. Gastrointest. Surg. 2025, 29, 101852. [Google Scholar] [CrossRef]
- Rebelo, A.; Shrikhande, S.; Liu, Q.; Klose, J.; Kleeff, J.; Szatmary, P. Research Letter: Variability in anticoagulation practices following pancreatic surgery with vascular resection. HPB 2025, 27, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Garnier, J.; Habib, J.R.; Rompen, I.F.; Andel, P.C.M.; Salinas, C.H.; Ratner, M.; De Pastena, M.; Salvia, R.; Hewitt, D.B.; et al. The APROVE (Anti-coagulation/Platelet Treatment in Pancreatic Resections Involving Vascular Reconstruction) Study: Results from a Worldwide Survey. Ann. Surg. Oncol. 2025, 32, 7400–7409. [Google Scholar] [CrossRef]
- Chandrasegaram, M.D.; Eslick, G.D.; Lee, W.; Brooke-Smith, M.E.; Padbury, R.; Worthley, C.S.; Chen, J.W.; Windsor, J.A. Anticoagulation policy after venous resection with a pancreatectomy: A systematic review. HPB 2014, 16, 691–698. [Google Scholar] [CrossRef]
- Clancy, T.E.; Baker, E.H.; Maegawa, F.A.; Raoof, M.; Winslow, E.; House, M.G.; Members of the AHPBA Professional Standards Committee. AHPBA guidelines for managing VTE prophylaxis and anticoagulation for pancreatic surgery. HPB 2022, 24, 575–585. [Google Scholar] [CrossRef]
- Tang, K.; Weinberg, E.M. Direct oral anticoagulants in the treatment of portal vein thrombosis in patients with portal hypertension. Clin. Liver Dis. 2023, 22, 37–41. [Google Scholar] [CrossRef]
- Naymagon, L.; Tremblay, D.; Zubizarreta, N.; Moshier, E.; Troy, K.; Schiano, T.; Mascarenhas, J. The efficacy and safety of direct oral anticoagulants in noncirrhotic portal vein thrombosis. Blood Adv. 2020, 4, 655–666. [Google Scholar] [CrossRef]
- Pointer, D.T., Jr.; Al-Qurayshi, Z.; Hamner, J.B.; Slakey, D.P.; Kandil, E. Factors leading to pancreatic resection in patients with pancreatic cancer: A national perspective. Gland Surg. 2018, 7, 207–215. [Google Scholar] [CrossRef]
- Ratnayake, B.; Pendharkar, S.A.; Connor, S.; Koea, J.; Sarfati, D.; Dennett, E.; Pandanaboyana, S.; Windsor, J.A. Patient volume and clinical outcome after pancreatic cancer resection: A contemporary systematic review and meta-analysis. Surgery 2022, 172, 273–283. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Tian, Y.; Duan, J.; Shao, Y.; Yan, S.; Wang, W. Arterial resection and reconstruction in pancreatectomy: Surgical technique and outcomes. BMC Surg. 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Klotz, R.; Hackert, T.; Heger, P.; Probst, P.; Hinz, U.; Loos, M.; Berchtold, C.; Mehrabi, A.; Schneider, M.; Müller-Stich, B.P.; et al. The TRIANGLE operation for pancreatic head and body cancers: Early postoperative outcomes. HPB 2022, 24, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Bachellier, P.; Addeo, P.; Faitot, F.; Nappo, G.; Dufour, P. Pancreatectomy with Arterial Resection for Pancreatic Adenocarcinoma: How Can It Be Done Safely and With Which Outcomes?: A Single Institution’s Experience With 118 Patients. Ann. Surg. 2020, 271, 932–940. [Google Scholar] [CrossRef]
- Zettervall, S.L.; Ju, T.; Holzmacher, J.L.; Huysman, B.; Werba, G.; Sidawy, A.; Lin, P.; Vaziri, K. Arterial, but Not Venous, Reconstruction Increases 30-Day Morbidity and Mortality in Pancreaticoduodenectomy. J. Gastrointest. Surg. 2020, 24, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.K.; Hironaka, C.E.; Ahmad, M.U.; Delitto, D.; Dua, M.M.; Lee, B.; Norton, J.A.; Visser, B.C.; Poultsides, G.A. Distal Pancreatectomy with and without Celiac Axis Resection for Adenocarcinoma: A Comparison in the Era of Neoadjuvant Therapy. Cancers 2024, 16, 3467. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Qin, J.; Zheng, K.; Liu, X.; Shi, X.; Wang, H.; Zhu, L.; Gao, S.; Wu, C.; Yin, X.; et al. Periarterial divestment following neoadjuvant therapy in patients with locally advanced pancreatic cancer with celiac axis invasion: A safe and effective surgical procedure. Surgery 2025, 180, 109045. [Google Scholar] [CrossRef] [PubMed]
- Limbu, Y.; Regmee, S.; Ghimire, R.; Maharjan, D.K.; Thapa, P.B. Arterial Divestment and Resection in Post-neoadjuvant Pancreatic Adenocarcinoma. Cureus 2021, 13, e20275. [Google Scholar] [CrossRef]

| Modality | Use When | Findings | Limits | Role |
|---|---|---|---|---|
| Transabdominal ultrasound | Might be the first imaging modality in jaundiced patients (initial triage) | Biliary dilation and mass effect when acoustic window is favorable | Operator-dependent and limited by habitus and bowel gas | Generally limited |
| Pancreas-protocol CT | Suspected PDAC and initial diagnosis | Hypoenhancing mass, MPD cutoff with distal atrophy, double duct, vessel mapping PV SMV SMA CHA CA | Small or isoattenuating lesions may be missed, and post-NAT fibrosis can obscure planes while pancreatic fatty degeneration may further mask subtle tumor foci | Backbone for diagnosis and operative planning |
| Endoscopic ultrasound (EUS) | Histologic confirmation and evaluation of CT-occult lesions, with robust assessment of tumor–vascular involvement and potential utility for palliation (e.g., pain control) | Fine detail of small or isoattenuating lesions. Can show vascular invasion especially when combined with ancillary techniques | Invasive and operator-dependent | Adjunctive |
| MRI ± MRCP | Contrast contraindication or low lesion conspicuity on CT, with added value for metastatic assessment and ductal mapping | Ductal anatomy and subtle ductal cutoffs with higher sensitivity than CT for occult liver metastases | Longer acquisition time with susceptibility to motion artifacts and variable availability, with no demonstrated added value for assessing vascular invasion | Adjunctive |
| FDG-PET/CT | Before and after NAT in patients with high-risk biology or indeterminate extrapancreatic findings | Assessment of response to NAT with whole-body survey for extrapancreatic disease | Not a substitute for high-quality pancreas-protocol CT in PDAC, limited for detecting small-volume metastases, susceptible to false positives with inflammation and false negatives in low-FDG-avid disease, and associated with higher cost, variable availability, and additional radiation exposure | Adjunctive |
| Staging laparoscopy | High-risk features or indeterminate findings with assessment of resectability | Occult peritoneal or surface liver metastases | Invasive and operator-dependent | Adjunctive |
| Item | Definition or Threshold | Imaging Hallmarks on CT | Surgical Implication |
|---|---|---|---|
| Circumferential contact | Abutment ≤ 180° Encasement > 180° | Focal narrowing, Contour irregularity, Segmental occlusion, Intraluminal thrombus, Collateral veins | Further imaging findings must be considered to decide on treatment protocol |
| Resectable | No tumor contact or abutment without venous contour irregularity | Smooth vein outline, no focal narrowing, no thrombus | Standard pancreatectomy No or limited venous repair |
| Borderline resectable | Abutment or encasement with focal narrowing or contour irregularity or short-segment thrombosis when suitable proximal and distal targets exist | Teardrop sign or other luminal-narrowing deformity, Short-segment thrombus, Preserved targets for reconstruction | Consider NAT and reassess Plan venous repair Lateral venorrhaphy or patch or end to end if feasible |
| Locally advanced | Complete occlusion of SMV or PV not amenable to primary reconstruction at presentation | Long-segment occlusion, Extensive collaterals, Loss of suitable targets | Not operable at presentation Consider NAT and reassess |
| Location | Resectable | Borderline Resectable | Locally Advanced | Imaging Predictors of Invasion |
|---|---|---|---|---|
| Head or uncinate | No measurable tumor contact with CA SMA or CHA | Short-segment abutment of CHA without extension to CA or to the HA bifurcation Abutment of SMA or limited abutment of a variant HA when safe reconstruction is feasible | Encasement of SMA or CA | Arterial encasement on high quality CT Specificity approaches 100% Sensitivity near 80% Ancillary signs include focal narrowing contour irregularity and segmental occlusion |
| Body or tail | No measurable contact with CA SMA or CHA | Abutment of CA when reconstruction or divestment is feasible at high volume centers | Encasement of SMA or CA Simultaneous CA and aortic involvement | Apply the same CT signs Use degree of contact in degrees Assess for loss of fat plane and arterial deformity |
| PDAC Category | Initial Management | Follow-Up Management | Operative Management | Notes |
|---|---|---|---|---|
| Resectable without high-risk biology | Upfront pancreatectomy at a high-volume center | Adjuvant chemotherapy after surgery | Proceed directly to resection | FOLFIRINOX is preferred for medically fit patients, with a gemcitabine-based regimen as an alternative, to complete a total of 6 months of systemic therapy, and management should be coordinated through an MDT |
| Resectable with high-risk biology | NAT | Assess treatment response using protocolized cross-sectional imaging and CA 19-9 monitoring | If no disease-progression is confirmed, consider diagnostic laparoscopy, then proceed to resection | Perioperative NAT is administered for 2 to 4 months preoperatively and 2 to 4 months postoperatively, with regimen selection tailored to patient fitness |
| Borderline resectable | Assess patients in an MDT setting and consider surgery with vascular resection at experienced centers when an R0 resection is achievable | |||
| Locally advanced | NAT and consider radiotherapy if no metastases are identified at diagnosis | |||
| Indicators of high-risk biology | Use these features to guide suitability for NAT (elevated CA 19-9, suspicious nodes, large tumors) | — | — | Always assess within multidisciplinary setting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Solonas, S.; Evangelos, L.D.; Georgios, G.K. Diagnosis and Surgical Management for Advanced Pancreatic Cancer Requiring Vascular Resection. Diagnostics 2026, 16, 102. https://doi.org/10.3390/diagnostics16010102
Solonas S, Evangelos LD, Georgios GK. Diagnosis and Surgical Management for Advanced Pancreatic Cancer Requiring Vascular Resection. Diagnostics. 2026; 16(1):102. https://doi.org/10.3390/diagnostics16010102
Chicago/Turabian StyleSolonas, Symeou, Lolis D. Evangelos, and Glantzounis K. Georgios. 2026. "Diagnosis and Surgical Management for Advanced Pancreatic Cancer Requiring Vascular Resection" Diagnostics 16, no. 1: 102. https://doi.org/10.3390/diagnostics16010102
APA StyleSolonas, S., Evangelos, L. D., & Georgios, G. K. (2026). Diagnosis and Surgical Management for Advanced Pancreatic Cancer Requiring Vascular Resection. Diagnostics, 16(1), 102. https://doi.org/10.3390/diagnostics16010102
